SlideShare a Scribd company logo
Implement Real-time Centralized logging System
by Elastic Stack
Len Chang, WeMo Scooter
1
Who am I
● 軟體工程師, 資料庫架構師, 資料科學家, HadoopCon 2015 Speaker
● 喜歡發呆, 做瑜珈, 跳舞, 和各種球類運動。當然,寫程式已經是生活的一部分
● 目前較關注和熟悉的技術為: C#, Python, Elastic Stack, PostgreSQL, Spark
● 目前任職於 WeMo Scooter, 我們是一間很有趣的小新創公司, 目標是希望推廣城市內的電動機車租貸服務,進而
減少廢氣排放與機車數量。
● Linkedin: https://tw.linkedin.com/in/huailunchang 2
Agenda
● Elastic stack
○ Arch.
■ Open Source
■ License
● How to establish a simple Elastic Stack ?
○ filebeat
○ elasticsearch
○ kibana
● Use Case: How to convert “log timestamp” to be “sort standard”
○ logstash
● Q & A
● WeMo Scooter
3
Elastic stack
4
Overview
● Elastic's open source solutions solve a growing list of search and log analysis.
● Helps you take data from any source, any format and search, analyze, and
visualize it in real time.
5
Architecture
DB
Application
sys log
sys log
Web Console
Restful API
6
Open Source Hadoop Ecosystem
7
License
8
How to establish a simple Elastic Stack ?
9
Beats
DB
Application
sys log
sys log
10
https://www.elastic.co/downloads/beats
Beats - filebeat
11
filebeat - core
12
filebeat - Index Template Setting
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-template.html
13
Logs
filebeat - Index Template Description
hostname: string (No Analyze)
msg: string (Analyze)
msg_count: number
...
template.json
14
filebeat - Index Template Content
15
filebeat - Index Template Demo
16
filebeat - tab && space
17
Remember to use
“space”
Elasticsearch
DB
Application
sys log
sys log
18
Elasticsearch - Deploy by RPM
Category Explanation Destination
conf Configuration files elasticsearch.yml and logging.yml. /etc/elasticsearch
conf Environment variables including heap size, file descriptors. /etc/sysconfig/elasticsearch
19
Elasticsearch - Heap Tuning
https://www.elastic.co/guide/en/elasticsearch/guide/current/heap-sizing.html
● Give (less than) Half Your Memory to Lucene
○ Lucene need memory to interact with the OS.
● Don’t Cross 32 GB!
○ Compressed oops(Ordinary object pointers) have a upper boundary (~ 32 GB)
■ 32-bit pointer can reference four billion objects, rather than four billion bytes
20
Kibana
DB
Application
sys log
sys log
21
<Use Case>
How to convert “log timestamp” to be
“sort standard”
22
Kibana - Search
23
Kibana - log sample
24
Why we can’t use Beats to do it ?
DB
Application
sys log
sys log
25
Filebeat config
26
Logstash
DB
Application
sys log
sys log
27
Logstash - Filter plugins
28
grok
● https://www.elastic.co/guide/en/logstash/current/p
lugins-filters-grok.html
● Parse arbitrary text and structure it.
● Grok is currently the best way in logstash to
parse crappy unstructured log data into
something structured and queryable.
date
● https://www.elastic.co/guide/en/logstash/current/p
lugins-filters-date.html
● The date filter is used for parsing dates from
fields, and then using that date or timestamp as
the logstash timestamp for the event.
Logstash - Filter of Config
29
PREFIX_TIMESTAMP ^[0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}:[0-9]{2}:[0-9]{2},[0-9]{3}
Logstash - Result
30
Q & A
31
WeMo Scooter
32
Official Website
● http://www.wemoscooter.com/
Video Introduction
● https://www.youtube.com/watch?v=Ne1kg3KeoRs
If you want to be a software engineer with us….
● len.chang@wemoscooter.com
○ Assistant software engineer / software engineer
■ Django / Python
■ ASP.NET MVC 5 / C#
■ Others...
Thanks
33
Ad

More Related Content

What's hot (20)

Lessons Learned Migrating 2+ Billion Documents at Craigslist
Lessons Learned Migrating 2+ Billion Documents at CraigslistLessons Learned Migrating 2+ Billion Documents at Craigslist
Lessons Learned Migrating 2+ Billion Documents at Craigslist
Jeremy Zawodny
 
Small intro to Big Data - Old version
Small intro to Big Data - Old versionSmall intro to Big Data - Old version
Small intro to Big Data - Old version
SoftwareMill
 
MongoDB SF Ruby
MongoDB SF RubyMongoDB SF Ruby
MongoDB SF Ruby
Mike Dirolf
 
Behind the Scenes at Coolblue - Feb 2017
Behind the Scenes at Coolblue - Feb 2017Behind the Scenes at Coolblue - Feb 2017
Behind the Scenes at Coolblue - Feb 2017
Pat Hermens
 
The Next Generation Software Stack: Meteor
The Next Generation Software Stack: MeteorThe Next Generation Software Stack: Meteor
The Next Generation Software Stack: Meteor
MongoDB
 
Mongo db intro new
Mongo db intro newMongo db intro new
Mongo db intro new
Abhinav Dhasmana
 
MongoDB for Oracle Experts - OUGF Harmony 2014
MongoDB for Oracle Experts - OUGF Harmony 2014 MongoDB for Oracle Experts - OUGF Harmony 2014
MongoDB for Oracle Experts - OUGF Harmony 2014
Henrik Ingo
 
KDB+ Lite
KDB+ LiteKDB+ Lite
KDB+ Lite
Sayanosauras
 
Using MongoDB For BigData in 20 Minutes
Using MongoDB For BigData in 20 MinutesUsing MongoDB For BigData in 20 Minutes
Using MongoDB For BigData in 20 Minutes
András Fehér
 
Realtime Search Infrastructure at Craigslist (OpenWest 2014)
Realtime Search Infrastructure at Craigslist (OpenWest 2014)Realtime Search Infrastructure at Craigslist (OpenWest 2014)
Realtime Search Infrastructure at Craigslist (OpenWest 2014)
Jeremy Zawodny
 
Bringing spatial love to your python application
Bringing spatial love to your python applicationBringing spatial love to your python application
Bringing spatial love to your python application
Shekhar Gulati
 
KDB database (EPAM tech talks, Sofia, April, 2015)
KDB database (EPAM tech talks, Sofia, April, 2015)KDB database (EPAM tech talks, Sofia, April, 2015)
KDB database (EPAM tech talks, Sofia, April, 2015)
Martin Toshev
 
Spry 2017
Spry 2017Spry 2017
Spry 2017
Göran Krampe
 
Logging for Containers
Logging for ContainersLogging for Containers
Logging for Containers
Eduardo Silva Pereira
 
Monogo db in-action
Monogo db in-actionMonogo db in-action
Monogo db in-action
Chi Lee
 
«Scrapy internals» Александр Сибиряков, Scrapinghub
«Scrapy internals» Александр Сибиряков, Scrapinghub«Scrapy internals» Александр Сибиряков, Scrapinghub
«Scrapy internals» Александр Сибиряков, Scrapinghub
it-people
 
Introduction of search engine
Introduction of search engineIntroduction of search engine
Introduction of search engine
Jinglun Li
 
MongoDB - Warehouse and Aggregator of Events
MongoDB - Warehouse and Aggregator of EventsMongoDB - Warehouse and Aggregator of Events
MongoDB - Warehouse and Aggregator of Events
Maxim Ligus
 
MongoSF - Spatial MongoDB in OpenShift - script file
MongoSF - Spatial MongoDB in OpenShift - script fileMongoSF - Spatial MongoDB in OpenShift - script file
MongoSF - Spatial MongoDB in OpenShift - script file
Steven Pousty
 
Fluentd Intro for OpenShift Commons Briefing
Fluentd Intro for OpenShift Commons BriefingFluentd Intro for OpenShift Commons Briefing
Fluentd Intro for OpenShift Commons Briefing
Eduardo Silva Pereira
 
Lessons Learned Migrating 2+ Billion Documents at Craigslist
Lessons Learned Migrating 2+ Billion Documents at CraigslistLessons Learned Migrating 2+ Billion Documents at Craigslist
Lessons Learned Migrating 2+ Billion Documents at Craigslist
Jeremy Zawodny
 
Small intro to Big Data - Old version
Small intro to Big Data - Old versionSmall intro to Big Data - Old version
Small intro to Big Data - Old version
SoftwareMill
 
Behind the Scenes at Coolblue - Feb 2017
Behind the Scenes at Coolblue - Feb 2017Behind the Scenes at Coolblue - Feb 2017
Behind the Scenes at Coolblue - Feb 2017
Pat Hermens
 
The Next Generation Software Stack: Meteor
The Next Generation Software Stack: MeteorThe Next Generation Software Stack: Meteor
The Next Generation Software Stack: Meteor
MongoDB
 
MongoDB for Oracle Experts - OUGF Harmony 2014
MongoDB for Oracle Experts - OUGF Harmony 2014 MongoDB for Oracle Experts - OUGF Harmony 2014
MongoDB for Oracle Experts - OUGF Harmony 2014
Henrik Ingo
 
Using MongoDB For BigData in 20 Minutes
Using MongoDB For BigData in 20 MinutesUsing MongoDB For BigData in 20 Minutes
Using MongoDB For BigData in 20 Minutes
András Fehér
 
Realtime Search Infrastructure at Craigslist (OpenWest 2014)
Realtime Search Infrastructure at Craigslist (OpenWest 2014)Realtime Search Infrastructure at Craigslist (OpenWest 2014)
Realtime Search Infrastructure at Craigslist (OpenWest 2014)
Jeremy Zawodny
 
Bringing spatial love to your python application
Bringing spatial love to your python applicationBringing spatial love to your python application
Bringing spatial love to your python application
Shekhar Gulati
 
KDB database (EPAM tech talks, Sofia, April, 2015)
KDB database (EPAM tech talks, Sofia, April, 2015)KDB database (EPAM tech talks, Sofia, April, 2015)
KDB database (EPAM tech talks, Sofia, April, 2015)
Martin Toshev
 
Monogo db in-action
Monogo db in-actionMonogo db in-action
Monogo db in-action
Chi Lee
 
«Scrapy internals» Александр Сибиряков, Scrapinghub
«Scrapy internals» Александр Сибиряков, Scrapinghub«Scrapy internals» Александр Сибиряков, Scrapinghub
«Scrapy internals» Александр Сибиряков, Scrapinghub
it-people
 
Introduction of search engine
Introduction of search engineIntroduction of search engine
Introduction of search engine
Jinglun Li
 
MongoDB - Warehouse and Aggregator of Events
MongoDB - Warehouse and Aggregator of EventsMongoDB - Warehouse and Aggregator of Events
MongoDB - Warehouse and Aggregator of Events
Maxim Ligus
 
MongoSF - Spatial MongoDB in OpenShift - script file
MongoSF - Spatial MongoDB in OpenShift - script fileMongoSF - Spatial MongoDB in OpenShift - script file
MongoSF - Spatial MongoDB in OpenShift - script file
Steven Pousty
 
Fluentd Intro for OpenShift Commons Briefing
Fluentd Intro for OpenShift Commons BriefingFluentd Intro for OpenShift Commons Briefing
Fluentd Intro for OpenShift Commons Briefing
Eduardo Silva Pereira
 

Viewers also liked (20)

Tugas 4 0317-imelda felicia-1412510545
Tugas 4 0317-imelda felicia-1412510545Tugas 4 0317-imelda felicia-1412510545
Tugas 4 0317-imelda felicia-1412510545
imeldafelicia
 
Serverless
ServerlessServerless
Serverless
Young Yang
 
2015 Internet Trends Report
2015 Internet Trends Report2015 Internet Trends Report
2015 Internet Trends Report
IQbal KHan
 
Comparing 30 MongoDB operations with Oracle SQL statements
Comparing 30 MongoDB operations with Oracle SQL statementsComparing 30 MongoDB operations with Oracle SQL statements
Comparing 30 MongoDB operations with Oracle SQL statements
Lucas Jellema
 
Tracxn Research - Chatbots Landscape, February 2017
Tracxn Research - Chatbots Landscape, February 2017Tracxn Research - Chatbots Landscape, February 2017
Tracxn Research - Chatbots Landscape, February 2017
Tracxn
 
Startup & VC Tech Trends
Startup & VC Tech Trends Startup & VC Tech Trends
Startup & VC Tech Trends
Dave McClure
 
Tracxn Research - Mobile Advertising Landscape, February 2017
Tracxn Research - Mobile Advertising Landscape, February 2017Tracxn Research - Mobile Advertising Landscape, February 2017
Tracxn Research - Mobile Advertising Landscape, February 2017
Tracxn
 
Tracxn Research - Construction Tech Landscape, February 2017
Tracxn Research - Construction Tech Landscape, February 2017Tracxn Research - Construction Tech Landscape, February 2017
Tracxn Research - Construction Tech Landscape, February 2017
Tracxn
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
ANOOP V S
 
#askSAP: Journey to the Cloud: SAP Strategy and Roadmap for Cloud and Hybrid ...
#askSAP: Journey to the Cloud: SAP Strategy and Roadmap for Cloud and Hybrid ...#askSAP: Journey to the Cloud: SAP Strategy and Roadmap for Cloud and Hybrid ...
#askSAP: Journey to the Cloud: SAP Strategy and Roadmap for Cloud and Hybrid ...
SAP Analytics
 
Introducing NoSQL and MongoDB to complement Relational Databases (AMIS SIG 14...
Introducing NoSQL and MongoDB to complement Relational Databases (AMIS SIG 14...Introducing NoSQL and MongoDB to complement Relational Databases (AMIS SIG 14...
Introducing NoSQL and MongoDB to complement Relational Databases (AMIS SIG 14...
Lucas Jellema
 
Tracxn Research - Insurance Tech Landscape, February 2017
Tracxn Research - Insurance Tech Landscape, February 2017Tracxn Research - Insurance Tech Landscape, February 2017
Tracxn Research - Insurance Tech Landscape, February 2017
Tracxn
 
Enabling the Real Time Analytical Enterprise
Enabling the Real Time Analytical EnterpriseEnabling the Real Time Analytical Enterprise
Enabling the Real Time Analytical Enterprise
Hortonworks
 
AWSでアプリ開発するなら 知っておくべこと
AWSでアプリ開発するなら 知っておくべことAWSでアプリ開発するなら 知っておくべこと
AWSでアプリ開発するなら 知っておくべこと
Keisuke Nishitani
 
Slides for RFID-MIMO Prototype based on GnuRadio
Slides for RFID-MIMO Prototype based on GnuRadioSlides for RFID-MIMO Prototype based on GnuRadio
Slides for RFID-MIMO Prototype based on GnuRadio
Amelia Jiménez Sánchez
 
Elasticsearch 5.0 les nouveautés
Elasticsearch 5.0 les nouveautésElasticsearch 5.0 les nouveautés
Elasticsearch 5.0 les nouveautés
Mathieu Elie
 
Hadoop con 2016_9_10_王經篤(Jing-Doo Wang)
Hadoop con 2016_9_10_王經篤(Jing-Doo Wang)Hadoop con 2016_9_10_王經篤(Jing-Doo Wang)
Hadoop con 2016_9_10_王經篤(Jing-Doo Wang)
Jing-Doo Wang
 
Yarn Resource Management Using Machine Learning
Yarn Resource Management Using Machine LearningYarn Resource Management Using Machine Learning
Yarn Resource Management Using Machine Learning
ojavajava
 
How to plan a hadoop cluster for testing and production environment
How to plan a hadoop cluster for testing and production environmentHow to plan a hadoop cluster for testing and production environment
How to plan a hadoop cluster for testing and production environment
Anna Yen
 
Introduction au langage Go
Introduction au langage GoIntroduction au langage Go
Introduction au langage Go
Sylvain Wallez
 
Tugas 4 0317-imelda felicia-1412510545
Tugas 4 0317-imelda felicia-1412510545Tugas 4 0317-imelda felicia-1412510545
Tugas 4 0317-imelda felicia-1412510545
imeldafelicia
 
2015 Internet Trends Report
2015 Internet Trends Report2015 Internet Trends Report
2015 Internet Trends Report
IQbal KHan
 
Comparing 30 MongoDB operations with Oracle SQL statements
Comparing 30 MongoDB operations with Oracle SQL statementsComparing 30 MongoDB operations with Oracle SQL statements
Comparing 30 MongoDB operations with Oracle SQL statements
Lucas Jellema
 
Tracxn Research - Chatbots Landscape, February 2017
Tracxn Research - Chatbots Landscape, February 2017Tracxn Research - Chatbots Landscape, February 2017
Tracxn Research - Chatbots Landscape, February 2017
Tracxn
 
Startup & VC Tech Trends
Startup & VC Tech Trends Startup & VC Tech Trends
Startup & VC Tech Trends
Dave McClure
 
Tracxn Research - Mobile Advertising Landscape, February 2017
Tracxn Research - Mobile Advertising Landscape, February 2017Tracxn Research - Mobile Advertising Landscape, February 2017
Tracxn Research - Mobile Advertising Landscape, February 2017
Tracxn
 
Tracxn Research - Construction Tech Landscape, February 2017
Tracxn Research - Construction Tech Landscape, February 2017Tracxn Research - Construction Tech Landscape, February 2017
Tracxn Research - Construction Tech Landscape, February 2017
Tracxn
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
ANOOP V S
 
#askSAP: Journey to the Cloud: SAP Strategy and Roadmap for Cloud and Hybrid ...
#askSAP: Journey to the Cloud: SAP Strategy and Roadmap for Cloud and Hybrid ...#askSAP: Journey to the Cloud: SAP Strategy and Roadmap for Cloud and Hybrid ...
#askSAP: Journey to the Cloud: SAP Strategy and Roadmap for Cloud and Hybrid ...
SAP Analytics
 
Introducing NoSQL and MongoDB to complement Relational Databases (AMIS SIG 14...
Introducing NoSQL and MongoDB to complement Relational Databases (AMIS SIG 14...Introducing NoSQL and MongoDB to complement Relational Databases (AMIS SIG 14...
Introducing NoSQL and MongoDB to complement Relational Databases (AMIS SIG 14...
Lucas Jellema
 
Tracxn Research - Insurance Tech Landscape, February 2017
Tracxn Research - Insurance Tech Landscape, February 2017Tracxn Research - Insurance Tech Landscape, February 2017
Tracxn Research - Insurance Tech Landscape, February 2017
Tracxn
 
Enabling the Real Time Analytical Enterprise
Enabling the Real Time Analytical EnterpriseEnabling the Real Time Analytical Enterprise
Enabling the Real Time Analytical Enterprise
Hortonworks
 
AWSでアプリ開発するなら 知っておくべこと
AWSでアプリ開発するなら 知っておくべことAWSでアプリ開発するなら 知っておくべこと
AWSでアプリ開発するなら 知っておくべこと
Keisuke Nishitani
 
Slides for RFID-MIMO Prototype based on GnuRadio
Slides for RFID-MIMO Prototype based on GnuRadioSlides for RFID-MIMO Prototype based on GnuRadio
Slides for RFID-MIMO Prototype based on GnuRadio
Amelia Jiménez Sánchez
 
Elasticsearch 5.0 les nouveautés
Elasticsearch 5.0 les nouveautésElasticsearch 5.0 les nouveautés
Elasticsearch 5.0 les nouveautés
Mathieu Elie
 
Hadoop con 2016_9_10_王經篤(Jing-Doo Wang)
Hadoop con 2016_9_10_王經篤(Jing-Doo Wang)Hadoop con 2016_9_10_王經篤(Jing-Doo Wang)
Hadoop con 2016_9_10_王經篤(Jing-Doo Wang)
Jing-Doo Wang
 
Yarn Resource Management Using Machine Learning
Yarn Resource Management Using Machine LearningYarn Resource Management Using Machine Learning
Yarn Resource Management Using Machine Learning
ojavajava
 
How to plan a hadoop cluster for testing and production environment
How to plan a hadoop cluster for testing and production environmentHow to plan a hadoop cluster for testing and production environment
How to plan a hadoop cluster for testing and production environment
Anna Yen
 
Introduction au langage Go
Introduction au langage GoIntroduction au langage Go
Introduction au langage Go
Sylvain Wallez
 
Ad

Similar to Hadoop con2016 - Implement Real-time Centralized logging System by Elastic Stack (20)

Kibana+ElasticSearch+LogStash to handle Log messages on Prod servers
Kibana+ElasticSearch+LogStash to handle Log messages on Prod serversKibana+ElasticSearch+LogStash to handle Log messages on Prod servers
Kibana+ElasticSearch+LogStash to handle Log messages on Prod servers
HYS Enterprise
 
Experiences sharing about Lambda, Kinesis, and Postgresql
Experiences sharing about Lambda, Kinesis, and PostgresqlExperiences sharing about Lambda, Kinesis, and Postgresql
Experiences sharing about Lambda, Kinesis, and Postgresql
Okis Chuang
 
Eko10 - Security Monitoring for Big Infrastructures without a Million Dollar ...
Eko10 - Security Monitoring for Big Infrastructures without a Million Dollar ...Eko10 - Security Monitoring for Big Infrastructures without a Million Dollar ...
Eko10 - Security Monitoring for Big Infrastructures without a Million Dollar ...
Hernan Costante
 
The Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization OpportunitiesThe Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization Opportunities
Databricks
 
Big Data in 200 km/h | AWS Big Data Demystified #1.3
Big Data in 200 km/h | AWS Big Data Demystified #1.3  Big Data in 200 km/h | AWS Big Data Demystified #1.3
Big Data in 200 km/h | AWS Big Data Demystified #1.3
Omid Vahdaty
 
Serverless for High Performance Computing
Serverless for High Performance ComputingServerless for High Performance Computing
Serverless for High Performance Computing
Luciano Mammino
 
High performance json- postgre sql vs. mongodb
High performance json- postgre sql vs. mongodbHigh performance json- postgre sql vs. mongodb
High performance json- postgre sql vs. mongodb
Wei Shan Ang
 
AWS Big Data Demystified #1: Big data architecture lessons learned
AWS Big Data Demystified #1: Big data architecture lessons learned AWS Big Data Demystified #1: Big data architecture lessons learned
AWS Big Data Demystified #1: Big data architecture lessons learned
Omid Vahdaty
 
Security Monitoring for big Infrastructures without a Million Dollar budget
Security Monitoring for big Infrastructures without a Million Dollar budgetSecurity Monitoring for big Infrastructures without a Million Dollar budget
Security Monitoring for big Infrastructures without a Million Dollar budget
Juan Berner
 
SOSCON 2016 JerryScript
SOSCON 2016 JerryScriptSOSCON 2016 JerryScript
SOSCON 2016 JerryScript
Samsung Open Source Group
 
Data Science in the Cloud @StitchFix
Data Science in the Cloud @StitchFixData Science in the Cloud @StitchFix
Data Science in the Cloud @StitchFix
C4Media
 
Cómo hemos implementado semántica de "Exactly Once" en nuestra base de datos ...
Cómo hemos implementado semántica de "Exactly Once" en nuestra base de datos ...Cómo hemos implementado semántica de "Exactly Once" en nuestra base de datos ...
Cómo hemos implementado semántica de "Exactly Once" en nuestra base de datos ...
javier ramirez
 
AWS big-data-demystified #1.1 | Big Data Architecture Lessons Learned | English
AWS big-data-demystified #1.1  | Big Data Architecture Lessons Learned | EnglishAWS big-data-demystified #1.1  | Big Data Architecture Lessons Learned | English
AWS big-data-demystified #1.1 | Big Data Architecture Lessons Learned | English
Omid Vahdaty
 
PL22 - Backup and Restore Performance.pptx
PL22 - Backup and Restore Performance.pptxPL22 - Backup and Restore Performance.pptx
PL22 - Backup and Restore Performance.pptx
Vinicius M Grippa
 
Benchmarking for postgresql workloads in kubernetes
Benchmarking for postgresql workloads in kubernetesBenchmarking for postgresql workloads in kubernetes
Benchmarking for postgresql workloads in kubernetes
DoKC
 
Dfrws eu 2014 rekall workshop
Dfrws eu 2014 rekall workshopDfrws eu 2014 rekall workshop
Dfrws eu 2014 rekall workshop
Tamas K Lengyel
 
Log forwarding at Scale
Log forwarding at ScaleLog forwarding at Scale
Log forwarding at Scale
Eduardo Silva Pereira
 
VictoriaLogs: Open Source Log Management System - Preview
VictoriaLogs: Open Source Log Management System - PreviewVictoriaLogs: Open Source Log Management System - Preview
VictoriaLogs: Open Source Log Management System - Preview
VictoriaMetrics
 
Fluent Bit: Log Forwarding at Scale
Fluent Bit: Log Forwarding at ScaleFluent Bit: Log Forwarding at Scale
Fluent Bit: Log Forwarding at Scale
Eduardo Silva Pereira
 
OSMC 2018 | Learnings, patterns and Uber’s metrics platform M3, open sourced ...
OSMC 2018 | Learnings, patterns and Uber’s metrics platform M3, open sourced ...OSMC 2018 | Learnings, patterns and Uber’s metrics platform M3, open sourced ...
OSMC 2018 | Learnings, patterns and Uber’s metrics platform M3, open sourced ...
NETWAYS
 
Kibana+ElasticSearch+LogStash to handle Log messages on Prod servers
Kibana+ElasticSearch+LogStash to handle Log messages on Prod serversKibana+ElasticSearch+LogStash to handle Log messages on Prod servers
Kibana+ElasticSearch+LogStash to handle Log messages on Prod servers
HYS Enterprise
 
Experiences sharing about Lambda, Kinesis, and Postgresql
Experiences sharing about Lambda, Kinesis, and PostgresqlExperiences sharing about Lambda, Kinesis, and Postgresql
Experiences sharing about Lambda, Kinesis, and Postgresql
Okis Chuang
 
Eko10 - Security Monitoring for Big Infrastructures without a Million Dollar ...
Eko10 - Security Monitoring for Big Infrastructures without a Million Dollar ...Eko10 - Security Monitoring for Big Infrastructures without a Million Dollar ...
Eko10 - Security Monitoring for Big Infrastructures without a Million Dollar ...
Hernan Costante
 
The Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization OpportunitiesThe Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization Opportunities
Databricks
 
Big Data in 200 km/h | AWS Big Data Demystified #1.3
Big Data in 200 km/h | AWS Big Data Demystified #1.3  Big Data in 200 km/h | AWS Big Data Demystified #1.3
Big Data in 200 km/h | AWS Big Data Demystified #1.3
Omid Vahdaty
 
Serverless for High Performance Computing
Serverless for High Performance ComputingServerless for High Performance Computing
Serverless for High Performance Computing
Luciano Mammino
 
High performance json- postgre sql vs. mongodb
High performance json- postgre sql vs. mongodbHigh performance json- postgre sql vs. mongodb
High performance json- postgre sql vs. mongodb
Wei Shan Ang
 
AWS Big Data Demystified #1: Big data architecture lessons learned
AWS Big Data Demystified #1: Big data architecture lessons learned AWS Big Data Demystified #1: Big data architecture lessons learned
AWS Big Data Demystified #1: Big data architecture lessons learned
Omid Vahdaty
 
Security Monitoring for big Infrastructures without a Million Dollar budget
Security Monitoring for big Infrastructures without a Million Dollar budgetSecurity Monitoring for big Infrastructures without a Million Dollar budget
Security Monitoring for big Infrastructures without a Million Dollar budget
Juan Berner
 
Data Science in the Cloud @StitchFix
Data Science in the Cloud @StitchFixData Science in the Cloud @StitchFix
Data Science in the Cloud @StitchFix
C4Media
 
Cómo hemos implementado semántica de "Exactly Once" en nuestra base de datos ...
Cómo hemos implementado semántica de "Exactly Once" en nuestra base de datos ...Cómo hemos implementado semántica de "Exactly Once" en nuestra base de datos ...
Cómo hemos implementado semántica de "Exactly Once" en nuestra base de datos ...
javier ramirez
 
AWS big-data-demystified #1.1 | Big Data Architecture Lessons Learned | English
AWS big-data-demystified #1.1  | Big Data Architecture Lessons Learned | EnglishAWS big-data-demystified #1.1  | Big Data Architecture Lessons Learned | English
AWS big-data-demystified #1.1 | Big Data Architecture Lessons Learned | English
Omid Vahdaty
 
PL22 - Backup and Restore Performance.pptx
PL22 - Backup and Restore Performance.pptxPL22 - Backup and Restore Performance.pptx
PL22 - Backup and Restore Performance.pptx
Vinicius M Grippa
 
Benchmarking for postgresql workloads in kubernetes
Benchmarking for postgresql workloads in kubernetesBenchmarking for postgresql workloads in kubernetes
Benchmarking for postgresql workloads in kubernetes
DoKC
 
Dfrws eu 2014 rekall workshop
Dfrws eu 2014 rekall workshopDfrws eu 2014 rekall workshop
Dfrws eu 2014 rekall workshop
Tamas K Lengyel
 
VictoriaLogs: Open Source Log Management System - Preview
VictoriaLogs: Open Source Log Management System - PreviewVictoriaLogs: Open Source Log Management System - Preview
VictoriaLogs: Open Source Log Management System - Preview
VictoriaMetrics
 
OSMC 2018 | Learnings, patterns and Uber’s metrics platform M3, open sourced ...
OSMC 2018 | Learnings, patterns and Uber’s metrics platform M3, open sourced ...OSMC 2018 | Learnings, patterns and Uber’s metrics platform M3, open sourced ...
OSMC 2018 | Learnings, patterns and Uber’s metrics platform M3, open sourced ...
NETWAYS
 
Ad

More from Len Chang (8)

The issue discussion between dml and ddl deployment
The issue discussion between dml and ddl deploymentThe issue discussion between dml and ddl deployment
The issue discussion between dml and ddl deployment
Len Chang
 
COSCUP 2019 - The discussion between Knex.js and PostgreSQL
COSCUP 2019 - The discussion between Knex.js and PostgreSQLCOSCUP 2019 - The discussion between Knex.js and PostgreSQL
COSCUP 2019 - The discussion between Knex.js and PostgreSQL
Len Chang
 
DevOps Taiwan meetup #19
DevOps Taiwan meetup #19DevOps Taiwan meetup #19
DevOps Taiwan meetup #19
Len Chang
 
BI in Xuenn
BI in XuennBI in Xuenn
BI in Xuenn
Len Chang
 
2014 Pixnet Hackathonh - EXIF Mining
2014 Pixnet Hackathonh - EXIF Mining2014 Pixnet Hackathonh - EXIF Mining
2014 Pixnet Hackathonh - EXIF Mining
Len Chang
 
Agile scrum in startup
Agile scrum in startup  Agile scrum in startup
Agile scrum in startup
Len Chang
 
Hadoop Con2015 - The Data Scientist’s Toolbox
Hadoop Con2015 - The Data Scientist’s ToolboxHadoop Con2015 - The Data Scientist’s Toolbox
Hadoop Con2015 - The Data Scientist’s Toolbox
Len Chang
 
Spam user detection report
Spam user detection reportSpam user detection report
Spam user detection report
Len Chang
 
The issue discussion between dml and ddl deployment
The issue discussion between dml and ddl deploymentThe issue discussion between dml and ddl deployment
The issue discussion between dml and ddl deployment
Len Chang
 
COSCUP 2019 - The discussion between Knex.js and PostgreSQL
COSCUP 2019 - The discussion between Knex.js and PostgreSQLCOSCUP 2019 - The discussion between Knex.js and PostgreSQL
COSCUP 2019 - The discussion between Knex.js and PostgreSQL
Len Chang
 
DevOps Taiwan meetup #19
DevOps Taiwan meetup #19DevOps Taiwan meetup #19
DevOps Taiwan meetup #19
Len Chang
 
2014 Pixnet Hackathonh - EXIF Mining
2014 Pixnet Hackathonh - EXIF Mining2014 Pixnet Hackathonh - EXIF Mining
2014 Pixnet Hackathonh - EXIF Mining
Len Chang
 
Agile scrum in startup
Agile scrum in startup  Agile scrum in startup
Agile scrum in startup
Len Chang
 
Hadoop Con2015 - The Data Scientist’s Toolbox
Hadoop Con2015 - The Data Scientist’s ToolboxHadoop Con2015 - The Data Scientist’s Toolbox
Hadoop Con2015 - The Data Scientist’s Toolbox
Len Chang
 
Spam user detection report
Spam user detection reportSpam user detection report
Spam user detection report
Len Chang
 

Recently uploaded (20)

Not So Common Memory Leaks in Java Webinar
Not So Common Memory Leaks in Java WebinarNot So Common Memory Leaks in Java Webinar
Not So Common Memory Leaks in Java Webinar
Tier1 app
 
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
AxisTechnolabs
 
Download YouTube By Click 2025 Free Full Activated
Download YouTube By Click 2025 Free Full ActivatedDownload YouTube By Click 2025 Free Full Activated
Download YouTube By Click 2025 Free Full Activated
saniamalik72555
 
Avast Premium Security Crack FREE Latest Version 2025
Avast Premium Security Crack FREE Latest Version 2025Avast Premium Security Crack FREE Latest Version 2025
Avast Premium Security Crack FREE Latest Version 2025
mu394968
 
Maxon CINEMA 4D 2025 Crack FREE Download LINK
Maxon CINEMA 4D 2025 Crack FREE Download LINKMaxon CINEMA 4D 2025 Crack FREE Download LINK
Maxon CINEMA 4D 2025 Crack FREE Download LINK
younisnoman75
 
Who Watches the Watchmen (SciFiDevCon 2025)
Who Watches the Watchmen (SciFiDevCon 2025)Who Watches the Watchmen (SciFiDevCon 2025)
Who Watches the Watchmen (SciFiDevCon 2025)
Allon Mureinik
 
F-Secure Freedome VPN 2025 Crack Plus Activation New Version
F-Secure Freedome VPN 2025 Crack Plus Activation  New VersionF-Secure Freedome VPN 2025 Crack Plus Activation  New Version
F-Secure Freedome VPN 2025 Crack Plus Activation New Version
saimabibi60507
 
Salesforce Data Cloud- Hyperscale data platform, built for Salesforce.
Salesforce Data Cloud- Hyperscale data platform, built for Salesforce.Salesforce Data Cloud- Hyperscale data platform, built for Salesforce.
Salesforce Data Cloud- Hyperscale data platform, built for Salesforce.
Dele Amefo
 
Societal challenges of AI: biases, multilinguism and sustainability
Societal challenges of AI: biases, multilinguism and sustainabilitySocietal challenges of AI: biases, multilinguism and sustainability
Societal challenges of AI: biases, multilinguism and sustainability
Jordi Cabot
 
Adobe After Effects Crack FREE FRESH version 2025
Adobe After Effects Crack FREE FRESH version 2025Adobe After Effects Crack FREE FRESH version 2025
Adobe After Effects Crack FREE FRESH version 2025
kashifyounis067
 
WinRAR Crack for Windows (100% Working 2025)
WinRAR Crack for Windows (100% Working 2025)WinRAR Crack for Windows (100% Working 2025)
WinRAR Crack for Windows (100% Working 2025)
sh607827
 
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Eric D. Schabell
 
Pixologic ZBrush Crack Plus Activation Key [Latest 2025] New Version
Pixologic ZBrush Crack Plus Activation Key [Latest 2025] New VersionPixologic ZBrush Crack Plus Activation Key [Latest 2025] New Version
Pixologic ZBrush Crack Plus Activation Key [Latest 2025] New Version
saimabibi60507
 
Get & Download Wondershare Filmora Crack Latest [2025]
Get & Download Wondershare Filmora Crack Latest [2025]Get & Download Wondershare Filmora Crack Latest [2025]
Get & Download Wondershare Filmora Crack Latest [2025]
saniaaftab72555
 
Meet the Agents: How AI Is Learning to Think, Plan, and Collaborate
Meet the Agents: How AI Is Learning to Think, Plan, and CollaborateMeet the Agents: How AI Is Learning to Think, Plan, and Collaborate
Meet the Agents: How AI Is Learning to Think, Plan, and Collaborate
Maxim Salnikov
 
Designing AI-Powered APIs on Azure: Best Practices& Considerations
Designing AI-Powered APIs on Azure: Best Practices& ConsiderationsDesigning AI-Powered APIs on Azure: Best Practices& Considerations
Designing AI-Powered APIs on Azure: Best Practices& Considerations
Dinusha Kumarasiri
 
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRYLEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
NidaFarooq10
 
Explaining GitHub Actions Failures with Large Language Models Challenges, In...
Explaining GitHub Actions Failures with Large Language Models Challenges, In...Explaining GitHub Actions Failures with Large Language Models Challenges, In...
Explaining GitHub Actions Failures with Large Language Models Challenges, In...
ssuserb14185
 
Revolutionizing Residential Wi-Fi PPT.pptx
Revolutionizing Residential Wi-Fi PPT.pptxRevolutionizing Residential Wi-Fi PPT.pptx
Revolutionizing Residential Wi-Fi PPT.pptx
nidhisingh691197
 
Secure Test Infrastructure: The Backbone of Trustworthy Software Development
Secure Test Infrastructure: The Backbone of Trustworthy Software DevelopmentSecure Test Infrastructure: The Backbone of Trustworthy Software Development
Secure Test Infrastructure: The Backbone of Trustworthy Software Development
Shubham Joshi
 
Not So Common Memory Leaks in Java Webinar
Not So Common Memory Leaks in Java WebinarNot So Common Memory Leaks in Java Webinar
Not So Common Memory Leaks in Java Webinar
Tier1 app
 
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
Interactive odoo dashboards for sales, CRM , Inventory, Invoice, Purchase, Pr...
AxisTechnolabs
 
Download YouTube By Click 2025 Free Full Activated
Download YouTube By Click 2025 Free Full ActivatedDownload YouTube By Click 2025 Free Full Activated
Download YouTube By Click 2025 Free Full Activated
saniamalik72555
 
Avast Premium Security Crack FREE Latest Version 2025
Avast Premium Security Crack FREE Latest Version 2025Avast Premium Security Crack FREE Latest Version 2025
Avast Premium Security Crack FREE Latest Version 2025
mu394968
 
Maxon CINEMA 4D 2025 Crack FREE Download LINK
Maxon CINEMA 4D 2025 Crack FREE Download LINKMaxon CINEMA 4D 2025 Crack FREE Download LINK
Maxon CINEMA 4D 2025 Crack FREE Download LINK
younisnoman75
 
Who Watches the Watchmen (SciFiDevCon 2025)
Who Watches the Watchmen (SciFiDevCon 2025)Who Watches the Watchmen (SciFiDevCon 2025)
Who Watches the Watchmen (SciFiDevCon 2025)
Allon Mureinik
 
F-Secure Freedome VPN 2025 Crack Plus Activation New Version
F-Secure Freedome VPN 2025 Crack Plus Activation  New VersionF-Secure Freedome VPN 2025 Crack Plus Activation  New Version
F-Secure Freedome VPN 2025 Crack Plus Activation New Version
saimabibi60507
 
Salesforce Data Cloud- Hyperscale data platform, built for Salesforce.
Salesforce Data Cloud- Hyperscale data platform, built for Salesforce.Salesforce Data Cloud- Hyperscale data platform, built for Salesforce.
Salesforce Data Cloud- Hyperscale data platform, built for Salesforce.
Dele Amefo
 
Societal challenges of AI: biases, multilinguism and sustainability
Societal challenges of AI: biases, multilinguism and sustainabilitySocietal challenges of AI: biases, multilinguism and sustainability
Societal challenges of AI: biases, multilinguism and sustainability
Jordi Cabot
 
Adobe After Effects Crack FREE FRESH version 2025
Adobe After Effects Crack FREE FRESH version 2025Adobe After Effects Crack FREE FRESH version 2025
Adobe After Effects Crack FREE FRESH version 2025
kashifyounis067
 
WinRAR Crack for Windows (100% Working 2025)
WinRAR Crack for Windows (100% Working 2025)WinRAR Crack for Windows (100% Working 2025)
WinRAR Crack for Windows (100% Working 2025)
sh607827
 
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Eric D. Schabell
 
Pixologic ZBrush Crack Plus Activation Key [Latest 2025] New Version
Pixologic ZBrush Crack Plus Activation Key [Latest 2025] New VersionPixologic ZBrush Crack Plus Activation Key [Latest 2025] New Version
Pixologic ZBrush Crack Plus Activation Key [Latest 2025] New Version
saimabibi60507
 
Get & Download Wondershare Filmora Crack Latest [2025]
Get & Download Wondershare Filmora Crack Latest [2025]Get & Download Wondershare Filmora Crack Latest [2025]
Get & Download Wondershare Filmora Crack Latest [2025]
saniaaftab72555
 
Meet the Agents: How AI Is Learning to Think, Plan, and Collaborate
Meet the Agents: How AI Is Learning to Think, Plan, and CollaborateMeet the Agents: How AI Is Learning to Think, Plan, and Collaborate
Meet the Agents: How AI Is Learning to Think, Plan, and Collaborate
Maxim Salnikov
 
Designing AI-Powered APIs on Azure: Best Practices& Considerations
Designing AI-Powered APIs on Azure: Best Practices& ConsiderationsDesigning AI-Powered APIs on Azure: Best Practices& Considerations
Designing AI-Powered APIs on Azure: Best Practices& Considerations
Dinusha Kumarasiri
 
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRYLEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
NidaFarooq10
 
Explaining GitHub Actions Failures with Large Language Models Challenges, In...
Explaining GitHub Actions Failures with Large Language Models Challenges, In...Explaining GitHub Actions Failures with Large Language Models Challenges, In...
Explaining GitHub Actions Failures with Large Language Models Challenges, In...
ssuserb14185
 
Revolutionizing Residential Wi-Fi PPT.pptx
Revolutionizing Residential Wi-Fi PPT.pptxRevolutionizing Residential Wi-Fi PPT.pptx
Revolutionizing Residential Wi-Fi PPT.pptx
nidhisingh691197
 
Secure Test Infrastructure: The Backbone of Trustworthy Software Development
Secure Test Infrastructure: The Backbone of Trustworthy Software DevelopmentSecure Test Infrastructure: The Backbone of Trustworthy Software Development
Secure Test Infrastructure: The Backbone of Trustworthy Software Development
Shubham Joshi
 

Hadoop con2016 - Implement Real-time Centralized logging System by Elastic Stack