SlideShare a Scribd company logo
GPU Support in Spark and GPU/
CPU Mixed Resource Scheduling
at Production Scale
Yonggang Hu, IBM, DE
Junfeng Liu, IBM, Architect
About us
•  Yonggang Hu
Distinguished Engineer, IBM
Chief Architect at Platform Computing, IBM.
Vice President and Application Architect at JPMorgan Chase
Working on distributed computing, grid, cloud and big data for the
past 20 years.
•  Junfeng Liu
IBM Platform Computing Architect, focusing on Big data
platform design and implementation. Successfully delivering
solutions to several key customers.
Agenda
•  GPU and Spark integration motivation
•  The challenges in production deployments
•  Solutions in IBM Conductor with Spark
•  Demo
Spark & GPU
Spark apps are
CPU intensive
Need to handle
more data and
bigger models
Machine Learning
Predicative analytics,
Logistic regression, ALS
Kmeans, etc.
Graph Analytics
Security, Fraud Detection
Social Network Analytics
GraphX
Video/Speech Analytics
Object Recognition
Dialog
Financial Risk Analytics
Market simulation
Credit risk. home-grown,
apps from Murex, Misys
Spark-enable existing GPU appsGPU-enable Spark apps
Various ways to enable Spark & GPU
•  Use GPUs for accelerating Spark Libraries and operations without
changing interfaces and underlying programming model.
•  Automatically generate CUDA code from the source Spark Java
code
•  Integrate Spark with GPU-enabled application & system (e.g., Spark
integrated with Caffe, TensorFlow and customer applications)
Production Challenges
•  However
–  Identification of GPU execution vs. CPU
execution in DAG
–  Data preparation for GPU execution
–  Low resource utilization for CPU or GPU or
both
•  Cannot assume all compute hosts are identical and
have GPU resource available
•  GPU is a lot more expensive !!!
–  Overload and contention when running mixed
GPU & CPU workload
–  Long tail & GPU & CPU tasks failover
–  Task ratio control on different resources
Stage	2	Stage	1	
reduceByKey	 collect	
Stage	GPU	
GPU Group CPU Group
A typical example –
Personalized Medicine – Adverse Drug Reaction Workload
-  30X faster at learning speed and 4.3 X speed up at end-2-end
-  Need to fully utilize both GPU and CPU resources to get economic benefits
Scheduling Granularity
•  Scheduling at application level
–  Mesos and Yarn tag the GPU machine with label
–  Schedule the application on GPU hosts based resource requirement of application
–  Corse grained scheduling leads to low utilization of CPU/GPU.
•  Scheduling at DAG level
–  Need fine grained sharing for GPU resources rather than reserving entire GPU
machines
–  Identify GPU operation
–  Optimize the DAG tree by decupling GPU operations from CPU operations and by
inserting new GPU stages
–  Reduce GPU wait time, enable sharing GPU among different jobs and therefore
improve the overall GPU utilization
GPU tasks recognition
•  GPU and CPU tasks mixed together
•  Separate the workload is necessary for scheduling
control
GPUFunction()	
Python-C Wrapper to
Invoke Native
Function	
Function
implemented by
CUDA/OpenCL	
GPU library	Python-C/C++ Wrapper
GPU tasks recognition
•  Mark the GPU workload by DAG
operation
–  Go through the DAG tree to identify
the stages with GPU requirement
–  Optimize the distribution by inserting
GPU stage
Policies
•  RM needs capability to identify the GPU hosts and
manage along with CPU resources
•  Prioritization policy - share GPU resource among
applications
•  Allocation policy – control GPU and CPU allocation
independently – multi-dimensional scheduling
•  Fine grained policy to schedule tasks according to GPU
optimized DAG plan
Adaptive Scheduling
•  CPU & GPU tasks are convertible in
many applications
•  Scheduling needs adaptive capability
–  If GPU is available, use a portion of GPU
–  Otherwise run rest of tasks on CPU
dstInBlocks.join(merged).mapV
alues {
….
if (useGPU) {
loadGPULib()
callGPU ()
}
else {
//CPU version
}
}
Adaptive Scheduling
CPU
CPU
CPU
GPU
GPU
GPU
Driver
Executors Executors
Executors
Tasks
--------------
Node 0 Node 1 Node n
Efficiency Considerations
•  Do we need to wait GPU resource if there is
CPU available?
•  Do we need rerun the CPU tasks on GPU if
tasks on CPU are long-tail?
•  Do we need to have failover cross resource
type?
Defer Scheduling
•  Traditional defer Scheduling
–  Wait for data locality
–  Cache, Host, Rack
•  Resource based defer scheduling
–  Necessary if the GPU can greatly speed up task execution
–  Wait time is acceptable
Future works
•  Global optimization
–  Consider the cost of additional shuffle stage
–  Consider data locality of CPU and GPU stage
–  Add time dimension to MDS
–  Optimize global DAG tree execution
–  Use historical data to optimize future execution, e.g,
future iteration
Fine grain, dynamic allocation of
resources maximizes efficiency of Spark
instances sharing a common resource
pool. Multi-tenant, multi-framework
support. Eliminates cluster sprawl.
2
Run Spark natively on a shared
infrastructure without the dependency of
Hadoop. Reduce application wait time,
improving time to results.
1
Building Spark Centric Shared Service with
IBM Conductor
End-to-End Enterprise Class Solution
Improve Time to Results
Proven architecture at extreme scale, with
enterprise class workload management,
multi-version support for Spark,
monitoring, reporting, and security
capabilities.
3
Reduce Administration Costs
Increase Resource Utilization
•  IBM STC Spark Distribution
•  IBM Platform Resource Orchestrator /
Session Scheduler, application service
manager.
•  IBM Spectrum Scale FPO
4
IBM Conductor with Spark
IBM Bluemix Spark Cloud Service in
production – thousands of users and
tenants.
Third party audited benchmark
indicated significant performance/
throughput/SLA advantages
https://stacresearch.com/news/2016/03/29/IBM160229
IBM Systems 19©	2016	IBM	Corpora*on	
IBM Conductor with Spark
Monitor and Reporting with Elastic (ELK)
!  Integrated Elastic Search, Logstash, Kibana for customizable monitoring
!  Built-in monitoring Metrics
! Cross Spark Instance Groups
! Cross Spark Applications within Spark Instance Group
! Within Spark Application
!  Built-in monitoring inside Zeppelin Notebook
Demo
THANK YOU.
Contact information or call to action goes here.
Acceleration Opportunities for GPUs & Spark
Analytics Model Computational Patterns suitable for GPU Acceleration
Regression Analysis Cholesky Factorization, Matrix Inversion, Transpose
Clustering Cost-based iterative convergence
Nearest-neighbor
Search
Distance calculations, Singular Value Decomposition, Hashing
Neural Networks Matrix Multiplications, Convolutions, FFTs, Pair-wise dot-products
Support Vector
Machines
Linear Solvers, Dot-product
Association Rule
Mining
Set Operations: Intersection, union
Recommender Systems Matrix Factorizations, Dot-product
Time-series Processing FFT, Distance and Smoothing functions
Text Analytics Matrix multiplication, factorization, Set operations, String computations,
Distance functions
Monte Carlo Methods Random number generators, Probability distribution generators
Mathematical
Programming
Linear solvers, Dynamic Programming
OLAP/BI Aggregation, Sorting, Hash-based grouping, User-defined functions
Graph Analytics Matrix multiplications, Path traversals
Ad

More Related Content

What's hot (19)

Transparent GPU Exploitation on Apache Spark with Kazuaki Ishizaki and Madhus...
Transparent GPU Exploitation on Apache Spark with Kazuaki Ishizaki and Madhus...Transparent GPU Exploitation on Apache Spark with Kazuaki Ishizaki and Madhus...
Transparent GPU Exploitation on Apache Spark with Kazuaki Ishizaki and Madhus...
Databricks
 
Low Latency Execution For Apache Spark
Low Latency Execution For Apache SparkLow Latency Execution For Apache Spark
Low Latency Execution For Apache Spark
Jen Aman
 
Enterprise Scale Topological Data Analysis Using Spark
Enterprise Scale Topological Data Analysis Using SparkEnterprise Scale Topological Data Analysis Using Spark
Enterprise Scale Topological Data Analysis Using Spark
Alpine Data
 
Deep Learning Pipelines for High Energy Physics using Apache Spark with Distr...
Deep Learning Pipelines for High Energy Physics using Apache Spark with Distr...Deep Learning Pipelines for High Energy Physics using Apache Spark with Distr...
Deep Learning Pipelines for High Energy Physics using Apache Spark with Distr...
Databricks
 
Embrace Sparsity At Web Scale: Apache Spark MLlib Algorithms Optimization For...
Embrace Sparsity At Web Scale: Apache Spark MLlib Algorithms Optimization For...Embrace Sparsity At Web Scale: Apache Spark MLlib Algorithms Optimization For...
Embrace Sparsity At Web Scale: Apache Spark MLlib Algorithms Optimization For...
Jen Aman
 
Deep Learning with Apache Spark and GPUs with Pierce Spitler
Deep Learning with Apache Spark and GPUs with Pierce SpitlerDeep Learning with Apache Spark and GPUs with Pierce Spitler
Deep Learning with Apache Spark and GPUs with Pierce Spitler
Databricks
 
Spark Summit 2016: Connecting Python to the Spark Ecosystem
Spark Summit 2016: Connecting Python to the Spark EcosystemSpark Summit 2016: Connecting Python to the Spark Ecosystem
Spark Summit 2016: Connecting Python to the Spark Ecosystem
Daniel Rodriguez
 
Re-Architecting Spark For Performance Understandability
Re-Architecting Spark For Performance UnderstandabilityRe-Architecting Spark For Performance Understandability
Re-Architecting Spark For Performance Understandability
Jen Aman
 
Managing Apache Spark Workload and Automatic Optimizing
Managing Apache Spark Workload and Automatic OptimizingManaging Apache Spark Workload and Automatic Optimizing
Managing Apache Spark Workload and Automatic Optimizing
Databricks
 
Apache Spark on Supercomputers: A Tale of the Storage Hierarchy with Costin I...
Apache Spark on Supercomputers: A Tale of the Storage Hierarchy with Costin I...Apache Spark on Supercomputers: A Tale of the Storage Hierarchy with Costin I...
Apache Spark on Supercomputers: A Tale of the Storage Hierarchy with Costin I...
Databricks
 
Reactive Streams, Linking Reactive Application To Spark Streaming
Reactive Streams, Linking Reactive Application To Spark StreamingReactive Streams, Linking Reactive Application To Spark Streaming
Reactive Streams, Linking Reactive Application To Spark Streaming
Spark Summit
 
Apache Spark on K8S Best Practice and Performance in the Cloud
Apache Spark on K8S Best Practice and Performance in the CloudApache Spark on K8S Best Practice and Performance in the Cloud
Apache Spark on K8S Best Practice and Performance in the Cloud
Databricks
 
CUDA performance study on Hadoop MapReduce Cluster
CUDA performance study on Hadoop MapReduce ClusterCUDA performance study on Hadoop MapReduce Cluster
CUDA performance study on Hadoop MapReduce Cluster
airbots
 
Analyzing IOT Data in Apache Spark Across Data Centers and Cloud with NetApp ...
Analyzing IOT Data in Apache Spark Across Data Centers and Cloud with NetApp ...Analyzing IOT Data in Apache Spark Across Data Centers and Cloud with NetApp ...
Analyzing IOT Data in Apache Spark Across Data Centers and Cloud with NetApp ...
Databricks
 
Deep Learning on Apache® Spark™ : Workflows and Best Practices
Deep Learning on Apache® Spark™ : Workflows and Best PracticesDeep Learning on Apache® Spark™ : Workflows and Best Practices
Deep Learning on Apache® Spark™ : Workflows and Best Practices
Jen Aman
 
Distributed Deep Learning with Apache Spark and TensorFlow with Jim Dowling
Distributed Deep Learning with Apache Spark and TensorFlow with Jim DowlingDistributed Deep Learning with Apache Spark and TensorFlow with Jim Dowling
Distributed Deep Learning with Apache Spark and TensorFlow with Jim Dowling
Databricks
 
Deep Learning with DL4J on Apache Spark: Yeah it’s Cool, but are You Doing it...
Deep Learning with DL4J on Apache Spark: Yeah it’s Cool, but are You Doing it...Deep Learning with DL4J on Apache Spark: Yeah it’s Cool, but are You Doing it...
Deep Learning with DL4J on Apache Spark: Yeah it’s Cool, but are You Doing it...
Databricks
 
Spark Summit EU talk by Luca Canali
Spark Summit EU talk by Luca CanaliSpark Summit EU talk by Luca Canali
Spark Summit EU talk by Luca Canali
Spark Summit
 
Handling Data Skew Adaptively In Spark Using Dynamic Repartitioning
Handling Data Skew Adaptively In Spark Using Dynamic RepartitioningHandling Data Skew Adaptively In Spark Using Dynamic Repartitioning
Handling Data Skew Adaptively In Spark Using Dynamic Repartitioning
Spark Summit
 
Transparent GPU Exploitation on Apache Spark with Kazuaki Ishizaki and Madhus...
Transparent GPU Exploitation on Apache Spark with Kazuaki Ishizaki and Madhus...Transparent GPU Exploitation on Apache Spark with Kazuaki Ishizaki and Madhus...
Transparent GPU Exploitation on Apache Spark with Kazuaki Ishizaki and Madhus...
Databricks
 
Low Latency Execution For Apache Spark
Low Latency Execution For Apache SparkLow Latency Execution For Apache Spark
Low Latency Execution For Apache Spark
Jen Aman
 
Enterprise Scale Topological Data Analysis Using Spark
Enterprise Scale Topological Data Analysis Using SparkEnterprise Scale Topological Data Analysis Using Spark
Enterprise Scale Topological Data Analysis Using Spark
Alpine Data
 
Deep Learning Pipelines for High Energy Physics using Apache Spark with Distr...
Deep Learning Pipelines for High Energy Physics using Apache Spark with Distr...Deep Learning Pipelines for High Energy Physics using Apache Spark with Distr...
Deep Learning Pipelines for High Energy Physics using Apache Spark with Distr...
Databricks
 
Embrace Sparsity At Web Scale: Apache Spark MLlib Algorithms Optimization For...
Embrace Sparsity At Web Scale: Apache Spark MLlib Algorithms Optimization For...Embrace Sparsity At Web Scale: Apache Spark MLlib Algorithms Optimization For...
Embrace Sparsity At Web Scale: Apache Spark MLlib Algorithms Optimization For...
Jen Aman
 
Deep Learning with Apache Spark and GPUs with Pierce Spitler
Deep Learning with Apache Spark and GPUs with Pierce SpitlerDeep Learning with Apache Spark and GPUs with Pierce Spitler
Deep Learning with Apache Spark and GPUs with Pierce Spitler
Databricks
 
Spark Summit 2016: Connecting Python to the Spark Ecosystem
Spark Summit 2016: Connecting Python to the Spark EcosystemSpark Summit 2016: Connecting Python to the Spark Ecosystem
Spark Summit 2016: Connecting Python to the Spark Ecosystem
Daniel Rodriguez
 
Re-Architecting Spark For Performance Understandability
Re-Architecting Spark For Performance UnderstandabilityRe-Architecting Spark For Performance Understandability
Re-Architecting Spark For Performance Understandability
Jen Aman
 
Managing Apache Spark Workload and Automatic Optimizing
Managing Apache Spark Workload and Automatic OptimizingManaging Apache Spark Workload and Automatic Optimizing
Managing Apache Spark Workload and Automatic Optimizing
Databricks
 
Apache Spark on Supercomputers: A Tale of the Storage Hierarchy with Costin I...
Apache Spark on Supercomputers: A Tale of the Storage Hierarchy with Costin I...Apache Spark on Supercomputers: A Tale of the Storage Hierarchy with Costin I...
Apache Spark on Supercomputers: A Tale of the Storage Hierarchy with Costin I...
Databricks
 
Reactive Streams, Linking Reactive Application To Spark Streaming
Reactive Streams, Linking Reactive Application To Spark StreamingReactive Streams, Linking Reactive Application To Spark Streaming
Reactive Streams, Linking Reactive Application To Spark Streaming
Spark Summit
 
Apache Spark on K8S Best Practice and Performance in the Cloud
Apache Spark on K8S Best Practice and Performance in the CloudApache Spark on K8S Best Practice and Performance in the Cloud
Apache Spark on K8S Best Practice and Performance in the Cloud
Databricks
 
CUDA performance study on Hadoop MapReduce Cluster
CUDA performance study on Hadoop MapReduce ClusterCUDA performance study on Hadoop MapReduce Cluster
CUDA performance study on Hadoop MapReduce Cluster
airbots
 
Analyzing IOT Data in Apache Spark Across Data Centers and Cloud with NetApp ...
Analyzing IOT Data in Apache Spark Across Data Centers and Cloud with NetApp ...Analyzing IOT Data in Apache Spark Across Data Centers and Cloud with NetApp ...
Analyzing IOT Data in Apache Spark Across Data Centers and Cloud with NetApp ...
Databricks
 
Deep Learning on Apache® Spark™ : Workflows and Best Practices
Deep Learning on Apache® Spark™ : Workflows and Best PracticesDeep Learning on Apache® Spark™ : Workflows and Best Practices
Deep Learning on Apache® Spark™ : Workflows and Best Practices
Jen Aman
 
Distributed Deep Learning with Apache Spark and TensorFlow with Jim Dowling
Distributed Deep Learning with Apache Spark and TensorFlow with Jim DowlingDistributed Deep Learning with Apache Spark and TensorFlow with Jim Dowling
Distributed Deep Learning with Apache Spark and TensorFlow with Jim Dowling
Databricks
 
Deep Learning with DL4J on Apache Spark: Yeah it’s Cool, but are You Doing it...
Deep Learning with DL4J on Apache Spark: Yeah it’s Cool, but are You Doing it...Deep Learning with DL4J on Apache Spark: Yeah it’s Cool, but are You Doing it...
Deep Learning with DL4J on Apache Spark: Yeah it’s Cool, but are You Doing it...
Databricks
 
Spark Summit EU talk by Luca Canali
Spark Summit EU talk by Luca CanaliSpark Summit EU talk by Luca Canali
Spark Summit EU talk by Luca Canali
Spark Summit
 
Handling Data Skew Adaptively In Spark Using Dynamic Repartitioning
Handling Data Skew Adaptively In Spark Using Dynamic RepartitioningHandling Data Skew Adaptively In Spark Using Dynamic Repartitioning
Handling Data Skew Adaptively In Spark Using Dynamic Repartitioning
Spark Summit
 

Viewers also liked (20)

Exploiting GPUs in Spark
Exploiting GPUs in SparkExploiting GPUs in Spark
Exploiting GPUs in Spark
Kazuaki Ishizaki
 
Using GPUs to handle Big Data with Java by Adam Roberts.
Using GPUs to handle Big Data with Java by Adam Roberts.Using GPUs to handle Big Data with Java by Adam Roberts.
Using GPUs to handle Big Data with Java by Adam Roberts.
J On The Beach
 
The Potential of GPU-driven High Performance Data Analytics in Spark
The Potential of GPU-driven High Performance Data Analytics in SparkThe Potential of GPU-driven High Performance Data Analytics in Spark
The Potential of GPU-driven High Performance Data Analytics in Spark
Spark Summit
 
TensorFrames: Google Tensorflow on Apache Spark
TensorFrames: Google Tensorflow on Apache SparkTensorFrames: Google Tensorflow on Apache Spark
TensorFrames: Google Tensorflow on Apache Spark
Databricks
 
Machine Learning Approach for Quality Assessment and Prediction in Large Soft...
Machine Learning Approach for Quality Assessmentand Prediction in Large Soft...Machine Learning Approach for Quality Assessmentand Prediction in Large Soft...
Machine Learning Approach for Quality Assessment and Prediction in Large Soft...
RAKESH RANA
 
Vasiliy Litvinov - Python Profiling
Vasiliy Litvinov - Python ProfilingVasiliy Litvinov - Python Profiling
Vasiliy Litvinov - Python Profiling
Sergey Arkhipov
 
What’s eating python performance
What’s eating python performanceWhat’s eating python performance
What’s eating python performance
Piotr Przymus
 
Denis Nagorny - Pumping Python Performance
Denis Nagorny - Pumping Python PerformanceDenis Nagorny - Pumping Python Performance
Denis Nagorny - Pumping Python Performance
Sergey Arkhipov
 
The High Performance Python Landscape by Ian Ozsvald
The High Performance Python Landscape by Ian OzsvaldThe High Performance Python Landscape by Ian Ozsvald
The High Performance Python Landscape by Ian Ozsvald
PyData
 
Boost.Python: C++ and Python Integration
Boost.Python: C++ and Python IntegrationBoost.Python: C++ and Python Integration
Boost.Python: C++ and Python Integration
GlobalLogic Ukraine
 
Spark + Scikit Learn- Performance Tuning
Spark + Scikit Learn- Performance TuningSpark + Scikit Learn- Performance Tuning
Spark + Scikit Learn- Performance Tuning
晨揚 施
 
Python profiling
Python profilingPython profiling
Python profiling
dreampuf
 
Accelerating Machine Learning Applications on Spark Using GPUs
Accelerating Machine Learning Applications on Spark Using GPUsAccelerating Machine Learning Applications on Spark Using GPUs
Accelerating Machine Learning Applications on Spark Using GPUs
IBM
 
PG-Strom - GPU Accelerated Asyncr
PG-Strom - GPU Accelerated AsyncrPG-Strom - GPU Accelerated Asyncr
PG-Strom - GPU Accelerated Asyncr
Kohei KaiGai
 
Computational Techniques for the Statistical Analysis of Big Data in R
Computational Techniques for the Statistical Analysis of Big Data in RComputational Techniques for the Statistical Analysis of Big Data in R
Computational Techniques for the Statistical Analysis of Big Data in R
herbps10
 
GPUs in Big Data - StampedeCon 2014
GPUs in Big Data - StampedeCon 2014GPUs in Big Data - StampedeCon 2014
GPUs in Big Data - StampedeCon 2014
StampedeCon
 
SIGGRAPH 2012: GPU-Accelerated 2D and Web Rendering
SIGGRAPH 2012: GPU-Accelerated 2D and Web RenderingSIGGRAPH 2012: GPU-Accelerated 2D and Web Rendering
SIGGRAPH 2012: GPU-Accelerated 2D and Web Rendering
Mark Kilgard
 
GPU Ecosystem
GPU EcosystemGPU Ecosystem
GPU Ecosystem
Ofer Rosenberg
 
GTC 2012: GPU-Accelerated Path Rendering
GTC 2012: GPU-Accelerated Path RenderingGTC 2012: GPU-Accelerated Path Rendering
GTC 2012: GPU-Accelerated Path Rendering
Mark Kilgard
 
Deep learning on spark
Deep learning on sparkDeep learning on spark
Deep learning on spark
Satyendra Rana
 
Using GPUs to handle Big Data with Java by Adam Roberts.
Using GPUs to handle Big Data with Java by Adam Roberts.Using GPUs to handle Big Data with Java by Adam Roberts.
Using GPUs to handle Big Data with Java by Adam Roberts.
J On The Beach
 
The Potential of GPU-driven High Performance Data Analytics in Spark
The Potential of GPU-driven High Performance Data Analytics in SparkThe Potential of GPU-driven High Performance Data Analytics in Spark
The Potential of GPU-driven High Performance Data Analytics in Spark
Spark Summit
 
TensorFrames: Google Tensorflow on Apache Spark
TensorFrames: Google Tensorflow on Apache SparkTensorFrames: Google Tensorflow on Apache Spark
TensorFrames: Google Tensorflow on Apache Spark
Databricks
 
Machine Learning Approach for Quality Assessment and Prediction in Large Soft...
Machine Learning Approach for Quality Assessmentand Prediction in Large Soft...Machine Learning Approach for Quality Assessmentand Prediction in Large Soft...
Machine Learning Approach for Quality Assessment and Prediction in Large Soft...
RAKESH RANA
 
Vasiliy Litvinov - Python Profiling
Vasiliy Litvinov - Python ProfilingVasiliy Litvinov - Python Profiling
Vasiliy Litvinov - Python Profiling
Sergey Arkhipov
 
What’s eating python performance
What’s eating python performanceWhat’s eating python performance
What’s eating python performance
Piotr Przymus
 
Denis Nagorny - Pumping Python Performance
Denis Nagorny - Pumping Python PerformanceDenis Nagorny - Pumping Python Performance
Denis Nagorny - Pumping Python Performance
Sergey Arkhipov
 
The High Performance Python Landscape by Ian Ozsvald
The High Performance Python Landscape by Ian OzsvaldThe High Performance Python Landscape by Ian Ozsvald
The High Performance Python Landscape by Ian Ozsvald
PyData
 
Boost.Python: C++ and Python Integration
Boost.Python: C++ and Python IntegrationBoost.Python: C++ and Python Integration
Boost.Python: C++ and Python Integration
GlobalLogic Ukraine
 
Spark + Scikit Learn- Performance Tuning
Spark + Scikit Learn- Performance TuningSpark + Scikit Learn- Performance Tuning
Spark + Scikit Learn- Performance Tuning
晨揚 施
 
Python profiling
Python profilingPython profiling
Python profiling
dreampuf
 
Accelerating Machine Learning Applications on Spark Using GPUs
Accelerating Machine Learning Applications on Spark Using GPUsAccelerating Machine Learning Applications on Spark Using GPUs
Accelerating Machine Learning Applications on Spark Using GPUs
IBM
 
PG-Strom - GPU Accelerated Asyncr
PG-Strom - GPU Accelerated AsyncrPG-Strom - GPU Accelerated Asyncr
PG-Strom - GPU Accelerated Asyncr
Kohei KaiGai
 
Computational Techniques for the Statistical Analysis of Big Data in R
Computational Techniques for the Statistical Analysis of Big Data in RComputational Techniques for the Statistical Analysis of Big Data in R
Computational Techniques for the Statistical Analysis of Big Data in R
herbps10
 
GPUs in Big Data - StampedeCon 2014
GPUs in Big Data - StampedeCon 2014GPUs in Big Data - StampedeCon 2014
GPUs in Big Data - StampedeCon 2014
StampedeCon
 
SIGGRAPH 2012: GPU-Accelerated 2D and Web Rendering
SIGGRAPH 2012: GPU-Accelerated 2D and Web RenderingSIGGRAPH 2012: GPU-Accelerated 2D and Web Rendering
SIGGRAPH 2012: GPU-Accelerated 2D and Web Rendering
Mark Kilgard
 
GTC 2012: GPU-Accelerated Path Rendering
GTC 2012: GPU-Accelerated Path RenderingGTC 2012: GPU-Accelerated Path Rendering
GTC 2012: GPU-Accelerated Path Rendering
Mark Kilgard
 
Deep learning on spark
Deep learning on sparkDeep learning on spark
Deep learning on spark
Satyendra Rana
 
Ad

Similar to GPU Support In Spark And GPU/CPU Mixed Resource Scheduling At Production Scale (20)

FYP1 Progress Report (final)
FYP1 Progress Report (final)FYP1 Progress Report (final)
FYP1 Progress Report (final)
waqas khan
 
CFD on Power
CFD on Power CFD on Power
CFD on Power
Ganesan Narayanasamy
 
Parallel Computing on the GPU
Parallel Computing on the GPUParallel Computing on the GPU
Parallel Computing on the GPU
Tilani Gunawardena PhD(UNIBAS), BSc(Pera), FHEA(UK), CEng, MIESL
 
Cloud nativecomputingtechnologysupportinghpc cognitiveworkflows
Cloud nativecomputingtechnologysupportinghpc cognitiveworkflowsCloud nativecomputingtechnologysupportinghpc cognitiveworkflows
Cloud nativecomputingtechnologysupportinghpc cognitiveworkflows
Yong Feng
 
Task allocation on many core-multi processor distributed system
Task allocation on many core-multi processor distributed systemTask allocation on many core-multi processor distributed system
Task allocation on many core-multi processor distributed system
Deepak Shankar
 
Apache Hadoop YARN - The Future of Data Processing with Hadoop
Apache Hadoop YARN - The Future of Data Processing with HadoopApache Hadoop YARN - The Future of Data Processing with Hadoop
Apache Hadoop YARN - The Future of Data Processing with Hadoop
Hortonworks
 
Apache Tez - A New Chapter in Hadoop Data Processing
Apache Tez - A New Chapter in Hadoop Data ProcessingApache Tez - A New Chapter in Hadoop Data Processing
Apache Tez - A New Chapter in Hadoop Data Processing
DataWorks Summit
 
Apache Tez - Accelerating Hadoop Data Processing
Apache Tez - Accelerating Hadoop Data ProcessingApache Tez - Accelerating Hadoop Data Processing
Apache Tez - Accelerating Hadoop Data Processing
hitesh1892
 
High Performance Deep learning with Apache Spark
High Performance Deep learning with Apache SparkHigh Performance Deep learning with Apache Spark
High Performance Deep learning with Apache Spark
Rui Liu
 
Apache Tez : Accelerating Hadoop Query Processing
Apache Tez : Accelerating Hadoop Query ProcessingApache Tez : Accelerating Hadoop Query Processing
Apache Tez : Accelerating Hadoop Query Processing
Bikas Saha
 
Apache Tez: Accelerating Hadoop Query Processing
Apache Tez: Accelerating Hadoop Query ProcessingApache Tez: Accelerating Hadoop Query Processing
Apache Tez: Accelerating Hadoop Query Processing
Hortonworks
 
Updates from Project Hydrogen: Unifying State-of-the-Art AI and Big Data in A...
Updates from Project Hydrogen: Unifying State-of-the-Art AI and Big Data in A...Updates from Project Hydrogen: Unifying State-of-the-Art AI and Big Data in A...
Updates from Project Hydrogen: Unifying State-of-the-Art AI and Big Data in A...
Databricks
 
Speeding Up Spark with Data Compression on Xeon+FPGA with David Ojika
Speeding Up Spark with Data Compression on Xeon+FPGA with David OjikaSpeeding Up Spark with Data Compression on Xeon+FPGA with David Ojika
Speeding Up Spark with Data Compression on Xeon+FPGA with David Ojika
Databricks
 
071410 sun a_1515_feldman_stephen
071410 sun a_1515_feldman_stephen071410 sun a_1515_feldman_stephen
071410 sun a_1515_feldman_stephen
Steve Feldman
 
An overview of reference architectures for Postgres
An overview of reference architectures for PostgresAn overview of reference architectures for Postgres
An overview of reference architectures for Postgres
EDB
 
Graphics processing unit ppt
Graphics processing unit pptGraphics processing unit ppt
Graphics processing unit ppt
Sandeep Singh
 
Very large scale distributed deep learning on BigDL
Very large scale distributed deep learning on BigDLVery large scale distributed deep learning on BigDL
Very large scale distributed deep learning on BigDL
DESMOND YUEN
 
Lessons Learned from Deploying Apache Spark as a Service on IBM Power Systems...
Lessons Learned from Deploying Apache Spark as a Service on IBM Power Systems...Lessons Learned from Deploying Apache Spark as a Service on IBM Power Systems...
Lessons Learned from Deploying Apache Spark as a Service on IBM Power Systems...
Indrajit Poddar
 
The state of Spark in the cloud
The state of Spark in the cloudThe state of Spark in the cloud
The state of Spark in the cloud
Nicolas Poggi
 
Learn How Dell Improved Postgres/Greenplum Performance 20x with a Database Pr...
Learn How Dell Improved Postgres/Greenplum Performance 20x with a Database Pr...Learn How Dell Improved Postgres/Greenplum Performance 20x with a Database Pr...
Learn How Dell Improved Postgres/Greenplum Performance 20x with a Database Pr...
VMware Tanzu
 
FYP1 Progress Report (final)
FYP1 Progress Report (final)FYP1 Progress Report (final)
FYP1 Progress Report (final)
waqas khan
 
Cloud nativecomputingtechnologysupportinghpc cognitiveworkflows
Cloud nativecomputingtechnologysupportinghpc cognitiveworkflowsCloud nativecomputingtechnologysupportinghpc cognitiveworkflows
Cloud nativecomputingtechnologysupportinghpc cognitiveworkflows
Yong Feng
 
Task allocation on many core-multi processor distributed system
Task allocation on many core-multi processor distributed systemTask allocation on many core-multi processor distributed system
Task allocation on many core-multi processor distributed system
Deepak Shankar
 
Apache Hadoop YARN - The Future of Data Processing with Hadoop
Apache Hadoop YARN - The Future of Data Processing with HadoopApache Hadoop YARN - The Future of Data Processing with Hadoop
Apache Hadoop YARN - The Future of Data Processing with Hadoop
Hortonworks
 
Apache Tez - A New Chapter in Hadoop Data Processing
Apache Tez - A New Chapter in Hadoop Data ProcessingApache Tez - A New Chapter in Hadoop Data Processing
Apache Tez - A New Chapter in Hadoop Data Processing
DataWorks Summit
 
Apache Tez - Accelerating Hadoop Data Processing
Apache Tez - Accelerating Hadoop Data ProcessingApache Tez - Accelerating Hadoop Data Processing
Apache Tez - Accelerating Hadoop Data Processing
hitesh1892
 
High Performance Deep learning with Apache Spark
High Performance Deep learning with Apache SparkHigh Performance Deep learning with Apache Spark
High Performance Deep learning with Apache Spark
Rui Liu
 
Apache Tez : Accelerating Hadoop Query Processing
Apache Tez : Accelerating Hadoop Query ProcessingApache Tez : Accelerating Hadoop Query Processing
Apache Tez : Accelerating Hadoop Query Processing
Bikas Saha
 
Apache Tez: Accelerating Hadoop Query Processing
Apache Tez: Accelerating Hadoop Query ProcessingApache Tez: Accelerating Hadoop Query Processing
Apache Tez: Accelerating Hadoop Query Processing
Hortonworks
 
Updates from Project Hydrogen: Unifying State-of-the-Art AI and Big Data in A...
Updates from Project Hydrogen: Unifying State-of-the-Art AI and Big Data in A...Updates from Project Hydrogen: Unifying State-of-the-Art AI and Big Data in A...
Updates from Project Hydrogen: Unifying State-of-the-Art AI and Big Data in A...
Databricks
 
Speeding Up Spark with Data Compression on Xeon+FPGA with David Ojika
Speeding Up Spark with Data Compression on Xeon+FPGA with David OjikaSpeeding Up Spark with Data Compression on Xeon+FPGA with David Ojika
Speeding Up Spark with Data Compression on Xeon+FPGA with David Ojika
Databricks
 
071410 sun a_1515_feldman_stephen
071410 sun a_1515_feldman_stephen071410 sun a_1515_feldman_stephen
071410 sun a_1515_feldman_stephen
Steve Feldman
 
An overview of reference architectures for Postgres
An overview of reference architectures for PostgresAn overview of reference architectures for Postgres
An overview of reference architectures for Postgres
EDB
 
Graphics processing unit ppt
Graphics processing unit pptGraphics processing unit ppt
Graphics processing unit ppt
Sandeep Singh
 
Very large scale distributed deep learning on BigDL
Very large scale distributed deep learning on BigDLVery large scale distributed deep learning on BigDL
Very large scale distributed deep learning on BigDL
DESMOND YUEN
 
Lessons Learned from Deploying Apache Spark as a Service on IBM Power Systems...
Lessons Learned from Deploying Apache Spark as a Service on IBM Power Systems...Lessons Learned from Deploying Apache Spark as a Service on IBM Power Systems...
Lessons Learned from Deploying Apache Spark as a Service on IBM Power Systems...
Indrajit Poddar
 
The state of Spark in the cloud
The state of Spark in the cloudThe state of Spark in the cloud
The state of Spark in the cloud
Nicolas Poggi
 
Learn How Dell Improved Postgres/Greenplum Performance 20x with a Database Pr...
Learn How Dell Improved Postgres/Greenplum Performance 20x with a Database Pr...Learn How Dell Improved Postgres/Greenplum Performance 20x with a Database Pr...
Learn How Dell Improved Postgres/Greenplum Performance 20x with a Database Pr...
VMware Tanzu
 
Ad

More from Spark Summit (20)

FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
Spark Summit
 
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
Spark Summit
 
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Apache Spark Structured Streaming Helps Smart Manufacturing with  Xiaochang WuApache Spark Structured Streaming Helps Smart Manufacturing with  Xiaochang Wu
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Spark Summit
 
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Improving Traffic Prediction Using Weather Data  with Ramya RaghavendraImproving Traffic Prediction Using Weather Data  with Ramya Raghavendra
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Spark Summit
 
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
Spark Summit
 
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
Spark Summit
 
Apache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim DowlingApache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
Apache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim DowlingApache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
Spark Summit
 
Next CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub WozniakNext CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub Wozniak
Spark Summit
 
Powering a Startup with Apache Spark with Kevin Kim
Powering a Startup with Apache Spark with Kevin KimPowering a Startup with Apache Spark with Kevin Kim
Powering a Startup with Apache Spark with Kevin Kim
Spark Summit
 
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Improving Traffic Prediction Using Weather Datawith Ramya RaghavendraImproving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Spark Summit
 
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Spark Summit
 
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
How Nielsen Utilized Databricks for Large-Scale Research and Development with...How Nielsen Utilized Databricks for Large-Scale Research and Development with...
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
Spark Summit
 
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spark Summit
 
Goal Based Data Production with Sim Simeonov
Goal Based Data Production with Sim SimeonovGoal Based Data Production with Sim Simeonov
Goal Based Data Production with Sim Simeonov
Spark Summit
 
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Spark Summit
 
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Getting Ready to Use Redis with Apache Spark with Dvir VolkGetting Ready to Use Redis with Apache Spark with Dvir Volk
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Spark Summit
 
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Spark Summit
 
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
Spark Summit
 
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
Spark Summit
 
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
Spark Summit
 
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Apache Spark Structured Streaming Helps Smart Manufacturing with  Xiaochang WuApache Spark Structured Streaming Helps Smart Manufacturing with  Xiaochang Wu
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Spark Summit
 
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Improving Traffic Prediction Using Weather Data  with Ramya RaghavendraImproving Traffic Prediction Using Weather Data  with Ramya Raghavendra
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Spark Summit
 
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
Spark Summit
 
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
Spark Summit
 
Apache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim DowlingApache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
Apache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim DowlingApache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
Spark Summit
 
Next CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub WozniakNext CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub Wozniak
Spark Summit
 
Powering a Startup with Apache Spark with Kevin Kim
Powering a Startup with Apache Spark with Kevin KimPowering a Startup with Apache Spark with Kevin Kim
Powering a Startup with Apache Spark with Kevin Kim
Spark Summit
 
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Improving Traffic Prediction Using Weather Datawith Ramya RaghavendraImproving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Spark Summit
 
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Spark Summit
 
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
How Nielsen Utilized Databricks for Large-Scale Research and Development with...How Nielsen Utilized Databricks for Large-Scale Research and Development with...
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
Spark Summit
 
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spark Summit
 
Goal Based Data Production with Sim Simeonov
Goal Based Data Production with Sim SimeonovGoal Based Data Production with Sim Simeonov
Goal Based Data Production with Sim Simeonov
Spark Summit
 
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Spark Summit
 
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Getting Ready to Use Redis with Apache Spark with Dvir VolkGetting Ready to Use Redis with Apache Spark with Dvir Volk
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Spark Summit
 
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Spark Summit
 
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
Spark Summit
 

Recently uploaded (20)

Flip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptxFlip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptx
mubashirkhan45461
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
Data Analytics Overview and its applications
Data Analytics Overview and its applicationsData Analytics Overview and its applications
Data Analytics Overview and its applications
JanmejayaMishra7
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia
Alexander Romero Arosquipa
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
C++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptxC++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptx
aquibnoor22079
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136
illuminati Agent uganda call+256776963507/0741506136
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
Defense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptxDefense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptx
Greg Makowski
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
Flip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptxFlip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptx
mubashirkhan45461
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
Data Analytics Overview and its applications
Data Analytics Overview and its applicationsData Analytics Overview and its applications
Data Analytics Overview and its applications
JanmejayaMishra7
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
C++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptxC++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptx
aquibnoor22079
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
Defense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptxDefense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptx
Greg Makowski
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 

GPU Support In Spark And GPU/CPU Mixed Resource Scheduling At Production Scale

  • 1. GPU Support in Spark and GPU/ CPU Mixed Resource Scheduling at Production Scale Yonggang Hu, IBM, DE Junfeng Liu, IBM, Architect
  • 2. About us •  Yonggang Hu Distinguished Engineer, IBM Chief Architect at Platform Computing, IBM. Vice President and Application Architect at JPMorgan Chase Working on distributed computing, grid, cloud and big data for the past 20 years. •  Junfeng Liu IBM Platform Computing Architect, focusing on Big data platform design and implementation. Successfully delivering solutions to several key customers.
  • 3. Agenda •  GPU and Spark integration motivation •  The challenges in production deployments •  Solutions in IBM Conductor with Spark •  Demo
  • 4. Spark & GPU Spark apps are CPU intensive Need to handle more data and bigger models Machine Learning Predicative analytics, Logistic regression, ALS Kmeans, etc. Graph Analytics Security, Fraud Detection Social Network Analytics GraphX Video/Speech Analytics Object Recognition Dialog Financial Risk Analytics Market simulation Credit risk. home-grown, apps from Murex, Misys Spark-enable existing GPU appsGPU-enable Spark apps
  • 5. Various ways to enable Spark & GPU •  Use GPUs for accelerating Spark Libraries and operations without changing interfaces and underlying programming model. •  Automatically generate CUDA code from the source Spark Java code •  Integrate Spark with GPU-enabled application & system (e.g., Spark integrated with Caffe, TensorFlow and customer applications)
  • 6. Production Challenges •  However –  Identification of GPU execution vs. CPU execution in DAG –  Data preparation for GPU execution –  Low resource utilization for CPU or GPU or both •  Cannot assume all compute hosts are identical and have GPU resource available •  GPU is a lot more expensive !!! –  Overload and contention when running mixed GPU & CPU workload –  Long tail & GPU & CPU tasks failover –  Task ratio control on different resources Stage 2 Stage 1 reduceByKey collect Stage GPU GPU Group CPU Group
  • 7. A typical example – Personalized Medicine – Adverse Drug Reaction Workload -  30X faster at learning speed and 4.3 X speed up at end-2-end -  Need to fully utilize both GPU and CPU resources to get economic benefits
  • 8. Scheduling Granularity •  Scheduling at application level –  Mesos and Yarn tag the GPU machine with label –  Schedule the application on GPU hosts based resource requirement of application –  Corse grained scheduling leads to low utilization of CPU/GPU. •  Scheduling at DAG level –  Need fine grained sharing for GPU resources rather than reserving entire GPU machines –  Identify GPU operation –  Optimize the DAG tree by decupling GPU operations from CPU operations and by inserting new GPU stages –  Reduce GPU wait time, enable sharing GPU among different jobs and therefore improve the overall GPU utilization
  • 9. GPU tasks recognition •  GPU and CPU tasks mixed together •  Separate the workload is necessary for scheduling control GPUFunction() Python-C Wrapper to Invoke Native Function Function implemented by CUDA/OpenCL GPU library Python-C/C++ Wrapper
  • 10. GPU tasks recognition •  Mark the GPU workload by DAG operation –  Go through the DAG tree to identify the stages with GPU requirement –  Optimize the distribution by inserting GPU stage
  • 11. Policies •  RM needs capability to identify the GPU hosts and manage along with CPU resources •  Prioritization policy - share GPU resource among applications •  Allocation policy – control GPU and CPU allocation independently – multi-dimensional scheduling •  Fine grained policy to schedule tasks according to GPU optimized DAG plan
  • 12. Adaptive Scheduling •  CPU & GPU tasks are convertible in many applications •  Scheduling needs adaptive capability –  If GPU is available, use a portion of GPU –  Otherwise run rest of tasks on CPU dstInBlocks.join(merged).mapV alues { …. if (useGPU) { loadGPULib() callGPU () } else { //CPU version } }
  • 14. Efficiency Considerations •  Do we need to wait GPU resource if there is CPU available? •  Do we need rerun the CPU tasks on GPU if tasks on CPU are long-tail? •  Do we need to have failover cross resource type?
  • 15. Defer Scheduling •  Traditional defer Scheduling –  Wait for data locality –  Cache, Host, Rack •  Resource based defer scheduling –  Necessary if the GPU can greatly speed up task execution –  Wait time is acceptable
  • 16. Future works •  Global optimization –  Consider the cost of additional shuffle stage –  Consider data locality of CPU and GPU stage –  Add time dimension to MDS –  Optimize global DAG tree execution –  Use historical data to optimize future execution, e.g, future iteration
  • 17. Fine grain, dynamic allocation of resources maximizes efficiency of Spark instances sharing a common resource pool. Multi-tenant, multi-framework support. Eliminates cluster sprawl. 2 Run Spark natively on a shared infrastructure without the dependency of Hadoop. Reduce application wait time, improving time to results. 1 Building Spark Centric Shared Service with IBM Conductor End-to-End Enterprise Class Solution Improve Time to Results Proven architecture at extreme scale, with enterprise class workload management, multi-version support for Spark, monitoring, reporting, and security capabilities. 3 Reduce Administration Costs Increase Resource Utilization •  IBM STC Spark Distribution •  IBM Platform Resource Orchestrator / Session Scheduler, application service manager. •  IBM Spectrum Scale FPO 4
  • 18. IBM Conductor with Spark IBM Bluemix Spark Cloud Service in production – thousands of users and tenants. Third party audited benchmark indicated significant performance/ throughput/SLA advantages https://stacresearch.com/news/2016/03/29/IBM160229
  • 19. IBM Systems 19© 2016 IBM Corpora*on IBM Conductor with Spark Monitor and Reporting with Elastic (ELK) !  Integrated Elastic Search, Logstash, Kibana for customizable monitoring !  Built-in monitoring Metrics ! Cross Spark Instance Groups ! Cross Spark Applications within Spark Instance Group ! Within Spark Application !  Built-in monitoring inside Zeppelin Notebook
  • 20. Demo
  • 21. THANK YOU. Contact information or call to action goes here.
  • 22. Acceleration Opportunities for GPUs & Spark Analytics Model Computational Patterns suitable for GPU Acceleration Regression Analysis Cholesky Factorization, Matrix Inversion, Transpose Clustering Cost-based iterative convergence Nearest-neighbor Search Distance calculations, Singular Value Decomposition, Hashing Neural Networks Matrix Multiplications, Convolutions, FFTs, Pair-wise dot-products Support Vector Machines Linear Solvers, Dot-product Association Rule Mining Set Operations: Intersection, union Recommender Systems Matrix Factorizations, Dot-product Time-series Processing FFT, Distance and Smoothing functions Text Analytics Matrix multiplication, factorization, Set operations, String computations, Distance functions Monte Carlo Methods Random number generators, Probability distribution generators Mathematical Programming Linear solvers, Dynamic Programming OLAP/BI Aggregation, Sorting, Hash-based grouping, User-defined functions Graph Analytics Matrix multiplications, Path traversals