The
large
a
v
ailable
am
ou
n
t
of
non
-
structured
texts
that
b
e
-
long
to
differe
n
t
domains
su
c
h
as
healthcare
(e.g.
medical
records),
justice
(e.g.
l
a
ws,
declarations),
insurance
(e.g.
declarations),
etc. increases
the
effort
required
for
the
analysis
of
information
in
a
decision making
pro
-
cess.
Differe
n
t
pr
o
jects
and t
o
ols
h
av
e
pro
p
osed
strategies
to
reduce
this
complexi
t
y
b
y
classifying,
summarizing
or
annotating
the
texts.
P
artic
-
ularl
y
,
text
summary
strategies
h
av
e
pr
ov
en
to
b
e
v
ery
useful
to
pr
o
vide
a
compact
view
of
an
original
text.
H
ow
e
v
er,
the
a
v
ailable
strategies
to
generate
these
summaries
do
not
fit
v
ery
w
ell
within
the
domains
that
require
ta
k
e
i
n
to
consideration
the
tem
p
oral
dimension
of
the
text
(e.g.
a
rece
n
t
piece
of
text
in
a
medical
record
is
more
im
p
orta
n
t
than
a
pre
-
vious
one)
and
the
profile
of
the
p
erson
who
requires
the
summary
(e.g
the
medical
s
p
ecialization).
T
o
co
p
e with
these
limitations
this
pa
p
er
prese
n
ts
”GRe
A
T”
a
m
o
del
for
automatic
summary
generation
that
re
-
lies
on
natural
language
pr
o
cessing
and
text
mining
te
c
hniques
to
extract
the
most
rele
v
a
n
t
information
from
narrati
v
e
texts
and
disc
o
v
er
new
in
-
formation
from
the
detection
of
related
information. GRe
A
T
M
o
del
w
as impleme
n
ted
on
sof
tw
are
to
b
e
v
alidated
in
a
health
institution
where
it
has
sh
o
wn
to
b
e
v
ery
useful
to displ
a
y
a
preview
of
the
information
a
b
ou
t
medical
health
records
and
disc
o
v
er
new
facts
and
h
y
p
otheses
within
the
information.
Se
v
eral
tests
w
ere
executed
su
c
h
as
F
unctional
-
i
t
y
,
Usabili
t
y
and
P
erformance
regarding
to
the
impleme
n
ted
sof
t
w
are.
In
addition,
precision
and
recall
measures
w
ere
applied
on
the
results
ob
-
tained
through
the
impleme
n
ted
t
o
ol,
as
w
ell
as
on
the
loss
of
information
obtained
b
y
pr
o
viding
a
text
more
shorter than
the
original