SlideShare a Scribd company logo
GraphSage Vs PinSage
Discussion between the two popular Graph ML
algorithms
ArangoDB ML Reading Group
PinSage
● It is an Inductive based Graph Convolutional Neural Networks (GCNs) for Web-Scale
Recommender Systems
● PinSage is a random-walk based GCNs algorithm which learns embeddings for nodes (in
billions) in web scale graphs
● Due to its inductive nature it is highly-scalable and generic model.
● Altogether, the Pinterest graph (Dataset) contains 2 billion pins, 1 billion boards, and over 18
billion edges (i.e. memberships of pins to their corresponding boards)
● Once embeddings are learned (aka pin embeddings) it can be used for classification,
clustering or reranking.
● It is mainly used by Pinterest for visual recommendations (pins are visual bookmarks e.g. for
buying clothes or other products)
● It solves the problem of operating on entire graph laplacian during training.
PinSage
● Pinterest is a platform in which they
share and organise images.
● Images are referred to as Pins
● Users stack similar images in albums
(boards)
● PinSage simplify the graph, by
forming a Bipartite Graph of
pins — boards
Reference: PinSage
Fig1: PinSage
GraphSage
● An inductive variant of GCNs
● Could be Supervised or Unsupervised or
Semi-Supervised
● Aggregator gathers all of the sampled
neighbourhood information into 1-D
vector representations
● Does not perform on-the-fly
convolutions
● The whole graph needs to be stored in
GPU memory
● Does not support MapReduce Inference
● Perform random sampling to get the
neighbourhood of a node u
PinSage
● Built on top of GraphSage
● Supervised
● It has Convolutions which are same as
aggregators in GraphSage
● It performs on-the-fly convolutions
(sampling the neighbourhood of nodes on
demand)
● The whole graph does not need to be in
memory (using producer consumer
architecture)
● Supports Efficient MapReduce Inference
(while performing aggregation we might
compute convolutions repeatedly which can
be minimized by mapreduce)
● Use Random Walks for neighborhood
sampling (where the neighborhood of a
node u is defined as the T nodes that exert
the most influence on node u)
GraphSage
● Does not support importance pooling
● Does not support Curriculum training
PinSage
● Supports importance pooling where we
compute scores of each and every
neighbour using random walk
● Supports Curriculum training where
algorithm is fed harder-and-harder examples
during training (12% performance gain)
GraphSage vs Pinsage #InsideArangoDB
Ad

More Related Content

What's hot (20)

Graph Neural Networks for Recommendations
Graph Neural Networks for RecommendationsGraph Neural Networks for Recommendations
Graph Neural Networks for Recommendations
WQ Fan
 
How Powerful are Graph Networks?
How Powerful are Graph Networks?How Powerful are Graph Networks?
How Powerful are Graph Networks?
IAMAl
 
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
Christopher Morris
 
Deep Learning for Graphs
Deep Learning for GraphsDeep Learning for Graphs
Deep Learning for Graphs
DeepLearningBlr
 
파이콘 한국 2019 튜토리얼 - LRP (Part 2)
파이콘 한국 2019 튜토리얼 - LRP (Part 2)파이콘 한국 2019 튜토리얼 - LRP (Part 2)
파이콘 한국 2019 튜토리얼 - LRP (Part 2)
XAIC
 
Graph Neural Network 1부
Graph Neural Network 1부Graph Neural Network 1부
Graph Neural Network 1부
seungwoo kim
 
Real-Time Fraud Detection at Scale—Integrating Real-Time Deep-Link Graph Anal...
Real-Time Fraud Detection at Scale—Integrating Real-Time Deep-Link Graph Anal...Real-Time Fraud Detection at Scale—Integrating Real-Time Deep-Link Graph Anal...
Real-Time Fraud Detection at Scale—Integrating Real-Time Deep-Link Graph Anal...
Databricks
 
Introduction to Transformer Model
Introduction to Transformer ModelIntroduction to Transformer Model
Introduction to Transformer Model
Nuwan Sriyantha Bandara
 
Lecture_16_Self-supervised_Learning.pptx
Lecture_16_Self-supervised_Learning.pptxLecture_16_Self-supervised_Learning.pptx
Lecture_16_Self-supervised_Learning.pptx
Karimdabbabi
 
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
Simplilearn
 
Representation learning on graphs
Representation learning on graphsRepresentation learning on graphs
Representation learning on graphs
Deakin University
 
An introduction to deep reinforcement learning
An introduction to deep reinforcement learningAn introduction to deep reinforcement learning
An introduction to deep reinforcement learning
Big Data Colombia
 
Dimensionality Reduction
Dimensionality ReductionDimensionality Reduction
Dimensionality Reduction
mrizwan969
 
Introduction to Recurrent Neural Network
Introduction to Recurrent Neural NetworkIntroduction to Recurrent Neural Network
Introduction to Recurrent Neural Network
Knoldus Inc.
 
Session-Based Recommender Systems
Session-Based Recommender SystemsSession-Based Recommender Systems
Session-Based Recommender Systems
Eötvös Loránd University
 
Network centrality measures and their effectiveness
Network centrality measures and their effectivenessNetwork centrality measures and their effectiveness
Network centrality measures and their effectiveness
emapesce
 
A survey on graph kernels
A survey on graph kernelsA survey on graph kernels
A survey on graph kernels
vincyy
 
Generative adversarial networks
Generative adversarial networksGenerative adversarial networks
Generative adversarial networks
남주 김
 
Introduction to Diffusion Models
Introduction to Diffusion ModelsIntroduction to Diffusion Models
Introduction to Diffusion Models
Sangwoo Mo
 
Variational Autoencoder
Variational AutoencoderVariational Autoencoder
Variational Autoencoder
Mark Chang
 
Graph Neural Networks for Recommendations
Graph Neural Networks for RecommendationsGraph Neural Networks for Recommendations
Graph Neural Networks for Recommendations
WQ Fan
 
How Powerful are Graph Networks?
How Powerful are Graph Networks?How Powerful are Graph Networks?
How Powerful are Graph Networks?
IAMAl
 
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
Christopher Morris
 
Deep Learning for Graphs
Deep Learning for GraphsDeep Learning for Graphs
Deep Learning for Graphs
DeepLearningBlr
 
파이콘 한국 2019 튜토리얼 - LRP (Part 2)
파이콘 한국 2019 튜토리얼 - LRP (Part 2)파이콘 한국 2019 튜토리얼 - LRP (Part 2)
파이콘 한국 2019 튜토리얼 - LRP (Part 2)
XAIC
 
Graph Neural Network 1부
Graph Neural Network 1부Graph Neural Network 1부
Graph Neural Network 1부
seungwoo kim
 
Real-Time Fraud Detection at Scale—Integrating Real-Time Deep-Link Graph Anal...
Real-Time Fraud Detection at Scale—Integrating Real-Time Deep-Link Graph Anal...Real-Time Fraud Detection at Scale—Integrating Real-Time Deep-Link Graph Anal...
Real-Time Fraud Detection at Scale—Integrating Real-Time Deep-Link Graph Anal...
Databricks
 
Lecture_16_Self-supervised_Learning.pptx
Lecture_16_Self-supervised_Learning.pptxLecture_16_Self-supervised_Learning.pptx
Lecture_16_Self-supervised_Learning.pptx
Karimdabbabi
 
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
Simplilearn
 
Representation learning on graphs
Representation learning on graphsRepresentation learning on graphs
Representation learning on graphs
Deakin University
 
An introduction to deep reinforcement learning
An introduction to deep reinforcement learningAn introduction to deep reinforcement learning
An introduction to deep reinforcement learning
Big Data Colombia
 
Dimensionality Reduction
Dimensionality ReductionDimensionality Reduction
Dimensionality Reduction
mrizwan969
 
Introduction to Recurrent Neural Network
Introduction to Recurrent Neural NetworkIntroduction to Recurrent Neural Network
Introduction to Recurrent Neural Network
Knoldus Inc.
 
Network centrality measures and their effectiveness
Network centrality measures and their effectivenessNetwork centrality measures and their effectiveness
Network centrality measures and their effectiveness
emapesce
 
A survey on graph kernels
A survey on graph kernelsA survey on graph kernels
A survey on graph kernels
vincyy
 
Generative adversarial networks
Generative adversarial networksGenerative adversarial networks
Generative adversarial networks
남주 김
 
Introduction to Diffusion Models
Introduction to Diffusion ModelsIntroduction to Diffusion Models
Introduction to Diffusion Models
Sangwoo Mo
 
Variational Autoencoder
Variational AutoencoderVariational Autoencoder
Variational Autoencoder
Mark Chang
 

Similar to GraphSage vs Pinsage #InsideArangoDB (20)

Benchmarking tool for graph algorithms
Benchmarking tool for graph algorithmsBenchmarking tool for graph algorithms
Benchmarking tool for graph algorithms
Yash Khandelwal
 
Apache Giraph
Apache GiraphApache Giraph
Apache Giraph
Ahmet Emre Aladağ
 
High Performance Rust UI.pdf
High Performance Rust UI.pdfHigh Performance Rust UI.pdf
High Performance Rust UI.pdf
mraaaaa
 
3 CG_U1_P2_PPT_3 OpenGL.pptx
3 CG_U1_P2_PPT_3 OpenGL.pptx3 CG_U1_P2_PPT_3 OpenGL.pptx
3 CG_U1_P2_PPT_3 OpenGL.pptx
ssuser255bf1
 
(2) gui drawing
(2) gui drawing(2) gui drawing
(2) gui drawing
Nico Ludwig
 
Computer Graphics - Lecture 01 - 3D Programming I
Computer Graphics - Lecture 01 - 3D Programming IComputer Graphics - Lecture 01 - 3D Programming I
Computer Graphics - Lecture 01 - 3D Programming I
💻 Anton Gerdelan
 
Pregel: A System For Large Scale Graph Processing
Pregel: A System For Large Scale Graph ProcessingPregel: A System For Large Scale Graph Processing
Pregel: A System For Large Scale Graph Processing
Riyad Parvez
 
Apache Singa AI
Apache Singa AIApache Singa AI
Apache Singa AI
Mike Frampton
 
Approaching zero driver overhead
Approaching zero driver overheadApproaching zero driver overhead
Approaching zero driver overhead
Cass Everitt
 
EFL: Scaling From the Embedded World to the Desktop
EFL: Scaling From the Embedded World to the DesktopEFL: Scaling From the Embedded World to the Desktop
EFL: Scaling From the Embedded World to the Desktop
Samsung Open Source Group
 
Memory Efficient Graph Convolutional Network based Distributed Link Prediction
Memory Efficient Graph Convolutional Network based Distributed Link PredictionMemory Efficient Graph Convolutional Network based Distributed Link Prediction
Memory Efficient Graph Convolutional Network based Distributed Link Prediction
miyurud
 
Volodymyr Lyubinets: Аналіз супутникових зображень: визначаємо параметри буді...
Volodymyr Lyubinets: Аналіз супутникових зображень: визначаємо параметри буді...Volodymyr Lyubinets: Аналіз супутникових зображень: визначаємо параметри буді...
Volodymyr Lyubinets: Аналіз супутникових зображень: визначаємо параметри буді...
Lviv Startup Club
 
[NS][Lab_Seminar_241230]HiGDA: Hierarchical Graph of Nodes to Learn Local-to-...
[NS][Lab_Seminar_241230]HiGDA: Hierarchical Graph of Nodes to Learn Local-to-...[NS][Lab_Seminar_241230]HiGDA: Hierarchical Graph of Nodes to Learn Local-to-...
[NS][Lab_Seminar_241230]HiGDA: Hierarchical Graph of Nodes to Learn Local-to-...
thanhdowork
 
High performance graphics and computation - OpenGL ES and RenderScript
High performance graphics and computation - OpenGL ES and RenderScript High performance graphics and computation - OpenGL ES and RenderScript
High performance graphics and computation - OpenGL ES and RenderScript
BlrDroid
 
Smedberg niklas bringing_aaa_graphics
Smedberg niklas bringing_aaa_graphicsSmedberg niklas bringing_aaa_graphics
Smedberg niklas bringing_aaa_graphics
changehee lee
 
NVIDIA CUDA
NVIDIA CUDANVIDIA CUDA
NVIDIA CUDA
Jungsoo Nam
 
Week9
Week9Week9
Week9
s1150041
 
Week8
Week8Week8
Week8
s1150041
 
Chapter-3.pdf
Chapter-3.pdfChapter-3.pdf
Chapter-3.pdf
mekelle university(EiT-M)
 
Netflix machine learning
Netflix machine learningNetflix machine learning
Netflix machine learning
Amer Ather
 
Benchmarking tool for graph algorithms
Benchmarking tool for graph algorithmsBenchmarking tool for graph algorithms
Benchmarking tool for graph algorithms
Yash Khandelwal
 
High Performance Rust UI.pdf
High Performance Rust UI.pdfHigh Performance Rust UI.pdf
High Performance Rust UI.pdf
mraaaaa
 
3 CG_U1_P2_PPT_3 OpenGL.pptx
3 CG_U1_P2_PPT_3 OpenGL.pptx3 CG_U1_P2_PPT_3 OpenGL.pptx
3 CG_U1_P2_PPT_3 OpenGL.pptx
ssuser255bf1
 
Computer Graphics - Lecture 01 - 3D Programming I
Computer Graphics - Lecture 01 - 3D Programming IComputer Graphics - Lecture 01 - 3D Programming I
Computer Graphics - Lecture 01 - 3D Programming I
💻 Anton Gerdelan
 
Pregel: A System For Large Scale Graph Processing
Pregel: A System For Large Scale Graph ProcessingPregel: A System For Large Scale Graph Processing
Pregel: A System For Large Scale Graph Processing
Riyad Parvez
 
Approaching zero driver overhead
Approaching zero driver overheadApproaching zero driver overhead
Approaching zero driver overhead
Cass Everitt
 
EFL: Scaling From the Embedded World to the Desktop
EFL: Scaling From the Embedded World to the DesktopEFL: Scaling From the Embedded World to the Desktop
EFL: Scaling From the Embedded World to the Desktop
Samsung Open Source Group
 
Memory Efficient Graph Convolutional Network based Distributed Link Prediction
Memory Efficient Graph Convolutional Network based Distributed Link PredictionMemory Efficient Graph Convolutional Network based Distributed Link Prediction
Memory Efficient Graph Convolutional Network based Distributed Link Prediction
miyurud
 
Volodymyr Lyubinets: Аналіз супутникових зображень: визначаємо параметри буді...
Volodymyr Lyubinets: Аналіз супутникових зображень: визначаємо параметри буді...Volodymyr Lyubinets: Аналіз супутникових зображень: визначаємо параметри буді...
Volodymyr Lyubinets: Аналіз супутникових зображень: визначаємо параметри буді...
Lviv Startup Club
 
[NS][Lab_Seminar_241230]HiGDA: Hierarchical Graph of Nodes to Learn Local-to-...
[NS][Lab_Seminar_241230]HiGDA: Hierarchical Graph of Nodes to Learn Local-to-...[NS][Lab_Seminar_241230]HiGDA: Hierarchical Graph of Nodes to Learn Local-to-...
[NS][Lab_Seminar_241230]HiGDA: Hierarchical Graph of Nodes to Learn Local-to-...
thanhdowork
 
High performance graphics and computation - OpenGL ES and RenderScript
High performance graphics and computation - OpenGL ES and RenderScript High performance graphics and computation - OpenGL ES and RenderScript
High performance graphics and computation - OpenGL ES and RenderScript
BlrDroid
 
Smedberg niklas bringing_aaa_graphics
Smedberg niklas bringing_aaa_graphicsSmedberg niklas bringing_aaa_graphics
Smedberg niklas bringing_aaa_graphics
changehee lee
 
Netflix machine learning
Netflix machine learningNetflix machine learning
Netflix machine learning
Amer Ather
 
Ad

More from ArangoDB Database (20)

ATO 2022 - Machine Learning + Graph Databases for Better Recommendations (3)....
ATO 2022 - Machine Learning + Graph Databases for Better Recommendations (3)....ATO 2022 - Machine Learning + Graph Databases for Better Recommendations (3)....
ATO 2022 - Machine Learning + Graph Databases for Better Recommendations (3)....
ArangoDB Database
 
Machine Learning + Graph Databases for Better Recommendations V2 08/20/2022
Machine Learning + Graph Databases for Better Recommendations V2 08/20/2022Machine Learning + Graph Databases for Better Recommendations V2 08/20/2022
Machine Learning + Graph Databases for Better Recommendations V2 08/20/2022
ArangoDB Database
 
Machine Learning + Graph Databases for Better Recommendations V1 08/06/2022
Machine Learning + Graph Databases for Better Recommendations V1 08/06/2022Machine Learning + Graph Databases for Better Recommendations V1 08/06/2022
Machine Learning + Graph Databases for Better Recommendations V1 08/06/2022
ArangoDB Database
 
ArangoDB 3.9 - Further Powering Graphs at Scale
ArangoDB 3.9 - Further Powering Graphs at ScaleArangoDB 3.9 - Further Powering Graphs at Scale
ArangoDB 3.9 - Further Powering Graphs at Scale
ArangoDB Database
 
Webinar: ArangoDB 3.8 Preview - Analytics at Scale
Webinar: ArangoDB 3.8 Preview - Analytics at Scale Webinar: ArangoDB 3.8 Preview - Analytics at Scale
Webinar: ArangoDB 3.8 Preview - Analytics at Scale
ArangoDB Database
 
Graph Analytics with ArangoDB
Graph Analytics with ArangoDBGraph Analytics with ArangoDB
Graph Analytics with ArangoDB
ArangoDB Database
 
Getting Started with ArangoDB Oasis
Getting Started with ArangoDB OasisGetting Started with ArangoDB Oasis
Getting Started with ArangoDB Oasis
ArangoDB Database
 
Custom Pregel Algorithms in ArangoDB
Custom Pregel Algorithms in ArangoDBCustom Pregel Algorithms in ArangoDB
Custom Pregel Algorithms in ArangoDB
ArangoDB Database
 
Hacktoberfest 2020 - Intro to Knowledge Graphs
Hacktoberfest 2020 - Intro to Knowledge GraphsHacktoberfest 2020 - Intro to Knowledge Graphs
Hacktoberfest 2020 - Intro to Knowledge Graphs
ArangoDB Database
 
A Graph Database That Scales - ArangoDB 3.7 Release Webinar
A Graph Database That Scales - ArangoDB 3.7 Release WebinarA Graph Database That Scales - ArangoDB 3.7 Release Webinar
A Graph Database That Scales - ArangoDB 3.7 Release Webinar
ArangoDB Database
 
gVisor, Kata Containers, Firecracker, Docker: Who is Who in the Container Space?
gVisor, Kata Containers, Firecracker, Docker: Who is Who in the Container Space?gVisor, Kata Containers, Firecracker, Docker: Who is Who in the Container Space?
gVisor, Kata Containers, Firecracker, Docker: Who is Who in the Container Space?
ArangoDB Database
 
ArangoML Pipeline Cloud - Managed Machine Learning Metadata
ArangoML Pipeline Cloud - Managed Machine Learning MetadataArangoML Pipeline Cloud - Managed Machine Learning Metadata
ArangoML Pipeline Cloud - Managed Machine Learning Metadata
ArangoDB Database
 
ArangoDB 3.7 Roadmap: Performance at Scale
ArangoDB 3.7 Roadmap: Performance at ScaleArangoDB 3.7 Roadmap: Performance at Scale
ArangoDB 3.7 Roadmap: Performance at Scale
ArangoDB Database
 
Webinar: What to expect from ArangoDB Oasis
Webinar: What to expect from ArangoDB OasisWebinar: What to expect from ArangoDB Oasis
Webinar: What to expect from ArangoDB Oasis
ArangoDB Database
 
ArangoDB 3.5 Feature Overview Webinar - Sept 12, 2019
ArangoDB 3.5 Feature Overview Webinar - Sept 12, 2019ArangoDB 3.5 Feature Overview Webinar - Sept 12, 2019
ArangoDB 3.5 Feature Overview Webinar - Sept 12, 2019
ArangoDB Database
 
3.5 webinar
3.5 webinar 3.5 webinar
3.5 webinar
ArangoDB Database
 
Webinar: How native multi model works in ArangoDB
Webinar: How native multi model works in ArangoDBWebinar: How native multi model works in ArangoDB
Webinar: How native multi model works in ArangoDB
ArangoDB Database
 
An introduction to multi-model databases
An introduction to multi-model databasesAn introduction to multi-model databases
An introduction to multi-model databases
ArangoDB Database
 
Running complex data queries in a distributed system
Running complex data queries in a distributed systemRunning complex data queries in a distributed system
Running complex data queries in a distributed system
ArangoDB Database
 
Guacamole Fiesta: What do avocados and databases have in common?
Guacamole Fiesta: What do avocados and databases have in common?Guacamole Fiesta: What do avocados and databases have in common?
Guacamole Fiesta: What do avocados and databases have in common?
ArangoDB Database
 
ATO 2022 - Machine Learning + Graph Databases for Better Recommendations (3)....
ATO 2022 - Machine Learning + Graph Databases for Better Recommendations (3)....ATO 2022 - Machine Learning + Graph Databases for Better Recommendations (3)....
ATO 2022 - Machine Learning + Graph Databases for Better Recommendations (3)....
ArangoDB Database
 
Machine Learning + Graph Databases for Better Recommendations V2 08/20/2022
Machine Learning + Graph Databases for Better Recommendations V2 08/20/2022Machine Learning + Graph Databases for Better Recommendations V2 08/20/2022
Machine Learning + Graph Databases for Better Recommendations V2 08/20/2022
ArangoDB Database
 
Machine Learning + Graph Databases for Better Recommendations V1 08/06/2022
Machine Learning + Graph Databases for Better Recommendations V1 08/06/2022Machine Learning + Graph Databases for Better Recommendations V1 08/06/2022
Machine Learning + Graph Databases for Better Recommendations V1 08/06/2022
ArangoDB Database
 
ArangoDB 3.9 - Further Powering Graphs at Scale
ArangoDB 3.9 - Further Powering Graphs at ScaleArangoDB 3.9 - Further Powering Graphs at Scale
ArangoDB 3.9 - Further Powering Graphs at Scale
ArangoDB Database
 
Webinar: ArangoDB 3.8 Preview - Analytics at Scale
Webinar: ArangoDB 3.8 Preview - Analytics at Scale Webinar: ArangoDB 3.8 Preview - Analytics at Scale
Webinar: ArangoDB 3.8 Preview - Analytics at Scale
ArangoDB Database
 
Graph Analytics with ArangoDB
Graph Analytics with ArangoDBGraph Analytics with ArangoDB
Graph Analytics with ArangoDB
ArangoDB Database
 
Getting Started with ArangoDB Oasis
Getting Started with ArangoDB OasisGetting Started with ArangoDB Oasis
Getting Started with ArangoDB Oasis
ArangoDB Database
 
Custom Pregel Algorithms in ArangoDB
Custom Pregel Algorithms in ArangoDBCustom Pregel Algorithms in ArangoDB
Custom Pregel Algorithms in ArangoDB
ArangoDB Database
 
Hacktoberfest 2020 - Intro to Knowledge Graphs
Hacktoberfest 2020 - Intro to Knowledge GraphsHacktoberfest 2020 - Intro to Knowledge Graphs
Hacktoberfest 2020 - Intro to Knowledge Graphs
ArangoDB Database
 
A Graph Database That Scales - ArangoDB 3.7 Release Webinar
A Graph Database That Scales - ArangoDB 3.7 Release WebinarA Graph Database That Scales - ArangoDB 3.7 Release Webinar
A Graph Database That Scales - ArangoDB 3.7 Release Webinar
ArangoDB Database
 
gVisor, Kata Containers, Firecracker, Docker: Who is Who in the Container Space?
gVisor, Kata Containers, Firecracker, Docker: Who is Who in the Container Space?gVisor, Kata Containers, Firecracker, Docker: Who is Who in the Container Space?
gVisor, Kata Containers, Firecracker, Docker: Who is Who in the Container Space?
ArangoDB Database
 
ArangoML Pipeline Cloud - Managed Machine Learning Metadata
ArangoML Pipeline Cloud - Managed Machine Learning MetadataArangoML Pipeline Cloud - Managed Machine Learning Metadata
ArangoML Pipeline Cloud - Managed Machine Learning Metadata
ArangoDB Database
 
ArangoDB 3.7 Roadmap: Performance at Scale
ArangoDB 3.7 Roadmap: Performance at ScaleArangoDB 3.7 Roadmap: Performance at Scale
ArangoDB 3.7 Roadmap: Performance at Scale
ArangoDB Database
 
Webinar: What to expect from ArangoDB Oasis
Webinar: What to expect from ArangoDB OasisWebinar: What to expect from ArangoDB Oasis
Webinar: What to expect from ArangoDB Oasis
ArangoDB Database
 
ArangoDB 3.5 Feature Overview Webinar - Sept 12, 2019
ArangoDB 3.5 Feature Overview Webinar - Sept 12, 2019ArangoDB 3.5 Feature Overview Webinar - Sept 12, 2019
ArangoDB 3.5 Feature Overview Webinar - Sept 12, 2019
ArangoDB Database
 
Webinar: How native multi model works in ArangoDB
Webinar: How native multi model works in ArangoDBWebinar: How native multi model works in ArangoDB
Webinar: How native multi model works in ArangoDB
ArangoDB Database
 
An introduction to multi-model databases
An introduction to multi-model databasesAn introduction to multi-model databases
An introduction to multi-model databases
ArangoDB Database
 
Running complex data queries in a distributed system
Running complex data queries in a distributed systemRunning complex data queries in a distributed system
Running complex data queries in a distributed system
ArangoDB Database
 
Guacamole Fiesta: What do avocados and databases have in common?
Guacamole Fiesta: What do avocados and databases have in common?Guacamole Fiesta: What do avocados and databases have in common?
Guacamole Fiesta: What do avocados and databases have in common?
ArangoDB Database
 
Ad

Recently uploaded (20)

Explaining GitHub Actions Failures with Large Language Models Challenges, In...
Explaining GitHub Actions Failures with Large Language Models Challenges, In...Explaining GitHub Actions Failures with Large Language Models Challenges, In...
Explaining GitHub Actions Failures with Large Language Models Challenges, In...
ssuserb14185
 
Why Orangescrum Is a Game Changer for Construction Companies in 2025
Why Orangescrum Is a Game Changer for Construction Companies in 2025Why Orangescrum Is a Game Changer for Construction Companies in 2025
Why Orangescrum Is a Game Changer for Construction Companies in 2025
Orangescrum
 
Revolutionizing Residential Wi-Fi PPT.pptx
Revolutionizing Residential Wi-Fi PPT.pptxRevolutionizing Residential Wi-Fi PPT.pptx
Revolutionizing Residential Wi-Fi PPT.pptx
nidhisingh691197
 
Who Watches the Watchmen (SciFiDevCon 2025)
Who Watches the Watchmen (SciFiDevCon 2025)Who Watches the Watchmen (SciFiDevCon 2025)
Who Watches the Watchmen (SciFiDevCon 2025)
Allon Mureinik
 
Meet the Agents: How AI Is Learning to Think, Plan, and Collaborate
Meet the Agents: How AI Is Learning to Think, Plan, and CollaborateMeet the Agents: How AI Is Learning to Think, Plan, and Collaborate
Meet the Agents: How AI Is Learning to Think, Plan, and Collaborate
Maxim Salnikov
 
How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...
How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...
How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...
Egor Kaleynik
 
Kubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptxKubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptx
CloudScouts
 
Adobe Master Collection CC Crack Advance Version 2025
Adobe Master Collection CC Crack Advance Version 2025Adobe Master Collection CC Crack Advance Version 2025
Adobe Master Collection CC Crack Advance Version 2025
kashifyounis067
 
Exploring Code Comprehension in Scientific Programming: Preliminary Insight...
Exploring Code Comprehension  in Scientific Programming:  Preliminary Insight...Exploring Code Comprehension  in Scientific Programming:  Preliminary Insight...
Exploring Code Comprehension in Scientific Programming: Preliminary Insight...
University of Hawai‘i at Mānoa
 
Landscape of Requirements Engineering for/by AI through Literature Review
Landscape of Requirements Engineering for/by AI through Literature ReviewLandscape of Requirements Engineering for/by AI through Literature Review
Landscape of Requirements Engineering for/by AI through Literature Review
Hironori Washizaki
 
Douwan Crack 2025 new verson+ License code
Douwan Crack 2025 new verson+ License codeDouwan Crack 2025 new verson+ License code
Douwan Crack 2025 new verson+ License code
aneelaramzan63
 
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
Andre Hora
 
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
Andre Hora
 
F-Secure Freedome VPN 2025 Crack Plus Activation New Version
F-Secure Freedome VPN 2025 Crack Plus Activation  New VersionF-Secure Freedome VPN 2025 Crack Plus Activation  New Version
F-Secure Freedome VPN 2025 Crack Plus Activation New Version
saimabibi60507
 
FL Studio Producer Edition Crack 2025 Full Version
FL Studio Producer Edition Crack 2025 Full VersionFL Studio Producer Edition Crack 2025 Full Version
FL Studio Producer Edition Crack 2025 Full Version
tahirabibi60507
 
Adobe After Effects Crack FREE FRESH version 2025
Adobe After Effects Crack FREE FRESH version 2025Adobe After Effects Crack FREE FRESH version 2025
Adobe After Effects Crack FREE FRESH version 2025
kashifyounis067
 
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Eric D. Schabell
 
Maxon CINEMA 4D 2025 Crack FREE Download LINK
Maxon CINEMA 4D 2025 Crack FREE Download LINKMaxon CINEMA 4D 2025 Crack FREE Download LINK
Maxon CINEMA 4D 2025 Crack FREE Download LINK
younisnoman75
 
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Lionel Briand
 
Automation Techniques in RPA - UiPath Certificate
Automation Techniques in RPA - UiPath CertificateAutomation Techniques in RPA - UiPath Certificate
Automation Techniques in RPA - UiPath Certificate
VICTOR MAESTRE RAMIREZ
 
Explaining GitHub Actions Failures with Large Language Models Challenges, In...
Explaining GitHub Actions Failures with Large Language Models Challenges, In...Explaining GitHub Actions Failures with Large Language Models Challenges, In...
Explaining GitHub Actions Failures with Large Language Models Challenges, In...
ssuserb14185
 
Why Orangescrum Is a Game Changer for Construction Companies in 2025
Why Orangescrum Is a Game Changer for Construction Companies in 2025Why Orangescrum Is a Game Changer for Construction Companies in 2025
Why Orangescrum Is a Game Changer for Construction Companies in 2025
Orangescrum
 
Revolutionizing Residential Wi-Fi PPT.pptx
Revolutionizing Residential Wi-Fi PPT.pptxRevolutionizing Residential Wi-Fi PPT.pptx
Revolutionizing Residential Wi-Fi PPT.pptx
nidhisingh691197
 
Who Watches the Watchmen (SciFiDevCon 2025)
Who Watches the Watchmen (SciFiDevCon 2025)Who Watches the Watchmen (SciFiDevCon 2025)
Who Watches the Watchmen (SciFiDevCon 2025)
Allon Mureinik
 
Meet the Agents: How AI Is Learning to Think, Plan, and Collaborate
Meet the Agents: How AI Is Learning to Think, Plan, and CollaborateMeet the Agents: How AI Is Learning to Think, Plan, and Collaborate
Meet the Agents: How AI Is Learning to Think, Plan, and Collaborate
Maxim Salnikov
 
How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...
How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...
How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...
Egor Kaleynik
 
Kubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptxKubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptx
CloudScouts
 
Adobe Master Collection CC Crack Advance Version 2025
Adobe Master Collection CC Crack Advance Version 2025Adobe Master Collection CC Crack Advance Version 2025
Adobe Master Collection CC Crack Advance Version 2025
kashifyounis067
 
Exploring Code Comprehension in Scientific Programming: Preliminary Insight...
Exploring Code Comprehension  in Scientific Programming:  Preliminary Insight...Exploring Code Comprehension  in Scientific Programming:  Preliminary Insight...
Exploring Code Comprehension in Scientific Programming: Preliminary Insight...
University of Hawai‘i at Mānoa
 
Landscape of Requirements Engineering for/by AI through Literature Review
Landscape of Requirements Engineering for/by AI through Literature ReviewLandscape of Requirements Engineering for/by AI through Literature Review
Landscape of Requirements Engineering for/by AI through Literature Review
Hironori Washizaki
 
Douwan Crack 2025 new verson+ License code
Douwan Crack 2025 new verson+ License codeDouwan Crack 2025 new verson+ License code
Douwan Crack 2025 new verson+ License code
aneelaramzan63
 
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
Andre Hora
 
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
Andre Hora
 
F-Secure Freedome VPN 2025 Crack Plus Activation New Version
F-Secure Freedome VPN 2025 Crack Plus Activation  New VersionF-Secure Freedome VPN 2025 Crack Plus Activation  New Version
F-Secure Freedome VPN 2025 Crack Plus Activation New Version
saimabibi60507
 
FL Studio Producer Edition Crack 2025 Full Version
FL Studio Producer Edition Crack 2025 Full VersionFL Studio Producer Edition Crack 2025 Full Version
FL Studio Producer Edition Crack 2025 Full Version
tahirabibi60507
 
Adobe After Effects Crack FREE FRESH version 2025
Adobe After Effects Crack FREE FRESH version 2025Adobe After Effects Crack FREE FRESH version 2025
Adobe After Effects Crack FREE FRESH version 2025
kashifyounis067
 
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Eric D. Schabell
 
Maxon CINEMA 4D 2025 Crack FREE Download LINK
Maxon CINEMA 4D 2025 Crack FREE Download LINKMaxon CINEMA 4D 2025 Crack FREE Download LINK
Maxon CINEMA 4D 2025 Crack FREE Download LINK
younisnoman75
 
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Lionel Briand
 
Automation Techniques in RPA - UiPath Certificate
Automation Techniques in RPA - UiPath CertificateAutomation Techniques in RPA - UiPath Certificate
Automation Techniques in RPA - UiPath Certificate
VICTOR MAESTRE RAMIREZ
 

GraphSage vs Pinsage #InsideArangoDB

  • 1. GraphSage Vs PinSage Discussion between the two popular Graph ML algorithms ArangoDB ML Reading Group
  • 2. PinSage ● It is an Inductive based Graph Convolutional Neural Networks (GCNs) for Web-Scale Recommender Systems ● PinSage is a random-walk based GCNs algorithm which learns embeddings for nodes (in billions) in web scale graphs ● Due to its inductive nature it is highly-scalable and generic model. ● Altogether, the Pinterest graph (Dataset) contains 2 billion pins, 1 billion boards, and over 18 billion edges (i.e. memberships of pins to their corresponding boards) ● Once embeddings are learned (aka pin embeddings) it can be used for classification, clustering or reranking. ● It is mainly used by Pinterest for visual recommendations (pins are visual bookmarks e.g. for buying clothes or other products) ● It solves the problem of operating on entire graph laplacian during training.
  • 3. PinSage ● Pinterest is a platform in which they share and organise images. ● Images are referred to as Pins ● Users stack similar images in albums (boards) ● PinSage simplify the graph, by forming a Bipartite Graph of pins — boards Reference: PinSage Fig1: PinSage
  • 4. GraphSage ● An inductive variant of GCNs ● Could be Supervised or Unsupervised or Semi-Supervised ● Aggregator gathers all of the sampled neighbourhood information into 1-D vector representations ● Does not perform on-the-fly convolutions ● The whole graph needs to be stored in GPU memory ● Does not support MapReduce Inference ● Perform random sampling to get the neighbourhood of a node u PinSage ● Built on top of GraphSage ● Supervised ● It has Convolutions which are same as aggregators in GraphSage ● It performs on-the-fly convolutions (sampling the neighbourhood of nodes on demand) ● The whole graph does not need to be in memory (using producer consumer architecture) ● Supports Efficient MapReduce Inference (while performing aggregation we might compute convolutions repeatedly which can be minimized by mapreduce) ● Use Random Walks for neighborhood sampling (where the neighborhood of a node u is defined as the T nodes that exert the most influence on node u)
  • 5. GraphSage ● Does not support importance pooling ● Does not support Curriculum training PinSage ● Supports importance pooling where we compute scores of each and every neighbour using random walk ● Supports Curriculum training where algorithm is fed harder-and-harder examples during training (12% performance gain)