SlideShare a Scribd company logo
GeoMesa: Scalable Geospatial Analytics 
Chris Eichelberger 
christopher.eichelberger@ccri.com
terms 
• GeoMesa: an open-source project organized under LocationTech 
• scalable: if you can continue to solve problems as N >> 1 with no more change than 
adding hardware and minor tweaks, you scale 
• geospatial: data that contain a geographic reference, a date/time, and zero 
or more additional attributes 
• analytics: formally, a logical decomposition via truth-preserving transformations; 
informally, any useful derivation (whether deductive or inductive)
outline 
• part 1: why? ( 3 minutes) 
• part 2: how? (10 minutes) 
• part 3: what? (10 minutes) 
• part 4: who? ( 2 minutes)
part 1: why?
[why] which X (points) are close to location Y? 
• hundreds: PostgreSQL and brute force 
– full table scan 
• hundreds of thousands: PostgreSQL and PostGIS 
– GeoTools API 
– GiST (think R-trees) 
• hundreds of millions: a funny thing happens as you collect much more data...
[why] dissolution of large-volume data
[why] perhaps SQL is the bottleneck? 
• NoSQL databases, such as Apache Accumulo 
• trade ACID for distributed processing, storage 
• but there’s no PostGIS for Accumulo, so how does the canonical diagram of an Accumulo (key, 
value) pair help us answer some simple questions...
[why] questions that ought to be easy for an index to answer 
• easy question: Which comes first, “Ontario” or “Quebec”?
[why] questions that ought to be easy for an index to answer 
• easy question: Which comes first, “Ontario” or “Quebec”? 
• similar question: Which comes first, or ?
[why] questions that ought to be easy for an index to answer 
• easy question: Which comes first, “Ontario” or “Quebec”? 
• similar question: Which comes first, or ? 
• simplify, and think only of representative cities, and think of them strictly as points
[why] geohashing
[why] geohashing
[why] geohashing 
City Coordinates (courtesy Wikipedia) Geohash 
Ottawa 45°25′15″N 75°41′24″W f244m 
Montréal 45°30′N 73°34′W f25dv 
Charlottesville (Virginia, USA) 38°1′48″N 78°28′44″W dqb0q 
● Two unique orders: 
○ Order by name: Charlottesville, Montréal, Ottawa 
○ Order by longitude or latitude or geohash: Charlottesville, Ottawa, Montréal 
● Lexicoding location -> geohash provides a deterministic, repeatable ordering 
○ with this, we can index, store, and query points by lexicographic ranges
[why] build-versus-buy remorse 
• PostgreSQL+PostGIS has some nice functions 
– geometric predicates 
– secondary indexes 
– standard GeoTools API 
• some of our data are (multi) lines, (multi) polygons 
• time is often more than a secondary consideration 
• sometimes, analysis work needn’t be done on the same old client 
– distributed across the tablet servers? 
– using tools like Spark? 
– streaming?
[why] synthesis
part 2: how?
[how] GeoMesa features 
• GeoTools API 
• sharding distributes queries uniformly 
• flexible SFC can incorporate time 
• supports (multi) point, (multi) line, (multi) polygon geometries 
• secondary indexes and a multi-stage query planner 
• burgeoning raster support via WCS 
• GeoServer as a plugin-based GUI 
• WPS standards for computation (and function chaining)
[how] GeoTools API
[how] sharding
[how] space-filling curve progression 
%~#s%3#r%0,3#gh%yyyyMM#d::%~#s%3,2#gh::%~#s%5,2#gh%HHmm#d%id
[how] multi-step query planning
[how] multi-step query planning
[how] non-point geometries
[how] rasters + GeoWave integration
[how] supporting other frameworks
[how] GeoServer as a plug-in GUI
[how] Web Processing Service 
• WPS is another OGC standard 
• Think of it as an abstract function definition, mapping input types to output types, and defining 
the computation that occurs between the two. 
• WPS processes can be chained. 
• This provides for a natural extension mechanism to GeoMesa.
[how] synthesis 
Those are merely the highlights of some of GeoMesa’s current features… 
… so what?
part 3: what?
[what] distributing computation
[what] queries that interpolate both position and time
[what] K-nearest neighbor
[what] clustering (DBSCAN)
[what] near-real-time streaming track analytics with web sockets
[what] track viewer utility
part 3: who?
[who] LocationTech and the greater community
[who] synthesis
questions 
For extended questions: 
geomesa-user@locationtech.org 
geomesa@ccri.com 
christopher.eichelberger@geomesa.org 
For additional reading: 
geomesa.org 
For code: 
github.com/locationtech/geomesa

More Related Content

What's hot (20)

PPTX
Machine Learning Models in Production
DataWorks Summit
 
PPTX
Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...
Simplilearn
 
PDF
내가 이해하는 SVM(왜, 어떻게를 중심으로)
SANG WON PARK
 
PDF
Big Data Architecture
Guido Schmutz
 
PDF
Machine Learning: Generative and Discriminative Models
butest
 
PDF
KFServing, Model Monitoring with Apache Spark and a Feature Store
Databricks
 
PPTX
BERT introduction
Hanwha System / ICT
 
PDF
Stuart russell and peter norvig artificial intelligence - a modern approach...
Lê Anh Đạt
 
PPTX
Backpropagation And Gradient Descent In Neural Networks | Neural Network Tuto...
Simplilearn
 
PDF
Graph Based Pattern Recognition
Nicola Strisciuglio
 
PPTX
NLP State of the Art | BERT
shaurya uppal
 
PDF
Introduction to object detection
Brodmann17
 
PDF
MLflow: A Platform for Production Machine Learning
Matei Zaharia
 
PDF
Multi Layer Perceptron & Back Propagation
Sung-ju Kim
 
PPTX
Introduction to Big Data Analytics
Utkarsh Sharma
 
PDF
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
PDF
Lecture6 introduction to data streams
hktripathy
 
PPTX
AWS Lake Formation Deep Dive
Cobus Bernard
 
PPTX
Spatial databases
Dabbal Singh Mahara
 
Machine Learning Models in Production
DataWorks Summit
 
Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...
Simplilearn
 
내가 이해하는 SVM(왜, 어떻게를 중심으로)
SANG WON PARK
 
Big Data Architecture
Guido Schmutz
 
Machine Learning: Generative and Discriminative Models
butest
 
KFServing, Model Monitoring with Apache Spark and a Feature Store
Databricks
 
BERT introduction
Hanwha System / ICT
 
Stuart russell and peter norvig artificial intelligence - a modern approach...
Lê Anh Đạt
 
Backpropagation And Gradient Descent In Neural Networks | Neural Network Tuto...
Simplilearn
 
Graph Based Pattern Recognition
Nicola Strisciuglio
 
NLP State of the Art | BERT
shaurya uppal
 
Introduction to object detection
Brodmann17
 
MLflow: A Platform for Production Machine Learning
Matei Zaharia
 
Multi Layer Perceptron & Back Propagation
Sung-ju Kim
 
Introduction to Big Data Analytics
Utkarsh Sharma
 
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Lecture6 introduction to data streams
hktripathy
 
AWS Lake Formation Deep Dive
Cobus Bernard
 
Spatial databases
Dabbal Singh Mahara
 

Viewers also liked (16)

PDF
GeoMesa LocationTech DC
CCRinc
 
PPTX
LocationTech Projects
Jody Garnett
 
PPTX
Accumulo Summit 2015: GeoWave: Geospatial and Geotemporal Data Storage and Re...
Accumulo Summit
 
PPTX
Intro to Big Data in Urban GIS Research
Robert Goodspeed
 
PPTX
GeoMesa – Spatio-Temporal Indexing in Accumulo
CvilleDataScience
 
PDF
Foundation Comparison
Jody Garnett
 
PDF
Processing Geospatial Data At Scale @locationtech
Rob Emanuele
 
PDF
Processing Geospatial at Scale at LocationTech
Rob Emanuele
 
PDF
Enabling Access to Big Geospatial Data with LocationTech and Apache projects
Rob Emanuele
 
PDF
Accumulo Summit 2016: GeoMesa: Using Accumulo for Optimized Spatio-Temporal P...
Accumulo Summit
 
PPTX
Oct 2012 HUG: Apache Accumulo: Unlocking the Power of Big Data
Yahoo Developer Network
 
PDF
Redis adaptor for Apache Geode
Swapnil Bawaskar
 
PPTX
Using Big Data techniques to query and store OpenStreetMap data. Stephen Knox...
huguk
 
PDF
Data Wrangling on Hadoop - Olivier De Garrigues, Trifacta
huguk
 
PPTX
An Introduction to Accumulo
Donald Miner
 
PPTX
Searching for effective farming policies in Gloucestershire
Countryside and Community Research Institute
 
GeoMesa LocationTech DC
CCRinc
 
LocationTech Projects
Jody Garnett
 
Accumulo Summit 2015: GeoWave: Geospatial and Geotemporal Data Storage and Re...
Accumulo Summit
 
Intro to Big Data in Urban GIS Research
Robert Goodspeed
 
GeoMesa – Spatio-Temporal Indexing in Accumulo
CvilleDataScience
 
Foundation Comparison
Jody Garnett
 
Processing Geospatial Data At Scale @locationtech
Rob Emanuele
 
Processing Geospatial at Scale at LocationTech
Rob Emanuele
 
Enabling Access to Big Geospatial Data with LocationTech and Apache projects
Rob Emanuele
 
Accumulo Summit 2016: GeoMesa: Using Accumulo for Optimized Spatio-Temporal P...
Accumulo Summit
 
Oct 2012 HUG: Apache Accumulo: Unlocking the Power of Big Data
Yahoo Developer Network
 
Redis adaptor for Apache Geode
Swapnil Bawaskar
 
Using Big Data techniques to query and store OpenStreetMap data. Stephen Knox...
huguk
 
Data Wrangling on Hadoop - Olivier De Garrigues, Trifacta
huguk
 
An Introduction to Accumulo
Donald Miner
 
Searching for effective farming policies in Gloucestershire
Countryside and Community Research Institute
 
Ad

Similar to GeoMesa: Scalable Geospatial Analytics (20)

PPTX
GeoMeetup kickoff meeting - Overview of Geospatial Landscape
Ragi Burhum Espinoza
 
PDF
Semantics-enhanced Geoscience Interoperability, Analytics, and Applications
Artificial Intelligence Institute at UofSC
 
PDF
MySQL 5.7 GIS
Matt Lord
 
PPT
GIS_Whirlwind_Tour.ppt
vikramvsu
 
PPT
GIS_Whirlwind_Tour.ppt
Fatima891926
 
PPT
GIS_Whirlwind_Tour.ppt
GodwinKingNyamador
 
PPT
GIS_Whirlwind_Tour.ppt
safayetmim1
 
PDF
Intro To Geospatial
danrickman
 
PDF
Open geo data - technical issue
Maurizio Napolitano
 
PPTX
GIS and Remote sensing CIvil Engg by Mrunmayee
Mrunmayee Manjari
 
PDF
Using python to analyze spatial data
Kudos S.A.S
 
PDF
Building A Spatial Database In Postgresql (Ppt).pdf
ssuser0ab1a4
 
PPTX
Spatial Databases
Pratibha Chaudhary
 
PPT
Building a Spatial Database in PostgreSQL
Sohail Akbar Goheer
 
PPT
A quick overview of geospatial analysis
Md.Farhad Hossen
 
PPT
Building a Spatial Database in PostgreSQL
Kudos S.A.S
 
PDF
CrateDB 101: Geospatial data
Claus Matzinger
 
PPTX
M|18 Building Location-Based Services with Geospatial Data
MariaDB plc
 
PPTX
Big Spatial(!) Data Processing mit GeoMesa. AGIT 2019, Salzburg, Austria.
Anita Graser
 
GeoMeetup kickoff meeting - Overview of Geospatial Landscape
Ragi Burhum Espinoza
 
Semantics-enhanced Geoscience Interoperability, Analytics, and Applications
Artificial Intelligence Institute at UofSC
 
MySQL 5.7 GIS
Matt Lord
 
GIS_Whirlwind_Tour.ppt
vikramvsu
 
GIS_Whirlwind_Tour.ppt
Fatima891926
 
GIS_Whirlwind_Tour.ppt
GodwinKingNyamador
 
GIS_Whirlwind_Tour.ppt
safayetmim1
 
Intro To Geospatial
danrickman
 
Open geo data - technical issue
Maurizio Napolitano
 
GIS and Remote sensing CIvil Engg by Mrunmayee
Mrunmayee Manjari
 
Using python to analyze spatial data
Kudos S.A.S
 
Building A Spatial Database In Postgresql (Ppt).pdf
ssuser0ab1a4
 
Spatial Databases
Pratibha Chaudhary
 
Building a Spatial Database in PostgreSQL
Sohail Akbar Goheer
 
A quick overview of geospatial analysis
Md.Farhad Hossen
 
Building a Spatial Database in PostgreSQL
Kudos S.A.S
 
CrateDB 101: Geospatial data
Claus Matzinger
 
M|18 Building Location-Based Services with Geospatial Data
MariaDB plc
 
Big Spatial(!) Data Processing mit GeoMesa. AGIT 2019, Salzburg, Austria.
Anita Graser
 
Ad

More from VisionGEOMATIQUE2014 (20)

PDF
Géomatique appliquée : revue des solutions novatrices mises en place en 2014
VisionGEOMATIQUE2014
 
PDF
Indoor location with the Bluetooth Low Energy standard
VisionGEOMATIQUE2014
 
PPT
ScribeUI: La productivité avec MapServer
VisionGEOMATIQUE2014
 
PPTX
Fast, Distributed Geoprocessing with Scala, Spark and GeoTrellis
VisionGEOMATIQUE2014
 
PDF
OpenGL ES pour le développement d’applications géospatiales sur Android
VisionGEOMATIQUE2014
 
PDF
Accès ouvert aux données météorologiques d’Environnement Canada
VisionGEOMATIQUE2014
 
PDF
LocationTech Data Commons
VisionGEOMATIQUE2014
 
PPT
TDW FOSS GEO-STACK FOR MINERAL EXPLORATION
VisionGEOMATIQUE2014
 
PPTX
Spatial Data processing with Hadoop
VisionGEOMATIQUE2014
 
PPTX
Solution Geoctopus : améliorations et défis
VisionGEOMATIQUE2014
 
PPTX
Infrastructure de géomatique ouverte (IGO) : un modèle inspirant de développe...
VisionGEOMATIQUE2014
 
ODP
Montrajet.ca : une solution multimodale de covoiturage et de planification d'...
VisionGEOMATIQUE2014
 
PPTX
Automatisation de la cartographie et de l'analyse des données de comptage de ...
VisionGEOMATIQUE2014
 
PPT
MACHINE LEARNING FOR SATELLITE-GUIDED WATER QUALITY MONITORING
VisionGEOMATIQUE2014
 
PPTX
Les contributions de la géomatique au développement de la ville intelligente
VisionGEOMATIQUE2014
 
PPTX
SIGim la plateforme adaptée à la gestion municipale
VisionGEOMATIQUE2014
 
PPTX
Optimisation et analyse des parcours de déneigement à la Ville de Shawinigan
VisionGEOMATIQUE2014
 
PDF
AutoTri, une application automatisant l’analyse du stationnement de l’arrondi...
VisionGEOMATIQUE2014
 
PDF
Requirements for Geospatial Agent Simulation to Strengthen the 'Property-Powe...
VisionGEOMATIQUE2014
 
PPTX
JMap 6.0 : une solution complète et évolutive pour l'intégration, la diffusio...
VisionGEOMATIQUE2014
 
Géomatique appliquée : revue des solutions novatrices mises en place en 2014
VisionGEOMATIQUE2014
 
Indoor location with the Bluetooth Low Energy standard
VisionGEOMATIQUE2014
 
ScribeUI: La productivité avec MapServer
VisionGEOMATIQUE2014
 
Fast, Distributed Geoprocessing with Scala, Spark and GeoTrellis
VisionGEOMATIQUE2014
 
OpenGL ES pour le développement d’applications géospatiales sur Android
VisionGEOMATIQUE2014
 
Accès ouvert aux données météorologiques d’Environnement Canada
VisionGEOMATIQUE2014
 
LocationTech Data Commons
VisionGEOMATIQUE2014
 
TDW FOSS GEO-STACK FOR MINERAL EXPLORATION
VisionGEOMATIQUE2014
 
Spatial Data processing with Hadoop
VisionGEOMATIQUE2014
 
Solution Geoctopus : améliorations et défis
VisionGEOMATIQUE2014
 
Infrastructure de géomatique ouverte (IGO) : un modèle inspirant de développe...
VisionGEOMATIQUE2014
 
Montrajet.ca : une solution multimodale de covoiturage et de planification d'...
VisionGEOMATIQUE2014
 
Automatisation de la cartographie et de l'analyse des données de comptage de ...
VisionGEOMATIQUE2014
 
MACHINE LEARNING FOR SATELLITE-GUIDED WATER QUALITY MONITORING
VisionGEOMATIQUE2014
 
Les contributions de la géomatique au développement de la ville intelligente
VisionGEOMATIQUE2014
 
SIGim la plateforme adaptée à la gestion municipale
VisionGEOMATIQUE2014
 
Optimisation et analyse des parcours de déneigement à la Ville de Shawinigan
VisionGEOMATIQUE2014
 
AutoTri, une application automatisant l’analyse du stationnement de l’arrondi...
VisionGEOMATIQUE2014
 
Requirements for Geospatial Agent Simulation to Strengthen the 'Property-Powe...
VisionGEOMATIQUE2014
 
JMap 6.0 : une solution complète et évolutive pour l'intégration, la diffusio...
VisionGEOMATIQUE2014
 

Recently uploaded (20)

PDF
Automating Feature Enrichment and Station Creation in Natural Gas Utility Net...
Safe Software
 
PDF
Home Cleaning App Development Services.pdf
V3cube
 
PDF
Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 
PPTX
CapCut Pro PC Crack Latest Version Free Free
josanj305
 
PPTX
MuleSoft MCP Support (Model Context Protocol) and Use Case Demo
shyamraj55
 
PDF
CIFDAQ Market Wrap for the week of 4th July 2025
CIFDAQ
 
PDF
How do you fast track Agentic automation use cases discovery?
DianaGray10
 
PDF
Peak of Data & AI Encore AI-Enhanced Workflows for the Real World
Safe Software
 
PPTX
Mastering ODC + Okta Configuration - Chennai OSUG
HathiMaryA
 
PDF
Transcript: Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 
PDF
ICONIQ State of AI Report 2025 - The Builder's Playbook
Razin Mustafiz
 
PPTX
Agentforce World Tour Toronto '25 - Supercharge MuleSoft Development with Mod...
Alexandra N. Martinez
 
PDF
🚀 Let’s Build Our First Slack Workflow! 🔧.pdf
SanjeetMishra29
 
PDF
“Voice Interfaces on a Budget: Building Real-time Speech Recognition on Low-c...
Edge AI and Vision Alliance
 
PDF
UPDF - AI PDF Editor & Converter Key Features
DealFuel
 
PDF
Next Generation AI: Anticipatory Intelligence, Forecasting Inflection Points ...
dleka294658677
 
PDF
Dev Dives: Accelerating agentic automation with Autopilot for Everyone
UiPathCommunity
 
PDF
NLJUG Speaker academy 2025 - first session
Bert Jan Schrijver
 
PDF
Go Concurrency Real-World Patterns, Pitfalls, and Playground Battles.pdf
Emily Achieng
 
DOCX
Python coding for beginners !! Start now!#
Rajni Bhardwaj Grover
 
Automating Feature Enrichment and Station Creation in Natural Gas Utility Net...
Safe Software
 
Home Cleaning App Development Services.pdf
V3cube
 
Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 
CapCut Pro PC Crack Latest Version Free Free
josanj305
 
MuleSoft MCP Support (Model Context Protocol) and Use Case Demo
shyamraj55
 
CIFDAQ Market Wrap for the week of 4th July 2025
CIFDAQ
 
How do you fast track Agentic automation use cases discovery?
DianaGray10
 
Peak of Data & AI Encore AI-Enhanced Workflows for the Real World
Safe Software
 
Mastering ODC + Okta Configuration - Chennai OSUG
HathiMaryA
 
Transcript: Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 
ICONIQ State of AI Report 2025 - The Builder's Playbook
Razin Mustafiz
 
Agentforce World Tour Toronto '25 - Supercharge MuleSoft Development with Mod...
Alexandra N. Martinez
 
🚀 Let’s Build Our First Slack Workflow! 🔧.pdf
SanjeetMishra29
 
“Voice Interfaces on a Budget: Building Real-time Speech Recognition on Low-c...
Edge AI and Vision Alliance
 
UPDF - AI PDF Editor & Converter Key Features
DealFuel
 
Next Generation AI: Anticipatory Intelligence, Forecasting Inflection Points ...
dleka294658677
 
Dev Dives: Accelerating agentic automation with Autopilot for Everyone
UiPathCommunity
 
NLJUG Speaker academy 2025 - first session
Bert Jan Schrijver
 
Go Concurrency Real-World Patterns, Pitfalls, and Playground Battles.pdf
Emily Achieng
 
Python coding for beginners !! Start now!#
Rajni Bhardwaj Grover
 

GeoMesa: Scalable Geospatial Analytics

  • 1. GeoMesa: Scalable Geospatial Analytics Chris Eichelberger [email protected]
  • 2. terms • GeoMesa: an open-source project organized under LocationTech • scalable: if you can continue to solve problems as N >> 1 with no more change than adding hardware and minor tweaks, you scale • geospatial: data that contain a geographic reference, a date/time, and zero or more additional attributes • analytics: formally, a logical decomposition via truth-preserving transformations; informally, any useful derivation (whether deductive or inductive)
  • 3. outline • part 1: why? ( 3 minutes) • part 2: how? (10 minutes) • part 3: what? (10 minutes) • part 4: who? ( 2 minutes)
  • 5. [why] which X (points) are close to location Y? • hundreds: PostgreSQL and brute force – full table scan • hundreds of thousands: PostgreSQL and PostGIS – GeoTools API – GiST (think R-trees) • hundreds of millions: a funny thing happens as you collect much more data...
  • 6. [why] dissolution of large-volume data
  • 7. [why] perhaps SQL is the bottleneck? • NoSQL databases, such as Apache Accumulo • trade ACID for distributed processing, storage • but there’s no PostGIS for Accumulo, so how does the canonical diagram of an Accumulo (key, value) pair help us answer some simple questions...
  • 8. [why] questions that ought to be easy for an index to answer • easy question: Which comes first, “Ontario” or “Quebec”?
  • 9. [why] questions that ought to be easy for an index to answer • easy question: Which comes first, “Ontario” or “Quebec”? • similar question: Which comes first, or ?
  • 10. [why] questions that ought to be easy for an index to answer • easy question: Which comes first, “Ontario” or “Quebec”? • similar question: Which comes first, or ? • simplify, and think only of representative cities, and think of them strictly as points
  • 13. [why] geohashing City Coordinates (courtesy Wikipedia) Geohash Ottawa 45°25′15″N 75°41′24″W f244m Montréal 45°30′N 73°34′W f25dv Charlottesville (Virginia, USA) 38°1′48″N 78°28′44″W dqb0q ● Two unique orders: ○ Order by name: Charlottesville, Montréal, Ottawa ○ Order by longitude or latitude or geohash: Charlottesville, Ottawa, Montréal ● Lexicoding location -> geohash provides a deterministic, repeatable ordering ○ with this, we can index, store, and query points by lexicographic ranges
  • 14. [why] build-versus-buy remorse • PostgreSQL+PostGIS has some nice functions – geometric predicates – secondary indexes – standard GeoTools API • some of our data are (multi) lines, (multi) polygons • time is often more than a secondary consideration • sometimes, analysis work needn’t be done on the same old client – distributed across the tablet servers? – using tools like Spark? – streaming?
  • 17. [how] GeoMesa features • GeoTools API • sharding distributes queries uniformly • flexible SFC can incorporate time • supports (multi) point, (multi) line, (multi) polygon geometries • secondary indexes and a multi-stage query planner • burgeoning raster support via WCS • GeoServer as a plugin-based GUI • WPS standards for computation (and function chaining)
  • 20. [how] space-filling curve progression %~#s%3#r%0,3#gh%yyyyMM#d::%~#s%3,2#gh::%~#s%5,2#gh%HHmm#d%id
  • 24. [how] rasters + GeoWave integration
  • 26. [how] GeoServer as a plug-in GUI
  • 27. [how] Web Processing Service • WPS is another OGC standard • Think of it as an abstract function definition, mapping input types to output types, and defining the computation that occurs between the two. • WPS processes can be chained. • This provides for a natural extension mechanism to GeoMesa.
  • 28. [how] synthesis Those are merely the highlights of some of GeoMesa’s current features… … so what?
  • 31. [what] queries that interpolate both position and time
  • 34. [what] near-real-time streaming track analytics with web sockets
  • 37. [who] LocationTech and the greater community
  • 39. questions For extended questions: [email protected] [email protected] [email protected] For additional reading: geomesa.org For code: github.com/locationtech/geomesa