SlideShare a Scribd company logo
Analysis and Design of Algorithms
(2150703)
Presented by :
Jay Patel (130110107036)
Gujarat Technological University
G.H Patel College of Engineering and Technology
Department of Computer Engineering
Greedy Algorithms
Guided by:
Namrta Dave
Greedy Algorithms:
• Many real-world problems are optimization problems in that they attempt to find an
optimal solution among many possible candidate solutions.
• An optimization problem is one in which you want to find, not just a solution, but the best
solution
• A “greedy algorithm” sometimes works well for optimization problems
• A greedy algorithm works in phases. At each phase: You take the best you can get right
now, without regard for future consequences.You hope that by choosing a local optimum at
each step, you will end up at a global optimum
• A familiar scenario is the change-making problem that we often encounter at a cash
register: receiving the fewest numbers of coins to make change after paying the bill for a
purchase.
• Constructs a solution to an optimization problem piece by
• piece through a sequence of choices that are:
1.feasible, i.e. satisfying the constraints
2.locally optimal (with respect to some neighborhood definition)
3.greedy (in terms of some measure), and irrevocable
• For some problems, it yields a globally optimal solution for every instance. For most, does
not but can be useful for fast approximations. We are mostly interested in the former case
in this class.
Greedy Technique:
Greedy Techniques:
• Optimal solutions:
• change making for “normal” coin denominations
• minimum spanning tree (MST)
• Prim’s MST
• Kruskal’s MST
• simple scheduling problems
• Dijkstra’s algo
• Huffman codes
• Approximations/heuristics:
• traveling salesman problem (TSP)
• knapsack problem
• other combinatorial optimization problems
Greedy Scenario:
• Feasible
• Has to satisfy the problem’s constraints
• Locally Optimal
• Has to make the best local choice among all feasible choices available on that step
• If this local choice results in a global optimum then the problem has optimal
substructure
• Irrevocable
• Once a choice is made it can’t be un-done on subsequent steps of the algorithm
• Simple examples:
• Playing chess by making best move without look-ahead
• Giving fewest number of coins as change
• Simple and appealing, but don’t always give the best solution
Change-Making Problem:
Given unlimited amounts of coins of denominations , give change for amount n with the least
number of coins
Example: d1 = 25 INR, d2 =10 INR, d3 = 5 INR, d4 = 1 INR and n = 48 INR
Greedy solution: <1, 2, 0, 3>
So one 25 INR coin
Two 10 INR coin
Zero 5 INR coin
Three 1 INR coin
But it doesn’t give optimal solution everytime.
Failure of Greedy algorithm
Example:
• In some (fictional) monetary system, “Coin” come in 1 INR, 7 INR, and 10 INR coins
Using a greedy algorithm to count out 15 INR, you would get
A 10 INR coin
Five 1 INR coin, for a total of 15 INR
This requires six coins
A better solution would be to use two 7 INR coin and one 1 INR coin
This only requires three coins
The greedy algorithm results in a solution, but not in an optimal solution
Knapsack Problem:
• Given n objects each have a weight wi and a value vi , and given a knapsack of total
capacity W. The problem is to pack the knapsack with these objects in order to maximize
the total value of those objects packed without exceeding the knapsack’s capacity.
• More formally, let xi denote the fraction of the object i to be included in the knapsack, 0 
xi  1, for 1  i  n. The problem is to find values for the xi such that
• Note that we may assume because otherwise, we would choose xi = 1 for each i
which would be an obvious optimal solution.
 

n
i
ii
n
i
ii vxWwx
11
maximized.isand
 

n
i
i Ww
1
The optimal Knapsack Algorithm:
This algorithm is for time complexity O(n lgn))
(1) Sort the n objects from large to small based on the ratios vi/wi . We assume the
arrays w[1..n] and v[1..n] store the respective weights and values after sorting.
(2) initialize array x[1..n] to zeros.
(3) weight = 0; i = 1
(4) while (i  n and weight < W) do
(I) if weight + w[i]  W then x[i] = 1
(II) else x[i] = (W – weight) / w[i]
(III) weight = weight + x[i] * w[i]
(IV) i++
There seem to be 3 obvious greedy strategies:
(Max value) Sort the objects from the highest value to the lowest, then pick them in that order.
(Min weight) Sort the objects from the lowest weight to the highest, then pick them in that
order.
(Max value/weight ratio) Sort the objects based on the value to weight ratios, from the highest
to the lowest, then select.
Example: Given n = 5 objects and a knapsack capacity W = 100 as in Table I. The three
solutions are given in Table II.
Knapsack Problem:
W
V
V/W
10 20 30 40 50
20 30 66 40 60
2.0 1.5 2.2 1.0 1.2
Max Vi
Min Wi
Max Vi/Wi
SELECT Xi
0 0 1 0.5 1
1 1 1 1 0
1 1 1 0 0.8
Value
146
156
164
Minimum Spanning Tree (MST):
16 states of Spanning tree can happened
A cable company want to connect five villages to their network which currently
extends to the market town of Avonford.
What is the minimum length of cable needed?
A F
B C
D
E
2
7
4
5
8 6
4
5
3
8
Example
Solution for MST:
Kruskal’s Algorithm:
A F
B
C
D
E
2
7
4
5
8 6
4
5
3
8
List the edges in order of size:
ED 2 AB 3
AE 4 CD 4
BC 5 EF 5
CF 6 AF 7
BF 8 CF 8
MST-KRUSKAL(G, w)
1. A ← Ø
2. for each vertex v V[G]
3. do MAKE-SET(v)
4. sort the edges of E into nondecreasing order
by weight w
5. for each edge (u, v) E, taken in
nondecreasing
order by weight
6. do if FIND-SET(u) ≠ FIND-SET(v)
7. then A ← A {(u, v)}
8. UNION(u, v)
9. return A
Select the shortest
edge in the network
ED 2
A F
B C
D
E
2
7
4
5
8 6 4
5
3
8
Select the next shortest
edge which does not
create a cycle
ED 2
AB 3
A F
B C
D
E
2
7
4
5
8 6 4
5
3
8
1
43
2
Select the next shortest
edge which does not
create a cycle
ED 2
AB 3
CD 4 (or AE 4)
A F
B
C
D
E
2
7
4 5
8 6 4
5
3
8
Select the next shortest
edge which does not
create a cycle
ED 2
AB 3
CD 4
AE 4
A F
B C
D
E
2
7
4
5
8 6 4
5
3
8
Select the next shortest
edge which does not
create a cycle
ED 2
AB 3
CD 4
AE 4
BC 5 – forms a cycle
EF 5
A F
B
C
D
E
2
7
4
5
8 6 4
5
3
8
All vertices have been conn
The solution is
ED 2
AB 3
CD 4
AE 4
EF 5
A F
B C
D
E
2
7
4
5
8 6 4
5
3
8
5
6
Total weight of tree: 18
Kruskal’s Algorithm:
Prim’s Algorithm:
MST-PRIM(G, w, r)
1. for each u V [G]
2. do key[u] ← ∞
3. π[u] ← NIL
4. key[r] ← 0
5. Q ← V [G]
6. while Q ≠ Ø
7. do u ← EXTRACT-MIN(Q)
8. for each v Adj[u]
9. do if v Q and w(u, v) < key[v]
10. then π[v] ← u
11. key[v] ← w(u, v)
A F
B C
D
E
2
7
4
5
8 6 4
5
3
8
Select any vertex
A
Select the shortest edge connected to that vertex
AB 3
Prim’s Algorithm:
A F
B C
D
E
2
7
4
5
8 6 4
5
3
8
Select the shortest
edge connected to
any vertex already
connected.
AE 4
1
43
2
Select the shortest
edge connected to
any vertex already
connected.
ED 2
A F
B
C
D
E
2
7
4
5
8 6 4
5
3
8
Select the shortest
edge connected to
any vertex already
connected.
DC 4
A F
B
C
D
E
2
7
4
5
8 6 4
5
3
8
Select the shortest
edge connected to
any vertex already
connected.
EF 5
A F
B
C
D
E
2
7
4
5
8 6 4
5
3
8
Prim’s Algorithm:
A
F
B
C
D
E
2
7
4
5
8 6
4
5
3
8
All vertices have been connected.
The solution is
AB 3
AE 4
ED 2
DC 4
EF 5
Total weight of tree: 18
There are some methods left:
• Dijkstra’s algorithm
• Huffman’s Algorithm
• Task scheduling
• Travelling salesman Problem etc.
• Dynamic Greedy Problems
Greedy Algorithms:
We can find the optimized solution with Greedy method which may be optimal sometime.
THANK YOU
Ad

More Related Content

What's hot (20)

Knapsack problem using greedy approach
Knapsack problem using greedy approachKnapsack problem using greedy approach
Knapsack problem using greedy approach
padmeshagrekar
 
01 Knapsack using Dynamic Programming
01 Knapsack using Dynamic Programming01 Knapsack using Dynamic Programming
01 Knapsack using Dynamic Programming
Fenil Shah
 
Shortest Path in Graph
Shortest Path in GraphShortest Path in Graph
Shortest Path in Graph
Dr Sandeep Kumar Poonia
 
Greedy algorithms
Greedy algorithmsGreedy algorithms
Greedy algorithms
Rajendran
 
Dinive conquer algorithm
Dinive conquer algorithmDinive conquer algorithm
Dinive conquer algorithm
Mohd Arif
 
B trees in Data Structure
B trees in Data StructureB trees in Data Structure
B trees in Data Structure
Anuj Modi
 
The n Queen Problem
The n Queen ProblemThe n Queen Problem
The n Queen Problem
Sukrit Gupta
 
A presentation on prim's and kruskal's algorithm
A presentation on prim's and kruskal's algorithmA presentation on prim's and kruskal's algorithm
A presentation on prim's and kruskal's algorithm
Gaurav Kolekar
 
Greedy algorithms
Greedy algorithmsGreedy algorithms
Greedy algorithms
sandeep54552
 
Knapsack problem algorithm, greedy algorithm
Knapsack problem algorithm, greedy algorithmKnapsack problem algorithm, greedy algorithm
Knapsack problem algorithm, greedy algorithm
HoneyChintal
 
Lecture: Automata
Lecture: AutomataLecture: Automata
Lecture: Automata
Marina Santini
 
Ford Fulkerson Algorithm
Ford Fulkerson AlgorithmFord Fulkerson Algorithm
Ford Fulkerson Algorithm
Adarsh Rotte
 
String matching algorithms
String matching algorithmsString matching algorithms
String matching algorithms
Ashikapokiya12345
 
Divide and Conquer
Divide and ConquerDivide and Conquer
Divide and Conquer
Dr Shashikant Athawale
 
Theory of computation Lec2
Theory of computation Lec2Theory of computation Lec2
Theory of computation Lec2
Arab Open University and Cairo University
 
0/1 knapsack
0/1 knapsack0/1 knapsack
0/1 knapsack
Amin Omi
 
Dijkstra's Algorithm
Dijkstra's AlgorithmDijkstra's Algorithm
Dijkstra's Algorithm
ArijitDhali
 
lecture 26
lecture 26lecture 26
lecture 26
sajinsc
 
0-1 KNAPSACK PROBLEM
0-1 KNAPSACK PROBLEM0-1 KNAPSACK PROBLEM
0-1 KNAPSACK PROBLEM
i i
 
Context free grammar
Context free grammar Context free grammar
Context free grammar
Mohammad Ilyas Malik
 
Knapsack problem using greedy approach
Knapsack problem using greedy approachKnapsack problem using greedy approach
Knapsack problem using greedy approach
padmeshagrekar
 
01 Knapsack using Dynamic Programming
01 Knapsack using Dynamic Programming01 Knapsack using Dynamic Programming
01 Knapsack using Dynamic Programming
Fenil Shah
 
Greedy algorithms
Greedy algorithmsGreedy algorithms
Greedy algorithms
Rajendran
 
Dinive conquer algorithm
Dinive conquer algorithmDinive conquer algorithm
Dinive conquer algorithm
Mohd Arif
 
B trees in Data Structure
B trees in Data StructureB trees in Data Structure
B trees in Data Structure
Anuj Modi
 
The n Queen Problem
The n Queen ProblemThe n Queen Problem
The n Queen Problem
Sukrit Gupta
 
A presentation on prim's and kruskal's algorithm
A presentation on prim's and kruskal's algorithmA presentation on prim's and kruskal's algorithm
A presentation on prim's and kruskal's algorithm
Gaurav Kolekar
 
Knapsack problem algorithm, greedy algorithm
Knapsack problem algorithm, greedy algorithmKnapsack problem algorithm, greedy algorithm
Knapsack problem algorithm, greedy algorithm
HoneyChintal
 
Ford Fulkerson Algorithm
Ford Fulkerson AlgorithmFord Fulkerson Algorithm
Ford Fulkerson Algorithm
Adarsh Rotte
 
0/1 knapsack
0/1 knapsack0/1 knapsack
0/1 knapsack
Amin Omi
 
Dijkstra's Algorithm
Dijkstra's AlgorithmDijkstra's Algorithm
Dijkstra's Algorithm
ArijitDhali
 
lecture 26
lecture 26lecture 26
lecture 26
sajinsc
 
0-1 KNAPSACK PROBLEM
0-1 KNAPSACK PROBLEM0-1 KNAPSACK PROBLEM
0-1 KNAPSACK PROBLEM
i i
 

Similar to Greedy algorithms -Making change-Knapsack-Prim's-Kruskal's (20)

greedy algorithm.pptx good for understanding
greedy algorithm.pptx good for understandinggreedy algorithm.pptx good for understanding
greedy algorithm.pptx good for understanding
HUSNAINAHMAD39
 
Undecidable Problems - COPING WITH THE LIMITATIONS OF ALGORITHM POWER
Undecidable Problems - COPING WITH THE LIMITATIONS OF ALGORITHM POWERUndecidable Problems - COPING WITH THE LIMITATIONS OF ALGORITHM POWER
Undecidable Problems - COPING WITH THE LIMITATIONS OF ALGORITHM POWER
muthukrishnavinayaga
 
Mastering Greedy Algorithms: Optimizing Solutions for Efficiency"
Mastering Greedy Algorithms: Optimizing Solutions for Efficiency"Mastering Greedy Algorithms: Optimizing Solutions for Efficiency"
Mastering Greedy Algorithms: Optimizing Solutions for Efficiency"
22bcs058
 
36 greedy
36 greedy36 greedy
36 greedy
Ikram Khan
 
A greedy algorithms
A greedy algorithmsA greedy algorithms
A greedy algorithms
Amit Kumar Rathi
 
Undecidable Problems and Approximation Algorithms
Undecidable Problems and Approximation AlgorithmsUndecidable Problems and Approximation Algorithms
Undecidable Problems and Approximation Algorithms
Muthu Vinayagam
 
Backtracking & branch and bound
Backtracking & branch and boundBacktracking & branch and bound
Backtracking & branch and bound
Vipul Chauhan
 
Mba i qt unit-1.2_transportation, assignment and transshipment problems
Mba i qt unit-1.2_transportation, assignment and transshipment problemsMba i qt unit-1.2_transportation, assignment and transshipment problems
Mba i qt unit-1.2_transportation, assignment and transshipment problems
Rai University
 
Unit-3 greedy method, Prim's algorithm, Kruskal's algorithm.pdf
Unit-3 greedy method, Prim's algorithm, Kruskal's algorithm.pdfUnit-3 greedy method, Prim's algorithm, Kruskal's algorithm.pdf
Unit-3 greedy method, Prim's algorithm, Kruskal's algorithm.pdf
yashodamb
 
3 Greedy-lec.pptggggghhhhhhhyyyyyyyyyyyyyy
3 Greedy-lec.pptggggghhhhhhhyyyyyyyyyyyyyy3 Greedy-lec.pptggggghhhhhhhyyyyyyyyyyyyyy
3 Greedy-lec.pptggggghhhhhhhyyyyyyyyyyyyyy
esraelman182
 
Data Analysis and Algorithms Lecture 1: Introduction
 Data Analysis and Algorithms Lecture 1: Introduction Data Analysis and Algorithms Lecture 1: Introduction
Data Analysis and Algorithms Lecture 1: Introduction
TayyabSattar5
 
Chapter 5.pptx
Chapter 5.pptxChapter 5.pptx
Chapter 5.pptx
Tekle12
 
Greedy algorithm
Greedy algorithmGreedy algorithm
Greedy algorithm
International Islamic University
 
8_dynamic_algorithm powerpoint ptesentation.pptx
8_dynamic_algorithm powerpoint ptesentation.pptx8_dynamic_algorithm powerpoint ptesentation.pptx
8_dynamic_algorithm powerpoint ptesentation.pptx
zahidulhasan32
 
Optimization problems
Optimization problemsOptimization problems
Optimization problems
Ruchika Sinha
 
Transportation And Assignment Problems - Operations Research
Transportation And Assignment Problems - Operations ResearchTransportation And Assignment Problems - Operations Research
Transportation And Assignment Problems - Operations Research
R L
 
Dynamic programming
Dynamic programmingDynamic programming
Dynamic programming
Melaku Bayih Demessie
 
Single source Shortest path algorithm with example
Single source Shortest path algorithm with exampleSingle source Shortest path algorithm with example
Single source Shortest path algorithm with example
VINITACHAUHAN21
 
AAC ch 3 Advance strategies (Dynamic Programming).pptx
AAC ch 3 Advance strategies (Dynamic Programming).pptxAAC ch 3 Advance strategies (Dynamic Programming).pptx
AAC ch 3 Advance strategies (Dynamic Programming).pptx
HarshitSingh334328
 
Parallel_Algorithms_In_Combinatorial_Optimization_Problems.ppt
Parallel_Algorithms_In_Combinatorial_Optimization_Problems.pptParallel_Algorithms_In_Combinatorial_Optimization_Problems.ppt
Parallel_Algorithms_In_Combinatorial_Optimization_Problems.ppt
AmitBhola17
 
greedy algorithm.pptx good for understanding
greedy algorithm.pptx good for understandinggreedy algorithm.pptx good for understanding
greedy algorithm.pptx good for understanding
HUSNAINAHMAD39
 
Undecidable Problems - COPING WITH THE LIMITATIONS OF ALGORITHM POWER
Undecidable Problems - COPING WITH THE LIMITATIONS OF ALGORITHM POWERUndecidable Problems - COPING WITH THE LIMITATIONS OF ALGORITHM POWER
Undecidable Problems - COPING WITH THE LIMITATIONS OF ALGORITHM POWER
muthukrishnavinayaga
 
Mastering Greedy Algorithms: Optimizing Solutions for Efficiency"
Mastering Greedy Algorithms: Optimizing Solutions for Efficiency"Mastering Greedy Algorithms: Optimizing Solutions for Efficiency"
Mastering Greedy Algorithms: Optimizing Solutions for Efficiency"
22bcs058
 
Undecidable Problems and Approximation Algorithms
Undecidable Problems and Approximation AlgorithmsUndecidable Problems and Approximation Algorithms
Undecidable Problems and Approximation Algorithms
Muthu Vinayagam
 
Backtracking & branch and bound
Backtracking & branch and boundBacktracking & branch and bound
Backtracking & branch and bound
Vipul Chauhan
 
Mba i qt unit-1.2_transportation, assignment and transshipment problems
Mba i qt unit-1.2_transportation, assignment and transshipment problemsMba i qt unit-1.2_transportation, assignment and transshipment problems
Mba i qt unit-1.2_transportation, assignment and transshipment problems
Rai University
 
Unit-3 greedy method, Prim's algorithm, Kruskal's algorithm.pdf
Unit-3 greedy method, Prim's algorithm, Kruskal's algorithm.pdfUnit-3 greedy method, Prim's algorithm, Kruskal's algorithm.pdf
Unit-3 greedy method, Prim's algorithm, Kruskal's algorithm.pdf
yashodamb
 
3 Greedy-lec.pptggggghhhhhhhyyyyyyyyyyyyyy
3 Greedy-lec.pptggggghhhhhhhyyyyyyyyyyyyyy3 Greedy-lec.pptggggghhhhhhhyyyyyyyyyyyyyy
3 Greedy-lec.pptggggghhhhhhhyyyyyyyyyyyyyy
esraelman182
 
Data Analysis and Algorithms Lecture 1: Introduction
 Data Analysis and Algorithms Lecture 1: Introduction Data Analysis and Algorithms Lecture 1: Introduction
Data Analysis and Algorithms Lecture 1: Introduction
TayyabSattar5
 
Chapter 5.pptx
Chapter 5.pptxChapter 5.pptx
Chapter 5.pptx
Tekle12
 
8_dynamic_algorithm powerpoint ptesentation.pptx
8_dynamic_algorithm powerpoint ptesentation.pptx8_dynamic_algorithm powerpoint ptesentation.pptx
8_dynamic_algorithm powerpoint ptesentation.pptx
zahidulhasan32
 
Optimization problems
Optimization problemsOptimization problems
Optimization problems
Ruchika Sinha
 
Transportation And Assignment Problems - Operations Research
Transportation And Assignment Problems - Operations ResearchTransportation And Assignment Problems - Operations Research
Transportation And Assignment Problems - Operations Research
R L
 
Single source Shortest path algorithm with example
Single source Shortest path algorithm with exampleSingle source Shortest path algorithm with example
Single source Shortest path algorithm with example
VINITACHAUHAN21
 
AAC ch 3 Advance strategies (Dynamic Programming).pptx
AAC ch 3 Advance strategies (Dynamic Programming).pptxAAC ch 3 Advance strategies (Dynamic Programming).pptx
AAC ch 3 Advance strategies (Dynamic Programming).pptx
HarshitSingh334328
 
Parallel_Algorithms_In_Combinatorial_Optimization_Problems.ppt
Parallel_Algorithms_In_Combinatorial_Optimization_Problems.pptParallel_Algorithms_In_Combinatorial_Optimization_Problems.ppt
Parallel_Algorithms_In_Combinatorial_Optimization_Problems.ppt
AmitBhola17
 
Ad

More from Jay Patel (12)

Motivational hindi cpd ppt sem 2
Motivational hindi cpd ppt sem 2Motivational hindi cpd ppt sem 2
Motivational hindi cpd ppt sem 2
Jay Patel
 
Cpp (C++)
Cpp (C++)Cpp (C++)
Cpp (C++)
Jay Patel
 
Cpd- Contributor and Personality Development
Cpd- Contributor and Personality DevelopmentCpd- Contributor and Personality Development
Cpd- Contributor and Personality Development
Jay Patel
 
Cpd- Contributor and Personality Development
Cpd- Contributor and Personality DevelopmentCpd- Contributor and Personality Development
Cpd- Contributor and Personality Development
Jay Patel
 
Cpd- Contribution and Personality Development
Cpd- Contribution and Personality DevelopmentCpd- Contribution and Personality Development
Cpd- Contribution and Personality Development
Jay Patel
 
Coa 09-36-computer organization and archietecture-CO-COA
Coa 09-36-computer organization and archietecture-CO-COACoa 09-36-computer organization and archietecture-CO-COA
Coa 09-36-computer organization and archietecture-CO-COA
Jay Patel
 
Ch7 official=computer organization and archietectur- CO-COA
Ch7 official=computer organization and archietectur- CO-COACh7 official=computer organization and archietectur- CO-COA
Ch7 official=computer organization and archietectur- CO-COA
Jay Patel
 
15 control-computer organization and archietecture-CO-COA
15 control-computer organization and archietecture-CO-COA15 control-computer organization and archietecture-CO-COA
15 control-computer organization and archietecture-CO-COA
Jay Patel
 
9 36-computer organization and archietecture- CO- COA
9 36-computer organization and archietecture- CO- COA9 36-computer organization and archietecture- CO- COA
9 36-computer organization and archietecture- CO- COA
Jay Patel
 
3 4- computer organization and archietecture- COA- CO- Computer organization
3 4- computer organization and archietecture- COA- CO- Computer organization3 4- computer organization and archietecture- COA- CO- Computer organization
3 4- computer organization and archietecture- COA- CO- Computer organization
Jay Patel
 
Cn 04,32,36-Cn all chapters1- computer networks- gtu
Cn 04,32,36-Cn all chapters1- computer networks- gtuCn 04,32,36-Cn all chapters1- computer networks- gtu
Cn 04,32,36-Cn all chapters1- computer networks- gtu
Jay Patel
 
Greedy Algorithm-Dijkstra's algo
Greedy Algorithm-Dijkstra's algoGreedy Algorithm-Dijkstra's algo
Greedy Algorithm-Dijkstra's algo
Jay Patel
 
Motivational hindi cpd ppt sem 2
Motivational hindi cpd ppt sem 2Motivational hindi cpd ppt sem 2
Motivational hindi cpd ppt sem 2
Jay Patel
 
Cpd- Contributor and Personality Development
Cpd- Contributor and Personality DevelopmentCpd- Contributor and Personality Development
Cpd- Contributor and Personality Development
Jay Patel
 
Cpd- Contributor and Personality Development
Cpd- Contributor and Personality DevelopmentCpd- Contributor and Personality Development
Cpd- Contributor and Personality Development
Jay Patel
 
Cpd- Contribution and Personality Development
Cpd- Contribution and Personality DevelopmentCpd- Contribution and Personality Development
Cpd- Contribution and Personality Development
Jay Patel
 
Coa 09-36-computer organization and archietecture-CO-COA
Coa 09-36-computer organization and archietecture-CO-COACoa 09-36-computer organization and archietecture-CO-COA
Coa 09-36-computer organization and archietecture-CO-COA
Jay Patel
 
Ch7 official=computer organization and archietectur- CO-COA
Ch7 official=computer organization and archietectur- CO-COACh7 official=computer organization and archietectur- CO-COA
Ch7 official=computer organization and archietectur- CO-COA
Jay Patel
 
15 control-computer organization and archietecture-CO-COA
15 control-computer organization and archietecture-CO-COA15 control-computer organization and archietecture-CO-COA
15 control-computer organization and archietecture-CO-COA
Jay Patel
 
9 36-computer organization and archietecture- CO- COA
9 36-computer organization and archietecture- CO- COA9 36-computer organization and archietecture- CO- COA
9 36-computer organization and archietecture- CO- COA
Jay Patel
 
3 4- computer organization and archietecture- COA- CO- Computer organization
3 4- computer organization and archietecture- COA- CO- Computer organization3 4- computer organization and archietecture- COA- CO- Computer organization
3 4- computer organization and archietecture- COA- CO- Computer organization
Jay Patel
 
Cn 04,32,36-Cn all chapters1- computer networks- gtu
Cn 04,32,36-Cn all chapters1- computer networks- gtuCn 04,32,36-Cn all chapters1- computer networks- gtu
Cn 04,32,36-Cn all chapters1- computer networks- gtu
Jay Patel
 
Greedy Algorithm-Dijkstra's algo
Greedy Algorithm-Dijkstra's algoGreedy Algorithm-Dijkstra's algo
Greedy Algorithm-Dijkstra's algo
Jay Patel
 
Ad

Recently uploaded (20)

Structural Response of Reinforced Self-Compacting Concrete Deep Beam Using Fi...
Structural Response of Reinforced Self-Compacting Concrete Deep Beam Using Fi...Structural Response of Reinforced Self-Compacting Concrete Deep Beam Using Fi...
Structural Response of Reinforced Self-Compacting Concrete Deep Beam Using Fi...
Journal of Soft Computing in Civil Engineering
 
Oil-gas_Unconventional oil and gass_reseviours.pdf
Oil-gas_Unconventional oil and gass_reseviours.pdfOil-gas_Unconventional oil and gass_reseviours.pdf
Oil-gas_Unconventional oil and gass_reseviours.pdf
M7md3li2
 
five-year-soluhhhhhhhhhhhhhhhhhtions.pdf
five-year-soluhhhhhhhhhhhhhhhhhtions.pdffive-year-soluhhhhhhhhhhhhhhhhhtions.pdf
five-year-soluhhhhhhhhhhhhhhhhhtions.pdf
AdityaSharma944496
 
Fort night presentation new0903 pdf.pdf.
Fort night presentation new0903 pdf.pdf.Fort night presentation new0903 pdf.pdf.
Fort night presentation new0903 pdf.pdf.
anuragmk56
 
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
inmishra17121973
 
fluke dealers in bangalore..............
fluke dealers in bangalore..............fluke dealers in bangalore..............
fluke dealers in bangalore..............
Haresh Vaswani
 
Raish Khanji GTU 8th sem Internship Report.pdf
Raish Khanji GTU 8th sem Internship Report.pdfRaish Khanji GTU 8th sem Internship Report.pdf
Raish Khanji GTU 8th sem Internship Report.pdf
RaishKhanji
 
IntroSlides-April-BuildWithAI-VertexAI.pdf
IntroSlides-April-BuildWithAI-VertexAI.pdfIntroSlides-April-BuildWithAI-VertexAI.pdf
IntroSlides-April-BuildWithAI-VertexAI.pdf
Luiz Carneiro
 
Artificial Intelligence (AI) basics.pptx
Artificial Intelligence (AI) basics.pptxArtificial Intelligence (AI) basics.pptx
Artificial Intelligence (AI) basics.pptx
aditichinar
 
Compiler Design Unit1 PPT Phases of Compiler.pptx
Compiler Design Unit1 PPT Phases of Compiler.pptxCompiler Design Unit1 PPT Phases of Compiler.pptx
Compiler Design Unit1 PPT Phases of Compiler.pptx
RushaliDeshmukh2
 
Metal alkyne complexes.pptx in chemistry
Metal alkyne complexes.pptx in chemistryMetal alkyne complexes.pptx in chemistry
Metal alkyne complexes.pptx in chemistry
mee23nu
 
DSP and MV the Color image processing.ppt
DSP and MV the  Color image processing.pptDSP and MV the  Color image processing.ppt
DSP and MV the Color image processing.ppt
HafizAhamed8
 
Lidar for Autonomous Driving, LiDAR Mapping for Driverless Cars.pptx
Lidar for Autonomous Driving, LiDAR Mapping for Driverless Cars.pptxLidar for Autonomous Driving, LiDAR Mapping for Driverless Cars.pptx
Lidar for Autonomous Driving, LiDAR Mapping for Driverless Cars.pptx
RishavKumar530754
 
International Journal of Distributed and Parallel systems (IJDPS)
International Journal of Distributed and Parallel systems (IJDPS)International Journal of Distributed and Parallel systems (IJDPS)
International Journal of Distributed and Parallel systems (IJDPS)
samueljackson3773
 
theory-slides-for react for beginners.pptx
theory-slides-for react for beginners.pptxtheory-slides-for react for beginners.pptx
theory-slides-for react for beginners.pptx
sanchezvanessa7896
 
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E..."Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
Infopitaara
 
introduction to machine learining for beginers
introduction to machine learining for beginersintroduction to machine learining for beginers
introduction to machine learining for beginers
JoydebSheet
 
AI-assisted Software Testing (3-hours tutorial)
AI-assisted Software Testing (3-hours tutorial)AI-assisted Software Testing (3-hours tutorial)
AI-assisted Software Testing (3-hours tutorial)
Vəhid Gəruslu
 
The Gaussian Process Modeling Module in UQLab
The Gaussian Process Modeling Module in UQLabThe Gaussian Process Modeling Module in UQLab
The Gaussian Process Modeling Module in UQLab
Journal of Soft Computing in Civil Engineering
 
Machine learning project on employee attrition detection using (2).pptx
Machine learning project on employee attrition detection using (2).pptxMachine learning project on employee attrition detection using (2).pptx
Machine learning project on employee attrition detection using (2).pptx
rajeswari89780
 
Oil-gas_Unconventional oil and gass_reseviours.pdf
Oil-gas_Unconventional oil and gass_reseviours.pdfOil-gas_Unconventional oil and gass_reseviours.pdf
Oil-gas_Unconventional oil and gass_reseviours.pdf
M7md3li2
 
five-year-soluhhhhhhhhhhhhhhhhhtions.pdf
five-year-soluhhhhhhhhhhhhhhhhhtions.pdffive-year-soluhhhhhhhhhhhhhhhhhtions.pdf
five-year-soluhhhhhhhhhhhhhhhhhtions.pdf
AdityaSharma944496
 
Fort night presentation new0903 pdf.pdf.
Fort night presentation new0903 pdf.pdf.Fort night presentation new0903 pdf.pdf.
Fort night presentation new0903 pdf.pdf.
anuragmk56
 
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
inmishra17121973
 
fluke dealers in bangalore..............
fluke dealers in bangalore..............fluke dealers in bangalore..............
fluke dealers in bangalore..............
Haresh Vaswani
 
Raish Khanji GTU 8th sem Internship Report.pdf
Raish Khanji GTU 8th sem Internship Report.pdfRaish Khanji GTU 8th sem Internship Report.pdf
Raish Khanji GTU 8th sem Internship Report.pdf
RaishKhanji
 
IntroSlides-April-BuildWithAI-VertexAI.pdf
IntroSlides-April-BuildWithAI-VertexAI.pdfIntroSlides-April-BuildWithAI-VertexAI.pdf
IntroSlides-April-BuildWithAI-VertexAI.pdf
Luiz Carneiro
 
Artificial Intelligence (AI) basics.pptx
Artificial Intelligence (AI) basics.pptxArtificial Intelligence (AI) basics.pptx
Artificial Intelligence (AI) basics.pptx
aditichinar
 
Compiler Design Unit1 PPT Phases of Compiler.pptx
Compiler Design Unit1 PPT Phases of Compiler.pptxCompiler Design Unit1 PPT Phases of Compiler.pptx
Compiler Design Unit1 PPT Phases of Compiler.pptx
RushaliDeshmukh2
 
Metal alkyne complexes.pptx in chemistry
Metal alkyne complexes.pptx in chemistryMetal alkyne complexes.pptx in chemistry
Metal alkyne complexes.pptx in chemistry
mee23nu
 
DSP and MV the Color image processing.ppt
DSP and MV the  Color image processing.pptDSP and MV the  Color image processing.ppt
DSP and MV the Color image processing.ppt
HafizAhamed8
 
Lidar for Autonomous Driving, LiDAR Mapping for Driverless Cars.pptx
Lidar for Autonomous Driving, LiDAR Mapping for Driverless Cars.pptxLidar for Autonomous Driving, LiDAR Mapping for Driverless Cars.pptx
Lidar for Autonomous Driving, LiDAR Mapping for Driverless Cars.pptx
RishavKumar530754
 
International Journal of Distributed and Parallel systems (IJDPS)
International Journal of Distributed and Parallel systems (IJDPS)International Journal of Distributed and Parallel systems (IJDPS)
International Journal of Distributed and Parallel systems (IJDPS)
samueljackson3773
 
theory-slides-for react for beginners.pptx
theory-slides-for react for beginners.pptxtheory-slides-for react for beginners.pptx
theory-slides-for react for beginners.pptx
sanchezvanessa7896
 
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E..."Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
Infopitaara
 
introduction to machine learining for beginers
introduction to machine learining for beginersintroduction to machine learining for beginers
introduction to machine learining for beginers
JoydebSheet
 
AI-assisted Software Testing (3-hours tutorial)
AI-assisted Software Testing (3-hours tutorial)AI-assisted Software Testing (3-hours tutorial)
AI-assisted Software Testing (3-hours tutorial)
Vəhid Gəruslu
 
Machine learning project on employee attrition detection using (2).pptx
Machine learning project on employee attrition detection using (2).pptxMachine learning project on employee attrition detection using (2).pptx
Machine learning project on employee attrition detection using (2).pptx
rajeswari89780
 

Greedy algorithms -Making change-Knapsack-Prim's-Kruskal's

  • 1. Analysis and Design of Algorithms (2150703) Presented by : Jay Patel (130110107036) Gujarat Technological University G.H Patel College of Engineering and Technology Department of Computer Engineering Greedy Algorithms Guided by: Namrta Dave
  • 2. Greedy Algorithms: • Many real-world problems are optimization problems in that they attempt to find an optimal solution among many possible candidate solutions. • An optimization problem is one in which you want to find, not just a solution, but the best solution • A “greedy algorithm” sometimes works well for optimization problems • A greedy algorithm works in phases. At each phase: You take the best you can get right now, without regard for future consequences.You hope that by choosing a local optimum at each step, you will end up at a global optimum • A familiar scenario is the change-making problem that we often encounter at a cash register: receiving the fewest numbers of coins to make change after paying the bill for a purchase.
  • 3. • Constructs a solution to an optimization problem piece by • piece through a sequence of choices that are: 1.feasible, i.e. satisfying the constraints 2.locally optimal (with respect to some neighborhood definition) 3.greedy (in terms of some measure), and irrevocable • For some problems, it yields a globally optimal solution for every instance. For most, does not but can be useful for fast approximations. We are mostly interested in the former case in this class. Greedy Technique:
  • 4. Greedy Techniques: • Optimal solutions: • change making for “normal” coin denominations • minimum spanning tree (MST) • Prim’s MST • Kruskal’s MST • simple scheduling problems • Dijkstra’s algo • Huffman codes • Approximations/heuristics: • traveling salesman problem (TSP) • knapsack problem • other combinatorial optimization problems
  • 5. Greedy Scenario: • Feasible • Has to satisfy the problem’s constraints • Locally Optimal • Has to make the best local choice among all feasible choices available on that step • If this local choice results in a global optimum then the problem has optimal substructure • Irrevocable • Once a choice is made it can’t be un-done on subsequent steps of the algorithm • Simple examples: • Playing chess by making best move without look-ahead • Giving fewest number of coins as change • Simple and appealing, but don’t always give the best solution
  • 6. Change-Making Problem: Given unlimited amounts of coins of denominations , give change for amount n with the least number of coins Example: d1 = 25 INR, d2 =10 INR, d3 = 5 INR, d4 = 1 INR and n = 48 INR Greedy solution: <1, 2, 0, 3> So one 25 INR coin Two 10 INR coin Zero 5 INR coin Three 1 INR coin But it doesn’t give optimal solution everytime.
  • 7. Failure of Greedy algorithm Example: • In some (fictional) monetary system, “Coin” come in 1 INR, 7 INR, and 10 INR coins Using a greedy algorithm to count out 15 INR, you would get A 10 INR coin Five 1 INR coin, for a total of 15 INR This requires six coins A better solution would be to use two 7 INR coin and one 1 INR coin This only requires three coins The greedy algorithm results in a solution, but not in an optimal solution
  • 8. Knapsack Problem: • Given n objects each have a weight wi and a value vi , and given a knapsack of total capacity W. The problem is to pack the knapsack with these objects in order to maximize the total value of those objects packed without exceeding the knapsack’s capacity. • More formally, let xi denote the fraction of the object i to be included in the knapsack, 0  xi  1, for 1  i  n. The problem is to find values for the xi such that • Note that we may assume because otherwise, we would choose xi = 1 for each i which would be an obvious optimal solution.    n i ii n i ii vxWwx 11 maximized.isand    n i i Ww 1
  • 9. The optimal Knapsack Algorithm: This algorithm is for time complexity O(n lgn)) (1) Sort the n objects from large to small based on the ratios vi/wi . We assume the arrays w[1..n] and v[1..n] store the respective weights and values after sorting. (2) initialize array x[1..n] to zeros. (3) weight = 0; i = 1 (4) while (i  n and weight < W) do (I) if weight + w[i]  W then x[i] = 1 (II) else x[i] = (W – weight) / w[i] (III) weight = weight + x[i] * w[i] (IV) i++
  • 10. There seem to be 3 obvious greedy strategies: (Max value) Sort the objects from the highest value to the lowest, then pick them in that order. (Min weight) Sort the objects from the lowest weight to the highest, then pick them in that order. (Max value/weight ratio) Sort the objects based on the value to weight ratios, from the highest to the lowest, then select. Example: Given n = 5 objects and a knapsack capacity W = 100 as in Table I. The three solutions are given in Table II. Knapsack Problem: W V V/W 10 20 30 40 50 20 30 66 40 60 2.0 1.5 2.2 1.0 1.2 Max Vi Min Wi Max Vi/Wi SELECT Xi 0 0 1 0.5 1 1 1 1 1 0 1 1 1 0 0.8 Value 146 156 164
  • 11. Minimum Spanning Tree (MST): 16 states of Spanning tree can happened
  • 12. A cable company want to connect five villages to their network which currently extends to the market town of Avonford. What is the minimum length of cable needed? A F B C D E 2 7 4 5 8 6 4 5 3 8 Example Solution for MST:
  • 13. Kruskal’s Algorithm: A F B C D E 2 7 4 5 8 6 4 5 3 8 List the edges in order of size: ED 2 AB 3 AE 4 CD 4 BC 5 EF 5 CF 6 AF 7 BF 8 CF 8 MST-KRUSKAL(G, w) 1. A ← Ø 2. for each vertex v V[G] 3. do MAKE-SET(v) 4. sort the edges of E into nondecreasing order by weight w 5. for each edge (u, v) E, taken in nondecreasing order by weight 6. do if FIND-SET(u) ≠ FIND-SET(v) 7. then A ← A {(u, v)} 8. UNION(u, v) 9. return A
  • 14. Select the shortest edge in the network ED 2 A F B C D E 2 7 4 5 8 6 4 5 3 8 Select the next shortest edge which does not create a cycle ED 2 AB 3 A F B C D E 2 7 4 5 8 6 4 5 3 8 1 43 2 Select the next shortest edge which does not create a cycle ED 2 AB 3 CD 4 (or AE 4) A F B C D E 2 7 4 5 8 6 4 5 3 8 Select the next shortest edge which does not create a cycle ED 2 AB 3 CD 4 AE 4 A F B C D E 2 7 4 5 8 6 4 5 3 8
  • 15. Select the next shortest edge which does not create a cycle ED 2 AB 3 CD 4 AE 4 BC 5 – forms a cycle EF 5 A F B C D E 2 7 4 5 8 6 4 5 3 8 All vertices have been conn The solution is ED 2 AB 3 CD 4 AE 4 EF 5 A F B C D E 2 7 4 5 8 6 4 5 3 8 5 6 Total weight of tree: 18 Kruskal’s Algorithm:
  • 16. Prim’s Algorithm: MST-PRIM(G, w, r) 1. for each u V [G] 2. do key[u] ← ∞ 3. π[u] ← NIL 4. key[r] ← 0 5. Q ← V [G] 6. while Q ≠ Ø 7. do u ← EXTRACT-MIN(Q) 8. for each v Adj[u] 9. do if v Q and w(u, v) < key[v] 10. then π[v] ← u 11. key[v] ← w(u, v)
  • 17. A F B C D E 2 7 4 5 8 6 4 5 3 8 Select any vertex A Select the shortest edge connected to that vertex AB 3 Prim’s Algorithm:
  • 18. A F B C D E 2 7 4 5 8 6 4 5 3 8 Select the shortest edge connected to any vertex already connected. AE 4 1 43 2 Select the shortest edge connected to any vertex already connected. ED 2 A F B C D E 2 7 4 5 8 6 4 5 3 8 Select the shortest edge connected to any vertex already connected. DC 4 A F B C D E 2 7 4 5 8 6 4 5 3 8 Select the shortest edge connected to any vertex already connected. EF 5 A F B C D E 2 7 4 5 8 6 4 5 3 8
  • 19. Prim’s Algorithm: A F B C D E 2 7 4 5 8 6 4 5 3 8 All vertices have been connected. The solution is AB 3 AE 4 ED 2 DC 4 EF 5 Total weight of tree: 18
  • 20. There are some methods left: • Dijkstra’s algorithm • Huffman’s Algorithm • Task scheduling • Travelling salesman Problem etc. • Dynamic Greedy Problems Greedy Algorithms: We can find the optimized solution with Greedy method which may be optimal sometime.