Summary: Graphs are structures commonly used in computer science that model the interactions among entities. I will start from introducing the basic formulations of graph based machine learning, which has been a popular topic of research in the past decade and led to a powerful set of techniques. Particularly, I will show examples on how it acts as a generic data mining and predictive analytic tool. In the second part, I am going to discuss applications of such learning techniques in media analytics: (1) image analysis, where visually coherent objects are isolated from images; (2) social analysis of videos, where actors' social properties are predicted from videos. Materials in this part are based on our recent publications in highly selective venues (papers on https://sites.google.com/site/leiding2010/ ).
Bio: Lei Ding is a researcher making sense of large amounts of data in all media types. He currently works in Intent Media as a scientist, focusing on data analytics and applied machine learning in online advertising. Previously, he has worked in several research institutions including Columbia University, UIUC and IBM Research on digital / social media analysis and understanding. He received a Ph.D. degree in Computer Science and Engineering from The Ohio State University, where he was a Distinguished University Fellow.