SlideShare a Scribd company logo
Polybase and
Time Travel
(Temporal Tables)
March 2nd, 2016
About
• Sr. Product Manager with IDERA
– Performance Monitoring of Microsoft BI stack
– Backup and Recovery of Microsoft SQL Server
• Geek Sync Presenter
• Blog Contributor
• HSSUG presenter
• Over 25 years experience
– BI, Data Architect
– DBA
– Developer
– Data Analyst
Where in the world are we?
3
… data warehousing has reached
the most significant tipping point
since its inception. The biggest,
possibly most elaborate data
management system in IT is
changing.
– Gartner, “The State of Data Warehousing in 2012”
Data sources
ETL
Data warehouse
BI and analytics
The Cool Kid’s Data
Warehouse
4
The Data Warehouse of the
Future?
• Diverse Big Data
• Workload Centric Approach
• Data stored on multiple platforms
• Physically distributed data
warehouse
– data warehouse appliances
– columnar RDBMSs
– NoSQL databases
– MapReduce tools, and HDFS.
5
The Data Warehouse of the Future…Its
Here!
6
SQL Server Technology Drivers
PolyBase
JSON Data
Temporal Tables
In Memory Table
ColumnStore Index
Polybase
8
Polybase
• Use T-SQL to store data in SQL Server from
Hadoop or Azure as tables.
• Knowledge of Hadoop or Azure is not
required to use.
• Pushes computation to where data resides
• Export relational data into Hadoop or Azure
9
PolyBase - External Tables, Data Sources & File Formats
10
SQL Server w/
PolyBase
Social
Apps
Sensor
&RFID
Mobile
Apps
Web
Apps
Data Scientists,
BI Users, DB Admins
Your
Apps
PowerPivot
PowerView
PolyBase
Split-Based Query
Processing
External Table
External
Data Source
External File
Format
Hadoop
Relational DW
PolyBase Scenarios
• Querying
– Run T-SQL over HDFS
– Combine data from different Hadoop clusters
– Join relational with non-relational data
• ETL
– Subset of Hadoop in Columnar Format
– Enable data aging scenarios to more economic storage
• Allows building of multi-temperate DW platforms
– SQL Server acts as hot query engine processing most
recent data sets
– Aged data immediately accessible via external tables
– No need to groom data
• Hybrid (Azure Integration)
– Mesh-up on-premise and cloud apps
– Bridge between on-premise and Azure
11
Polybase
1. Create external data source (Hadoop).
2. Create external file format (delimited text file).
3. Create external table pointing to file stored in Hadoop.
12
CREATE EXTERNAL TABLE [dbo].[CarSensor_Data] (
[SensorKey] int NOT NULL,
[CustomerKey] int NOT NULL,
[GeographyKey] int NULL,
[Speed] float NOT NULL,
[YearMeasured] int NOT NULL
)
WITH (LOCATION='/Demo/car_sensordata.tbl',
DATA_SOURCE = hdp2,
FILE_FORMAT = ff2,
REJECT_TYPE = VALUE,
REJECT_VALUE = 0
CREATE EXTERNAL DATA SOURCE hdp2 with (
TYPE = HADOOP,
LOCATION ='hdfs://10.xxx.xx.xxx:xxxx',
RESOURCE_MANAGER_LOCATION='10.xxx.xx.xxx:xxxx')
CREATE EXTERNAL FILE FORMAT ff2 WITH (
FORMAT_TYPE = DELIMITEDTEXT,
FORMAT_OPTIONS (FIELD_TERMINATOR ='|',
USE_TYPE_DEFAULT = TRUE)
Polybase
Who drives faster than 35 Miles > joining structured
customer data stored in SQL Server with sensor data
Ad-HocQueryjoiningrelationalwithHadoopdata
SELECT DISTINCT
Insured_Customers.FirstName,
Insured_Customers.LastName,
Insured_Customers.YearlyIncome,
Insured_Customers.MaritalStatus
into Fast_Customers
from Insured_Customers INNER JOIN
(
select * from CarSensor_Data where Speed > 35
) as SensorD
ON Insured_Customers.CustomerKey = SensorD.CustomerKey
ORDER BY YearlyIncome
CREATE CLUSTERED COLUMNSTORE INDEX CCI_FastCustomers ON
Fast_Customers;
CHANGE THE CONFIG FILE!!!!!
14
C:Program FilesMicrosoft SQL ServerMSSQL13.MSSQLSERVERMSSQLBinnPolybaseSettingsHadoop.config
The user that is used to access Hadoop has to
be configured in the Polybase configuration file
Demo
Temporal Tables
• Temporal Table is really two tables.
– Data Table
– Historical Table (PERIOD)
• A temporal table can be defined as a table for which
PERIOD definition exists comprising of system columns
• Slowly Changing Dimension
– Data Table is Type 1
– Historical Table is Type 2
• Recover accidental data changes
16
Temporal Tables
• Slowly Changing Dimensions
– Type 1
• Records will be updated with no history log
– Type 2
• Keep history with a From Date and To Date
• Set existing record as obsolete (with setting
the To Date)
• Create a new record (with new From Date)
– Type 3
• Limited History
– Type 4
• Similar to Type 2 but broken out as 2 tables.
Temporal Tables
• Requirements/Limitations
– Primary Key
– Two columns (start and end date as
datetime2)
– In-Memory tables cannot be used
– INSERT and UPDATE not allowed on
SYSTEM_TIME period columns
– History Table data cannot be changed.
– Regular queries only affect data in the
current table.
18
Temporal Tables
Example:
19
CREATE TABLE dbo.TestTemporal
(ID int primary key,
A int,
B int,
C AS A*B,
SysStartTime datetime2 GENERATED ALWAYS AS ROW START NOT NULL,
SysEndTime datetime2 GENERATED ALWAYS AS ROW END NOT NULL,
PERIOD FOR SYSTEM_TIME (SysStartTime, SysEndTime)
) WITH (SYSTEM_VERSIONING = ON);
Temporal Tables
20
• Creating through SSMS
Temporal Tables
• The SELECT statement FROM <table> clause
has a new clause FOR SYSTEM_TIME with
four temporal-specific sub-clauses to query
data across the current and history tables.
– Point in time: AS OF <date_time>
– Exclusive bounds: FROM <start_date_time> TO
<end_date_time>
– Inclusive lower bound, exclusive upper bound:
BETWEEN <start_date_time> AND
<end_date_time>
– Inclusive bounds: CONTAINED IN
(<start_date_time> , <end_date_time>)
21
Temporal Tables
• For example, if you want to look at the
values active for customer 27 on the first of
the year:
… FROM Customer FOR SYSTEM_TIME AS OF '2015-1-1' WHERE
CustomerID = 27
• If instead you want to see every version of
the users records for that day you could
write:
… FROM Customer FOR SYSTEM_TIME BETWEEN '2015-1-1' AND '2015-
1-2'WHERE CustomerID = 27
22
Demo
Try any of our tools for free!
Twitter: @MSBI_Stan
Email: stan.geiger@idera.com
www.idera.com
Ad

More Related Content

What's hot (20)

Workspace Management
Workspace ManagementWorkspace Management
Workspace Management
waldotyson
 
An introduction to Big-Data processing applying hadoop
An introduction to Big-Data processing applying hadoopAn introduction to Big-Data processing applying hadoop
An introduction to Big-Data processing applying hadoop
Amir Sedighi
 
Dbms quiz
Dbms quiz Dbms quiz
Dbms quiz
Sophia Girls' College(Autonomous), Ajmer
 
(120211) #fitalk sq lite record recovery
(120211) #fitalk   sq lite record recovery(120211) #fitalk   sq lite record recovery
(120211) #fitalk sq lite record recovery
INSIGHT FORENSIC
 
MATLAB, netCDF, and OPeNDAP
MATLAB, netCDF, and OPeNDAPMATLAB, netCDF, and OPeNDAP
MATLAB, netCDF, and OPeNDAP
The HDF-EOS Tools and Information Center
 
Storage availibility in large scale data centers
Storage availibility in large scale data centersStorage availibility in large scale data centers
Storage availibility in large scale data centers
marybabu10
 
Greenplum-PXF November 2018
Greenplum-PXF November 2018Greenplum-PXF November 2018
Greenplum-PXF November 2018
KongYew Chan, MBA
 
Intro to Apache Hadoop
Intro to Apache HadoopIntro to Apache Hadoop
Intro to Apache Hadoop
Sufi Nawaz
 
Hive integration: HBase and Rcfile__HadoopSummit2010
Hive integration: HBase and Rcfile__HadoopSummit2010Hive integration: HBase and Rcfile__HadoopSummit2010
Hive integration: HBase and Rcfile__HadoopSummit2010
Yahoo Developer Network
 
Hadoop and Hive Development at Facebook
Hadoop and Hive Development at FacebookHadoop and Hive Development at Facebook
Hadoop and Hive Development at Facebook
elliando dias
 
Understanding Big Data Platform from Patents
Understanding Big Data Platform from PatentsUnderstanding Big Data Platform from Patents
Understanding Big Data Platform from Patents
Alex G. Lee, Ph.D. Esq. CLP
 
Working with Scientific Data in MATLAB
Working with Scientific Data in MATLABWorking with Scientific Data in MATLAB
Working with Scientific Data in MATLAB
The HDF-EOS Tools and Information Center
 
The MATLAB Low-Level HDF5 Interface
The MATLAB Low-Level HDF5 InterfaceThe MATLAB Low-Level HDF5 Interface
The MATLAB Low-Level HDF5 Interface
The HDF-EOS Tools and Information Center
 
Be A Hero: Transforming GoPro Analytics Data Pipeline
Be A Hero: Transforming GoPro Analytics Data PipelineBe A Hero: Transforming GoPro Analytics Data Pipeline
Be A Hero: Transforming GoPro Analytics Data Pipeline
Chester Chen
 
Pilot Project for HDF5 Metadata Structures for SWOT
Pilot Project for HDF5 Metadata Structures for SWOTPilot Project for HDF5 Metadata Structures for SWOT
Pilot Project for HDF5 Metadata Structures for SWOT
The HDF-EOS Tools and Information Center
 
Data Analytics using MATLAB and HDF5
Data Analytics using MATLAB and HDF5Data Analytics using MATLAB and HDF5
Data Analytics using MATLAB and HDF5
The HDF-EOS Tools and Information Center
 
Utilizing HDF4 File Content Maps for the Cloud Computing
Utilizing HDF4 File Content Maps for the Cloud ComputingUtilizing HDF4 File Content Maps for the Cloud Computing
Utilizing HDF4 File Content Maps for the Cloud Computing
The HDF-EOS Tools and Information Center
 
Hive and data analysis using pandas
 Hive  and  data analysis  using pandas Hive  and  data analysis  using pandas
Hive and data analysis using pandas
Purna Chander K
 
Getting Started with PostGIS geographic database - Lasma Sietinsone, EDINA
Getting Started with PostGIS geographic database - Lasma Sietinsone, EDINAGetting Started with PostGIS geographic database - Lasma Sietinsone, EDINA
Getting Started with PostGIS geographic database - Lasma Sietinsone, EDINA
JISC GECO
 
Getting started with PostGIS geographic database
Getting started with PostGIS geographic databaseGetting started with PostGIS geographic database
Getting started with PostGIS geographic database
EDINA, University of Edinburgh
 
Workspace Management
Workspace ManagementWorkspace Management
Workspace Management
waldotyson
 
An introduction to Big-Data processing applying hadoop
An introduction to Big-Data processing applying hadoopAn introduction to Big-Data processing applying hadoop
An introduction to Big-Data processing applying hadoop
Amir Sedighi
 
(120211) #fitalk sq lite record recovery
(120211) #fitalk   sq lite record recovery(120211) #fitalk   sq lite record recovery
(120211) #fitalk sq lite record recovery
INSIGHT FORENSIC
 
Storage availibility in large scale data centers
Storage availibility in large scale data centersStorage availibility in large scale data centers
Storage availibility in large scale data centers
marybabu10
 
Intro to Apache Hadoop
Intro to Apache HadoopIntro to Apache Hadoop
Intro to Apache Hadoop
Sufi Nawaz
 
Hive integration: HBase and Rcfile__HadoopSummit2010
Hive integration: HBase and Rcfile__HadoopSummit2010Hive integration: HBase and Rcfile__HadoopSummit2010
Hive integration: HBase and Rcfile__HadoopSummit2010
Yahoo Developer Network
 
Hadoop and Hive Development at Facebook
Hadoop and Hive Development at FacebookHadoop and Hive Development at Facebook
Hadoop and Hive Development at Facebook
elliando dias
 
Be A Hero: Transforming GoPro Analytics Data Pipeline
Be A Hero: Transforming GoPro Analytics Data PipelineBe A Hero: Transforming GoPro Analytics Data Pipeline
Be A Hero: Transforming GoPro Analytics Data Pipeline
Chester Chen
 
Hive and data analysis using pandas
 Hive  and  data analysis  using pandas Hive  and  data analysis  using pandas
Hive and data analysis using pandas
Purna Chander K
 
Getting Started with PostGIS geographic database - Lasma Sietinsone, EDINA
Getting Started with PostGIS geographic database - Lasma Sietinsone, EDINAGetting Started with PostGIS geographic database - Lasma Sietinsone, EDINA
Getting Started with PostGIS geographic database - Lasma Sietinsone, EDINA
JISC GECO
 

Viewers also liked (8)

Introduction to PolyBase
Introduction to PolyBaseIntroduction to PolyBase
Introduction to PolyBase
James Serra
 
Trivadis TechEvent 2016 Ablösung einer Tivoli Monitoring Umgebung mit OpenSou...
Trivadis TechEvent 2016 Ablösung einer Tivoli Monitoring Umgebung mit OpenSou...Trivadis TechEvent 2016 Ablösung einer Tivoli Monitoring Umgebung mit OpenSou...
Trivadis TechEvent 2016 Ablösung einer Tivoli Monitoring Umgebung mit OpenSou...
Trivadis
 
Azure SQL DWH
Azure SQL DWHAzure SQL DWH
Azure SQL DWH
Shy Engelberg
 
Trivadis TechEvent 2016 Polybase challenges Hive relational access to non-rel...
Trivadis TechEvent 2016 Polybase challenges Hive relational access to non-rel...Trivadis TechEvent 2016 Polybase challenges Hive relational access to non-rel...
Trivadis TechEvent 2016 Polybase challenges Hive relational access to non-rel...
Trivadis
 
Microsoft Azure Data Warehouse Overview
Microsoft Azure Data Warehouse OverviewMicrosoft Azure Data Warehouse Overview
Microsoft Azure Data Warehouse Overview
Justin Munsters
 
Introducing Azure SQL Data Warehouse
Introducing Azure SQL Data WarehouseIntroducing Azure SQL Data Warehouse
Introducing Azure SQL Data Warehouse
James Serra
 
What's new in SQL Server 2016
What's new in SQL Server 2016What's new in SQL Server 2016
What's new in SQL Server 2016
James Serra
 
Big Data Analytics with Hadoop
Big Data Analytics with HadoopBig Data Analytics with Hadoop
Big Data Analytics with Hadoop
Philippe Julio
 
Introduction to PolyBase
Introduction to PolyBaseIntroduction to PolyBase
Introduction to PolyBase
James Serra
 
Trivadis TechEvent 2016 Ablösung einer Tivoli Monitoring Umgebung mit OpenSou...
Trivadis TechEvent 2016 Ablösung einer Tivoli Monitoring Umgebung mit OpenSou...Trivadis TechEvent 2016 Ablösung einer Tivoli Monitoring Umgebung mit OpenSou...
Trivadis TechEvent 2016 Ablösung einer Tivoli Monitoring Umgebung mit OpenSou...
Trivadis
 
Trivadis TechEvent 2016 Polybase challenges Hive relational access to non-rel...
Trivadis TechEvent 2016 Polybase challenges Hive relational access to non-rel...Trivadis TechEvent 2016 Polybase challenges Hive relational access to non-rel...
Trivadis TechEvent 2016 Polybase challenges Hive relational access to non-rel...
Trivadis
 
Microsoft Azure Data Warehouse Overview
Microsoft Azure Data Warehouse OverviewMicrosoft Azure Data Warehouse Overview
Microsoft Azure Data Warehouse Overview
Justin Munsters
 
Introducing Azure SQL Data Warehouse
Introducing Azure SQL Data WarehouseIntroducing Azure SQL Data Warehouse
Introducing Azure SQL Data Warehouse
James Serra
 
What's new in SQL Server 2016
What's new in SQL Server 2016What's new in SQL Server 2016
What's new in SQL Server 2016
James Serra
 
Big Data Analytics with Hadoop
Big Data Analytics with HadoopBig Data Analytics with Hadoop
Big Data Analytics with Hadoop
Philippe Julio
 
Ad

Similar to Geek Sync I Polybase and Time Travel (Temporal Tables) (20)

Day 1 - Technical Bootcamp azure synapse analytics
Day 1 - Technical Bootcamp azure synapse analyticsDay 1 - Technical Bootcamp azure synapse analytics
Day 1 - Technical Bootcamp azure synapse analytics
Armand272
 
SQLDAY 2023 Chodkowski Adrian Databricks Performance Tuning
SQLDAY 2023 Chodkowski Adrian Databricks Performance TuningSQLDAY 2023 Chodkowski Adrian Databricks Performance Tuning
SQLDAY 2023 Chodkowski Adrian Databricks Performance Tuning
SeeQuality.net
 
Temporal Tables, Transparent Archiving in DB2 for z/OS and IDAA
Temporal Tables, Transparent Archiving in DB2 for z/OS and IDAATemporal Tables, Transparent Archiving in DB2 for z/OS and IDAA
Temporal Tables, Transparent Archiving in DB2 for z/OS and IDAA
Cuneyt Goksu
 
AWS Redshift Introduction - Big Data Analytics
AWS Redshift Introduction - Big Data AnalyticsAWS Redshift Introduction - Big Data Analytics
AWS Redshift Introduction - Big Data Analytics
Keeyong Han
 
Data Warehouse Logical Design using Mysql
Data Warehouse Logical Design using MysqlData Warehouse Logical Design using Mysql
Data Warehouse Logical Design using Mysql
HAFIZ Islam
 
Star schema my sql
Star schema   my sqlStar schema   my sql
Star schema my sql
deathsubte
 
Oracle 12c New Features For Better Performance
Oracle 12c New Features For Better PerformanceOracle 12c New Features For Better Performance
Oracle 12c New Features For Better Performance
Zohar Elkayam
 
Discard inport exchange table & tablespace
Discard inport exchange table & tablespaceDiscard inport exchange table & tablespace
Discard inport exchange table & tablespace
Marco Tusa
 
Lightning Talk: Why and How to Integrate MongoDB and NoSQL into Hadoop Big Da...
Lightning Talk: Why and How to Integrate MongoDB and NoSQL into Hadoop Big Da...Lightning Talk: Why and How to Integrate MongoDB and NoSQL into Hadoop Big Da...
Lightning Talk: Why and How to Integrate MongoDB and NoSQL into Hadoop Big Da...
MongoDB
 
Best Practices and Performance Tuning of U-SQL in Azure Data Lake (SQL Konfer...
Best Practices and Performance Tuning of U-SQL in Azure Data Lake (SQL Konfer...Best Practices and Performance Tuning of U-SQL in Azure Data Lake (SQL Konfer...
Best Practices and Performance Tuning of U-SQL in Azure Data Lake (SQL Konfer...
Michael Rys
 
ORACLE 12C-New-Features
ORACLE 12C-New-FeaturesORACLE 12C-New-Features
ORACLE 12C-New-Features
Navneet Upneja
 
Oracle DBA
Oracle DBAOracle DBA
Oracle DBA
shivankuniversity
 
COUG_AAbate_Oracle_Database_12c_New_Features
COUG_AAbate_Oracle_Database_12c_New_FeaturesCOUG_AAbate_Oracle_Database_12c_New_Features
COUG_AAbate_Oracle_Database_12c_New_Features
Alfredo Abate
 
Big Data with MySQL
Big Data with MySQLBig Data with MySQL
Big Data with MySQL
Ivan Zoratti
 
Trivadis TechEvent 2017 SQL Server 2016 Temporal Tables by Willfried Färber
Trivadis TechEvent 2017 SQL Server 2016 Temporal Tables by Willfried FärberTrivadis TechEvent 2017 SQL Server 2016 Temporal Tables by Willfried Färber
Trivadis TechEvent 2017 SQL Server 2016 Temporal Tables by Willfried Färber
Trivadis
 
Lightning Talk: Why and How to Integrate MongoDB and NoSQL into Hadoop Big Da...
Lightning Talk: Why and How to Integrate MongoDB and NoSQL into Hadoop Big Da...Lightning Talk: Why and How to Integrate MongoDB and NoSQL into Hadoop Big Da...
Lightning Talk: Why and How to Integrate MongoDB and NoSQL into Hadoop Big Da...
MongoDB
 
Reduce planned database down time with Oracle technology
Reduce planned database down time with Oracle technologyReduce planned database down time with Oracle technology
Reduce planned database down time with Oracle technology
Kirill Loifman
 
Informix partitioning interval_rolling_window_table
Informix partitioning interval_rolling_window_tableInformix partitioning interval_rolling_window_table
Informix partitioning interval_rolling_window_table
Keshav Murthy
 
Perfect trio : temporal tables, transparent archiving in db2 for z_os and idaa
Perfect trio : temporal tables, transparent archiving in db2 for z_os and idaaPerfect trio : temporal tables, transparent archiving in db2 for z_os and idaa
Perfect trio : temporal tables, transparent archiving in db2 for z_os and idaa
Cuneyt Goksu
 
Jethro data meetup index base sql on hadoop - oct-2014
Jethro data meetup    index base sql on hadoop - oct-2014Jethro data meetup    index base sql on hadoop - oct-2014
Jethro data meetup index base sql on hadoop - oct-2014
Eli Singer
 
Day 1 - Technical Bootcamp azure synapse analytics
Day 1 - Technical Bootcamp azure synapse analyticsDay 1 - Technical Bootcamp azure synapse analytics
Day 1 - Technical Bootcamp azure synapse analytics
Armand272
 
SQLDAY 2023 Chodkowski Adrian Databricks Performance Tuning
SQLDAY 2023 Chodkowski Adrian Databricks Performance TuningSQLDAY 2023 Chodkowski Adrian Databricks Performance Tuning
SQLDAY 2023 Chodkowski Adrian Databricks Performance Tuning
SeeQuality.net
 
Temporal Tables, Transparent Archiving in DB2 for z/OS and IDAA
Temporal Tables, Transparent Archiving in DB2 for z/OS and IDAATemporal Tables, Transparent Archiving in DB2 for z/OS and IDAA
Temporal Tables, Transparent Archiving in DB2 for z/OS and IDAA
Cuneyt Goksu
 
AWS Redshift Introduction - Big Data Analytics
AWS Redshift Introduction - Big Data AnalyticsAWS Redshift Introduction - Big Data Analytics
AWS Redshift Introduction - Big Data Analytics
Keeyong Han
 
Data Warehouse Logical Design using Mysql
Data Warehouse Logical Design using MysqlData Warehouse Logical Design using Mysql
Data Warehouse Logical Design using Mysql
HAFIZ Islam
 
Star schema my sql
Star schema   my sqlStar schema   my sql
Star schema my sql
deathsubte
 
Oracle 12c New Features For Better Performance
Oracle 12c New Features For Better PerformanceOracle 12c New Features For Better Performance
Oracle 12c New Features For Better Performance
Zohar Elkayam
 
Discard inport exchange table & tablespace
Discard inport exchange table & tablespaceDiscard inport exchange table & tablespace
Discard inport exchange table & tablespace
Marco Tusa
 
Lightning Talk: Why and How to Integrate MongoDB and NoSQL into Hadoop Big Da...
Lightning Talk: Why and How to Integrate MongoDB and NoSQL into Hadoop Big Da...Lightning Talk: Why and How to Integrate MongoDB and NoSQL into Hadoop Big Da...
Lightning Talk: Why and How to Integrate MongoDB and NoSQL into Hadoop Big Da...
MongoDB
 
Best Practices and Performance Tuning of U-SQL in Azure Data Lake (SQL Konfer...
Best Practices and Performance Tuning of U-SQL in Azure Data Lake (SQL Konfer...Best Practices and Performance Tuning of U-SQL in Azure Data Lake (SQL Konfer...
Best Practices and Performance Tuning of U-SQL in Azure Data Lake (SQL Konfer...
Michael Rys
 
ORACLE 12C-New-Features
ORACLE 12C-New-FeaturesORACLE 12C-New-Features
ORACLE 12C-New-Features
Navneet Upneja
 
COUG_AAbate_Oracle_Database_12c_New_Features
COUG_AAbate_Oracle_Database_12c_New_FeaturesCOUG_AAbate_Oracle_Database_12c_New_Features
COUG_AAbate_Oracle_Database_12c_New_Features
Alfredo Abate
 
Big Data with MySQL
Big Data with MySQLBig Data with MySQL
Big Data with MySQL
Ivan Zoratti
 
Trivadis TechEvent 2017 SQL Server 2016 Temporal Tables by Willfried Färber
Trivadis TechEvent 2017 SQL Server 2016 Temporal Tables by Willfried FärberTrivadis TechEvent 2017 SQL Server 2016 Temporal Tables by Willfried Färber
Trivadis TechEvent 2017 SQL Server 2016 Temporal Tables by Willfried Färber
Trivadis
 
Lightning Talk: Why and How to Integrate MongoDB and NoSQL into Hadoop Big Da...
Lightning Talk: Why and How to Integrate MongoDB and NoSQL into Hadoop Big Da...Lightning Talk: Why and How to Integrate MongoDB and NoSQL into Hadoop Big Da...
Lightning Talk: Why and How to Integrate MongoDB and NoSQL into Hadoop Big Da...
MongoDB
 
Reduce planned database down time with Oracle technology
Reduce planned database down time with Oracle technologyReduce planned database down time with Oracle technology
Reduce planned database down time with Oracle technology
Kirill Loifman
 
Informix partitioning interval_rolling_window_table
Informix partitioning interval_rolling_window_tableInformix partitioning interval_rolling_window_table
Informix partitioning interval_rolling_window_table
Keshav Murthy
 
Perfect trio : temporal tables, transparent archiving in db2 for z_os and idaa
Perfect trio : temporal tables, transparent archiving in db2 for z_os and idaaPerfect trio : temporal tables, transparent archiving in db2 for z_os and idaa
Perfect trio : temporal tables, transparent archiving in db2 for z_os and idaa
Cuneyt Goksu
 
Jethro data meetup index base sql on hadoop - oct-2014
Jethro data meetup    index base sql on hadoop - oct-2014Jethro data meetup    index base sql on hadoop - oct-2014
Jethro data meetup index base sql on hadoop - oct-2014
Eli Singer
 
Ad

More from IDERA Software (20)

The role of the database administrator (DBA) in 2020: Changes, challenges, an...
The role of the database administrator (DBA) in 2020: Changes, challenges, an...The role of the database administrator (DBA) in 2020: Changes, challenges, an...
The role of the database administrator (DBA) in 2020: Changes, challenges, an...
IDERA Software
 
Problems and solutions for migrating databases to the cloud
Problems and solutions for migrating databases to the cloudProblems and solutions for migrating databases to the cloud
Problems and solutions for migrating databases to the cloud
IDERA Software
 
Public cloud uses and limitations
Public cloud uses and limitationsPublic cloud uses and limitations
Public cloud uses and limitations
IDERA Software
 
Optimize the performance, cost, and value of databases.pptx
Optimize the performance, cost, and value of databases.pptxOptimize the performance, cost, and value of databases.pptx
Optimize the performance, cost, and value of databases.pptx
IDERA Software
 
Monitor cloud database with SQL Diagnostic Manager for SQL Server
Monitor cloud database with SQL Diagnostic Manager for SQL ServerMonitor cloud database with SQL Diagnostic Manager for SQL Server
Monitor cloud database with SQL Diagnostic Manager for SQL Server
IDERA Software
 
Database administrators (dbas) face increasing pressure to monitor databases
Database administrators (dbas) face increasing pressure to monitor databasesDatabase administrators (dbas) face increasing pressure to monitor databases
Database administrators (dbas) face increasing pressure to monitor databases
IDERA Software
 
Six tips for cutting sql server licensing costs
Six tips for cutting sql server licensing costsSix tips for cutting sql server licensing costs
Six tips for cutting sql server licensing costs
IDERA Software
 
Idera live 2021: The Power of Abstraction by Steve Hoberman
Idera live 2021:  The Power of Abstraction by Steve HobermanIdera live 2021:  The Power of Abstraction by Steve Hoberman
Idera live 2021: The Power of Abstraction by Steve Hoberman
IDERA Software
 
Idera live 2021: Why Data Lakes are Critical for AI, ML, and IoT By Brian Flug
Idera live 2021:  Why Data Lakes are Critical for AI, ML, and IoT  By Brian FlugIdera live 2021:  Why Data Lakes are Critical for AI, ML, and IoT  By Brian Flug
Idera live 2021: Why Data Lakes are Critical for AI, ML, and IoT By Brian Flug
IDERA Software
 
Idera live 2021: Will Data Vault add Value to Your Data Warehouse? 3 Signs th...
Idera live 2021: Will Data Vault add Value to Your Data Warehouse? 3 Signs th...Idera live 2021: Will Data Vault add Value to Your Data Warehouse? 3 Signs th...
Idera live 2021: Will Data Vault add Value to Your Data Warehouse? 3 Signs th...
IDERA Software
 
Idera live 2021: Managing Digital Transformation on a Budget by Bert Scalzo
Idera live 2021:  Managing Digital Transformation on a Budget by Bert ScalzoIdera live 2021:  Managing Digital Transformation on a Budget by Bert Scalzo
Idera live 2021: Managing Digital Transformation on a Budget by Bert Scalzo
IDERA Software
 
Idera live 2021: Keynote Presentation The Future of Data is The Data Cloud b...
Idera live 2021:  Keynote Presentation The Future of Data is The Data Cloud b...Idera live 2021:  Keynote Presentation The Future of Data is The Data Cloud b...
Idera live 2021: Keynote Presentation The Future of Data is The Data Cloud b...
IDERA Software
 
Idera live 2021: Managing Databases in the Cloud - the First Step, a Succes...
Idera live 2021:   Managing Databases in the Cloud - the First Step, a Succes...Idera live 2021:   Managing Databases in the Cloud - the First Step, a Succes...
Idera live 2021: Managing Databases in the Cloud - the First Step, a Succes...
IDERA Software
 
Idera live 2021: Database Auditing - on-Premises and in the Cloud by Craig M...
Idera live 2021:  Database Auditing - on-Premises and in the Cloud by Craig M...Idera live 2021:  Database Auditing - on-Premises and in the Cloud by Craig M...
Idera live 2021: Database Auditing - on-Premises and in the Cloud by Craig M...
IDERA Software
 
Idera live 2021: Performance Tuning Azure SQL Database by Monica Rathbun
Idera live 2021:  Performance Tuning Azure SQL Database by Monica RathbunIdera live 2021:  Performance Tuning Azure SQL Database by Monica Rathbun
Idera live 2021: Performance Tuning Azure SQL Database by Monica Rathbun
IDERA Software
 
Geek Sync | How to Be the DBA When You Don't Have a DBA - Eric Cobb | IDERA
Geek Sync | How to Be the DBA When You Don't Have a DBA - Eric Cobb | IDERAGeek Sync | How to Be the DBA When You Don't Have a DBA - Eric Cobb | IDERA
Geek Sync | How to Be the DBA When You Don't Have a DBA - Eric Cobb | IDERA
IDERA Software
 
How Users of a Performance Monitoring Tool Can Benefit from an Inventory Mana...
How Users of a Performance Monitoring Tool Can Benefit from an Inventory Mana...How Users of a Performance Monitoring Tool Can Benefit from an Inventory Mana...
How Users of a Performance Monitoring Tool Can Benefit from an Inventory Mana...
IDERA Software
 
Benefits of Third Party Tools for MySQL | IDERA
Benefits of Third Party Tools for MySQL | IDERABenefits of Third Party Tools for MySQL | IDERA
Benefits of Third Party Tools for MySQL | IDERA
IDERA Software
 
Achieve More with Less Resources | IDERA
Achieve More with Less Resources | IDERAAchieve More with Less Resources | IDERA
Achieve More with Less Resources | IDERA
IDERA Software
 
Benefits of SQL Server 2017 and 2019 | IDERA
Benefits of SQL Server 2017 and 2019 | IDERABenefits of SQL Server 2017 and 2019 | IDERA
Benefits of SQL Server 2017 and 2019 | IDERA
IDERA Software
 
The role of the database administrator (DBA) in 2020: Changes, challenges, an...
The role of the database administrator (DBA) in 2020: Changes, challenges, an...The role of the database administrator (DBA) in 2020: Changes, challenges, an...
The role of the database administrator (DBA) in 2020: Changes, challenges, an...
IDERA Software
 
Problems and solutions for migrating databases to the cloud
Problems and solutions for migrating databases to the cloudProblems and solutions for migrating databases to the cloud
Problems and solutions for migrating databases to the cloud
IDERA Software
 
Public cloud uses and limitations
Public cloud uses and limitationsPublic cloud uses and limitations
Public cloud uses and limitations
IDERA Software
 
Optimize the performance, cost, and value of databases.pptx
Optimize the performance, cost, and value of databases.pptxOptimize the performance, cost, and value of databases.pptx
Optimize the performance, cost, and value of databases.pptx
IDERA Software
 
Monitor cloud database with SQL Diagnostic Manager for SQL Server
Monitor cloud database with SQL Diagnostic Manager for SQL ServerMonitor cloud database with SQL Diagnostic Manager for SQL Server
Monitor cloud database with SQL Diagnostic Manager for SQL Server
IDERA Software
 
Database administrators (dbas) face increasing pressure to monitor databases
Database administrators (dbas) face increasing pressure to monitor databasesDatabase administrators (dbas) face increasing pressure to monitor databases
Database administrators (dbas) face increasing pressure to monitor databases
IDERA Software
 
Six tips for cutting sql server licensing costs
Six tips for cutting sql server licensing costsSix tips for cutting sql server licensing costs
Six tips for cutting sql server licensing costs
IDERA Software
 
Idera live 2021: The Power of Abstraction by Steve Hoberman
Idera live 2021:  The Power of Abstraction by Steve HobermanIdera live 2021:  The Power of Abstraction by Steve Hoberman
Idera live 2021: The Power of Abstraction by Steve Hoberman
IDERA Software
 
Idera live 2021: Why Data Lakes are Critical for AI, ML, and IoT By Brian Flug
Idera live 2021:  Why Data Lakes are Critical for AI, ML, and IoT  By Brian FlugIdera live 2021:  Why Data Lakes are Critical for AI, ML, and IoT  By Brian Flug
Idera live 2021: Why Data Lakes are Critical for AI, ML, and IoT By Brian Flug
IDERA Software
 
Idera live 2021: Will Data Vault add Value to Your Data Warehouse? 3 Signs th...
Idera live 2021: Will Data Vault add Value to Your Data Warehouse? 3 Signs th...Idera live 2021: Will Data Vault add Value to Your Data Warehouse? 3 Signs th...
Idera live 2021: Will Data Vault add Value to Your Data Warehouse? 3 Signs th...
IDERA Software
 
Idera live 2021: Managing Digital Transformation on a Budget by Bert Scalzo
Idera live 2021:  Managing Digital Transformation on a Budget by Bert ScalzoIdera live 2021:  Managing Digital Transformation on a Budget by Bert Scalzo
Idera live 2021: Managing Digital Transformation on a Budget by Bert Scalzo
IDERA Software
 
Idera live 2021: Keynote Presentation The Future of Data is The Data Cloud b...
Idera live 2021:  Keynote Presentation The Future of Data is The Data Cloud b...Idera live 2021:  Keynote Presentation The Future of Data is The Data Cloud b...
Idera live 2021: Keynote Presentation The Future of Data is The Data Cloud b...
IDERA Software
 
Idera live 2021: Managing Databases in the Cloud - the First Step, a Succes...
Idera live 2021:   Managing Databases in the Cloud - the First Step, a Succes...Idera live 2021:   Managing Databases in the Cloud - the First Step, a Succes...
Idera live 2021: Managing Databases in the Cloud - the First Step, a Succes...
IDERA Software
 
Idera live 2021: Database Auditing - on-Premises and in the Cloud by Craig M...
Idera live 2021:  Database Auditing - on-Premises and in the Cloud by Craig M...Idera live 2021:  Database Auditing - on-Premises and in the Cloud by Craig M...
Idera live 2021: Database Auditing - on-Premises and in the Cloud by Craig M...
IDERA Software
 
Idera live 2021: Performance Tuning Azure SQL Database by Monica Rathbun
Idera live 2021:  Performance Tuning Azure SQL Database by Monica RathbunIdera live 2021:  Performance Tuning Azure SQL Database by Monica Rathbun
Idera live 2021: Performance Tuning Azure SQL Database by Monica Rathbun
IDERA Software
 
Geek Sync | How to Be the DBA When You Don't Have a DBA - Eric Cobb | IDERA
Geek Sync | How to Be the DBA When You Don't Have a DBA - Eric Cobb | IDERAGeek Sync | How to Be the DBA When You Don't Have a DBA - Eric Cobb | IDERA
Geek Sync | How to Be the DBA When You Don't Have a DBA - Eric Cobb | IDERA
IDERA Software
 
How Users of a Performance Monitoring Tool Can Benefit from an Inventory Mana...
How Users of a Performance Monitoring Tool Can Benefit from an Inventory Mana...How Users of a Performance Monitoring Tool Can Benefit from an Inventory Mana...
How Users of a Performance Monitoring Tool Can Benefit from an Inventory Mana...
IDERA Software
 
Benefits of Third Party Tools for MySQL | IDERA
Benefits of Third Party Tools for MySQL | IDERABenefits of Third Party Tools for MySQL | IDERA
Benefits of Third Party Tools for MySQL | IDERA
IDERA Software
 
Achieve More with Less Resources | IDERA
Achieve More with Less Resources | IDERAAchieve More with Less Resources | IDERA
Achieve More with Less Resources | IDERA
IDERA Software
 
Benefits of SQL Server 2017 and 2019 | IDERA
Benefits of SQL Server 2017 and 2019 | IDERABenefits of SQL Server 2017 and 2019 | IDERA
Benefits of SQL Server 2017 and 2019 | IDERA
IDERA Software
 

Recently uploaded (20)

Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 

Geek Sync I Polybase and Time Travel (Temporal Tables)

  • 1. Polybase and Time Travel (Temporal Tables) March 2nd, 2016
  • 2. About • Sr. Product Manager with IDERA – Performance Monitoring of Microsoft BI stack – Backup and Recovery of Microsoft SQL Server • Geek Sync Presenter • Blog Contributor • HSSUG presenter • Over 25 years experience – BI, Data Architect – DBA – Developer – Data Analyst
  • 3. Where in the world are we? 3 … data warehousing has reached the most significant tipping point since its inception. The biggest, possibly most elaborate data management system in IT is changing. – Gartner, “The State of Data Warehousing in 2012” Data sources ETL Data warehouse BI and analytics
  • 4. The Cool Kid’s Data Warehouse 4
  • 5. The Data Warehouse of the Future? • Diverse Big Data • Workload Centric Approach • Data stored on multiple platforms • Physically distributed data warehouse – data warehouse appliances – columnar RDBMSs – NoSQL databases – MapReduce tools, and HDFS. 5
  • 6. The Data Warehouse of the Future…Its Here! 6
  • 7. SQL Server Technology Drivers PolyBase JSON Data Temporal Tables In Memory Table ColumnStore Index
  • 9. Polybase • Use T-SQL to store data in SQL Server from Hadoop or Azure as tables. • Knowledge of Hadoop or Azure is not required to use. • Pushes computation to where data resides • Export relational data into Hadoop or Azure 9
  • 10. PolyBase - External Tables, Data Sources & File Formats 10 SQL Server w/ PolyBase Social Apps Sensor &RFID Mobile Apps Web Apps Data Scientists, BI Users, DB Admins Your Apps PowerPivot PowerView PolyBase Split-Based Query Processing External Table External Data Source External File Format Hadoop Relational DW
  • 11. PolyBase Scenarios • Querying – Run T-SQL over HDFS – Combine data from different Hadoop clusters – Join relational with non-relational data • ETL – Subset of Hadoop in Columnar Format – Enable data aging scenarios to more economic storage • Allows building of multi-temperate DW platforms – SQL Server acts as hot query engine processing most recent data sets – Aged data immediately accessible via external tables – No need to groom data • Hybrid (Azure Integration) – Mesh-up on-premise and cloud apps – Bridge between on-premise and Azure 11
  • 12. Polybase 1. Create external data source (Hadoop). 2. Create external file format (delimited text file). 3. Create external table pointing to file stored in Hadoop. 12 CREATE EXTERNAL TABLE [dbo].[CarSensor_Data] ( [SensorKey] int NOT NULL, [CustomerKey] int NOT NULL, [GeographyKey] int NULL, [Speed] float NOT NULL, [YearMeasured] int NOT NULL ) WITH (LOCATION='/Demo/car_sensordata.tbl', DATA_SOURCE = hdp2, FILE_FORMAT = ff2, REJECT_TYPE = VALUE, REJECT_VALUE = 0 CREATE EXTERNAL DATA SOURCE hdp2 with ( TYPE = HADOOP, LOCATION ='hdfs://10.xxx.xx.xxx:xxxx', RESOURCE_MANAGER_LOCATION='10.xxx.xx.xxx:xxxx') CREATE EXTERNAL FILE FORMAT ff2 WITH ( FORMAT_TYPE = DELIMITEDTEXT, FORMAT_OPTIONS (FIELD_TERMINATOR ='|', USE_TYPE_DEFAULT = TRUE)
  • 13. Polybase Who drives faster than 35 Miles > joining structured customer data stored in SQL Server with sensor data Ad-HocQueryjoiningrelationalwithHadoopdata SELECT DISTINCT Insured_Customers.FirstName, Insured_Customers.LastName, Insured_Customers.YearlyIncome, Insured_Customers.MaritalStatus into Fast_Customers from Insured_Customers INNER JOIN ( select * from CarSensor_Data where Speed > 35 ) as SensorD ON Insured_Customers.CustomerKey = SensorD.CustomerKey ORDER BY YearlyIncome CREATE CLUSTERED COLUMNSTORE INDEX CCI_FastCustomers ON Fast_Customers;
  • 14. CHANGE THE CONFIG FILE!!!!! 14 C:Program FilesMicrosoft SQL ServerMSSQL13.MSSQLSERVERMSSQLBinnPolybaseSettingsHadoop.config The user that is used to access Hadoop has to be configured in the Polybase configuration file
  • 15. Demo
  • 16. Temporal Tables • Temporal Table is really two tables. – Data Table – Historical Table (PERIOD) • A temporal table can be defined as a table for which PERIOD definition exists comprising of system columns • Slowly Changing Dimension – Data Table is Type 1 – Historical Table is Type 2 • Recover accidental data changes 16
  • 17. Temporal Tables • Slowly Changing Dimensions – Type 1 • Records will be updated with no history log – Type 2 • Keep history with a From Date and To Date • Set existing record as obsolete (with setting the To Date) • Create a new record (with new From Date) – Type 3 • Limited History – Type 4 • Similar to Type 2 but broken out as 2 tables.
  • 18. Temporal Tables • Requirements/Limitations – Primary Key – Two columns (start and end date as datetime2) – In-Memory tables cannot be used – INSERT and UPDATE not allowed on SYSTEM_TIME period columns – History Table data cannot be changed. – Regular queries only affect data in the current table. 18
  • 19. Temporal Tables Example: 19 CREATE TABLE dbo.TestTemporal (ID int primary key, A int, B int, C AS A*B, SysStartTime datetime2 GENERATED ALWAYS AS ROW START NOT NULL, SysEndTime datetime2 GENERATED ALWAYS AS ROW END NOT NULL, PERIOD FOR SYSTEM_TIME (SysStartTime, SysEndTime) ) WITH (SYSTEM_VERSIONING = ON);
  • 21. Temporal Tables • The SELECT statement FROM <table> clause has a new clause FOR SYSTEM_TIME with four temporal-specific sub-clauses to query data across the current and history tables. – Point in time: AS OF <date_time> – Exclusive bounds: FROM <start_date_time> TO <end_date_time> – Inclusive lower bound, exclusive upper bound: BETWEEN <start_date_time> AND <end_date_time> – Inclusive bounds: CONTAINED IN (<start_date_time> , <end_date_time>) 21
  • 22. Temporal Tables • For example, if you want to look at the values active for customer 27 on the first of the year: … FROM Customer FOR SYSTEM_TIME AS OF '2015-1-1' WHERE CustomerID = 27 • If instead you want to see every version of the users records for that day you could write: … FROM Customer FOR SYSTEM_TIME BETWEEN '2015-1-1' AND '2015- 1-2'WHERE CustomerID = 27 22
  • 23. Demo
  • 24. Try any of our tools for free! Twitter: @MSBI_Stan Email: [email protected] www.idera.com