Image processing is an important research area in computer vision. clustering is an unsupervised
study. clustering can also be used for image segmentation. there exist so many methods for image
segmentation. image segmentation plays an important role in image analysis.it is one of the first
and the most important tasks in image analysis and computer vision. this proposed system
presents a variation of fuzzy c-means algorithm that provides image clustering. the kernel fuzzy
c-means clustering algorithm (kfcm) is derived from the fuzzy c-means clustering
algorithm(fcm).the kfcm algorithm that provides image clustering and improves accuracy
significantly compared with classical fuzzy c-means algorithm. the new algorithm is called
gaussian kernel based fuzzy c-means clustering algorithm (gkfcm)the major characteristic of
gkfcm is the use of a fuzzy clustering approach ,aiming to guarantee noise insensitiveness and
image detail preservation.. the objective of the work is to cluster the low intensity in homogeneity
area from the noisy images, using the clustering method, segmenting that portion separately using
content level set approach. the purpose of designing this system is to produce better segmentation
results for images corrupted by noise, so that it can be useful in various fields like medical image
analysis, such as tumor detection, study of anatomical structure, and treatment planning.