SlideShare a Scribd company logo
HADOOP PLATFORM
AT YAHOO
A YEAR IN REVIEW
SUMEET SINGH (@sumeetksingh)
Sr. Director, Cloud and Big Data Platforms
Agenda
2
Platform Overview1
Infrastructure and Metrics2
CaffeOnSpark for Distributed DL3
Compute and Sketches4
Oozie6
Ease of Use7
Q&A8
HBase and Omid5
0
100
200
300
400
500
600
700
800
0
5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000
50,000
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
RawHDFS(inPB)
#Servers
Year
Servers Storage
Yahoo!
Commits to
Scaling
Hadoop for
Production
Use
Research
Workloads
in Search
and
Advertising
Production
(Modeling)
with machine
learning &
WebMap
Revenue
Systems
with Security,
Multi-
tenancy, and
SLAs
Open
Sourced with
Apache
Hortonworks
Spinoff for
Enterprise
hardening
Nextgen
Hadoop
(H 0.23 YARN)
New Services
(HBase,
Storm, Spark,
Hive)
Increased
User-base
with
partitioned
namespaces
Apache H2.7
(Scalable ML, Latency,
Utilization, Productivity)
Platform Evolution
3
Deployment Models
Private (dedicated)
Clusters
Hosted Multi-tenant
(private cloud)
Clusters
Hosted Compute
Clusters
 Large demanding use
cases
 New technology not
yet platformized
 Data movement and
regulation issues
 When more cost
effective than on-
premise
 Time to market/
results matter
 Data already in
public cloud
 Source of truth for all
of orgs data
 App delivery agility
 Operational efficiency
and cost savings
through economies of
scale
On-Premise Public Cloud
Purpose-built
Big Data
Clusters
 For performance,
tighter integration
with tech stack
 Value added services
such as monitoring,
alerts, tuning and
common tools
4
Platform Today
ZK DBMS MON SSHOP LOG WH TOOLS
Apache / Open Source Projects Yahoo Projects
HDFS HBase HCat Kafka CMS DH
Pig Hive Oozie Hue GDM Big ML
YARN CS MR Tez Spark Storm
Services
Compute
Storage / Msg.
Tools
5
Technology Stack Assembly
ZK DBMS MON SSHOP LOG WH TOOLS
Apache Projects Yahoo Projects
HDFS HBase HCat Kafka CMS DH
Pig Hive Oozie Hue GDM Big ML
YARN CS MR Tez Spark Storm
Services
Compute
Storage / Msg.
Tools
HDFS
(File System)
YARN
(Scheduling, Resource Management)
Common
RHEL6 64-bit, JDK8
Platformized
Tech with
Production
Support
In-
progress,
Unmet
needs or
Apache
Alignment
6
Common Backplane
DataNode NodeManager
NameNode RM
DataNodes RegionServers
NameNode HBase Master Nimbus
Supervisor
Administration, Management and Monitoring
ZooKeeper
Pools
HTTP/HDFS/GDM
Load Proxies
Applications and Data
Data
Feeds
Data
Stores
Oozie
Server
HS2/
HCat
Network
Backplane
7
0
10
20
30
Cluster 1 (2,000 servers)
HDFS 12 PB
Compute 23 TB
Avg. Util: 26%
Research Cluster Consolidation
0
20
40
60
80
ComputeTotalandUsed(TB)
Cluster 3 (5,400 servers)
HDFS 36 PB
Compute 70 TB
Avg. Util: 59%
Cluster 2 (3,100 servers)
HDFS 21 PB
Compute 52 TB
Avg. Util: 40%
0
20
40
60
One Month Sample (2015)
Total Used
8
0
50
100
150
200
250
300
Consolidated Cluster
HDFS 65 PB
Compute 240 TB
Avg. Util: 70%
Consolidated Research Cluster Characteristics
One Month Sample (2016)
40% decrease in TCO
10,500
servers
2,200
servers
Before After
65% increase in compute capacity
50% increase in avg. utilization
Total Used
ComputeTotalandUsed(TB)
9
Common Hadoop Cluster Configuration
Rack 1
Network Backplane
CPU Servers
with JBODs
& 10GbE
Rack 2 Rack N
.
.
.
.
.
.
.
.
.
10
New Hadoop Cluster Configuration
Rack 1
Network Backplane
CPU Servers
with JBODs
& 10GbE
Rack 2 Rack N
100Gbps
InfiniBand
GPU Servers
Hi-Mem Servers
.
.
.
11
YARN Node Labels
J2J3
J4
Queue 1, 40%
Label x
Queue 2, 40%
Label x, y
J1
Queue 3, 20%
x x x x x x
x x x x x x
y y y y y y
y y y y y y
yarn.scheduler.capacity.root.<queue name>.accessible-node-labels = <label name>
yarn.scheduler.capacity.root.<label name>.default-node-label-expression sets the default label asked for by queue
Hadoop Cluster
12
Agenda
Platform Overview1
Infrastructure and Metrics2
CaffeOnSpark for Distributed DL3
Compute and Sketches4
Oozie6
Ease of Use7
Q&A8
HBase and Omid5
13
CaffeOnSpark – Distributed Deep Learning
CaffeOnSpark
for
DL
MLLib
for
non-DL
Hive or
SparkSQL
Spark
YARN (RM and Scheduling)
HDFS (Datasets)
. . .
14
Few Use Cases – Yahoo Weather
15
Few Use Cases – Flickr Facial Recognition
16
Few Use Cases – Flickr Scene Detection
17
CaffeOnSpark Architecture – Common Cluster
Spark Driver
Caffe
(enhanced with
multi-GPU/CPU)
Model
Synchronizer
(across nodes)
HDFS
Datasets
Spark
Executor
(for data feeding
and control)
Caffe
(enhanced with
multi-GPU/CPU)
Model
Synchronizer
(across nodes)
HDFS
Datasets
Spark
Executor
(for data feeding
and control)
Caffe
(enhanced with
multi-GPU/CPU)
Model
Synchronizer
(across nodes)
HDFS
Datasets
Spark
Executor
(for data feeding
and control)
Model
O/P on
HDFS
MPI on RDMA / TCP
18
CaffeOnSpark Architecture – Incremental Learning
cos = new CaffeOnSpark(ctx)
conf = new Config(ctx, args).init()
dl_train_source = DataSource.getSource(conf, true)
cos.train(dl_train_source) //training DL model
lr_raw_source = DataSource.getSource(conf, false)
ext_df = cos.features(lr_raw_source) // extract features via DL
Feature
Engineering:
DeepLearning
19
CaffeOnSpark Architecture – Incremental Learning
cos = new CaffeOnSpark(ctx)
conf = new Config(ctx, args).init()
dl_train_source = DataSource.getSource(conf, true)
cos.train(dl_train_source) //training DL model
lr_raw_source = DataSource.getSource(conf, false)
ext_df = cos.features(lr_raw_source) // extract features via DL
vlr_input=ext_df.withColumn(“L",cos.floats2doubleUDF(ext_df(conf.label))
)
.withColumn(“F",cos.floats2doublesUDF(ext_df(conf.features(0))))
lr = new LogisticRegression().setLabelCol(”L").setFeaturesCol(”F")
lr_model = lr.fit(lr_input_df) …
Feature
Engineering:
DeepLearning
20
TrainClassifiers:
Non-deep
Learning
CaffeOnSpark Architecture – Single Command
spark-submit
--num-executors #Exes
--class CaffeOnSpark
my-caffe-on-spark.jar
-devices #GPUs
-model dl_model_file
-output lr_model_file
21
Distributed Deep Learning
Apache
License
Existing
Clusters
Powerful
DL Platform
Fully
Distributed
High-level
API
Incremental
Learning
CaffeOnSpark
github.com/yahoo/caffeonspark
22
Agenda
Platform Overview1
Infrastructure and Metrics2
CaffeOnSpark for Distributed DL3
Compute and Sketches4
Oozie6
Ease of Use7
Q&A8
HBase and Omid5
23
Hadoop Compute Sources
HDFS
(File System and Storage)
Pig
(Scripting)
Hive
(SQL)
Java MR APIs
YARN
(Resource Management and Scheduling)
Tez
(Execution Engine for
Pig and Hive)
Spark
(Alternate Exec Engine)
MapReduce
(Legacy)
Data Processing
ML
Custom App on
Slider
Oozie
Data
Management
24
Compute Growth
13.3
20.4
23.8
27.2
32.3
34.1
39.1
10
15
20
25
30
35
40
45 Mar-13
Apr-13
May-13
Jun-13
Jul-13
Aug-13
Sep-13
Oct-13
Nov-13
Dec-13
Jan-14
Feb-14
Mar-14
Apr-14
May-14
Jun-14
Jul-14
Aug-14
Sep-14
Oct-14
Nov-14
Dec-14
Jan-15
Feb-15
Mar-15
Apr-15
May-15
Jun-15
Jul-15
Aug-15
Sep-15
Oct-15
Nov-15
Dec-15
Jan-16
Feb-16
Mar-16
#MR,Tez,SparkJobs(inmillions)
25
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
Pushing Batch Compute Boundaries%ofTotalCompute(memory-sec)
Q1 2016
MapReduce Tez Spark
112 Million Batch Jobs in Q1’16
Jan 78%
Mar 67%
Mar 21% 12%Jan 8% 14%
26
Multi-tenant Apache Storm
27
Recent Apache Storm Developments at Yahoo
MT & RA
Scheduler
Dist. Cache
API
8 x
Throughput
Improved
Debuggability
1 github.com/yahoo/streaming-benchmarks
Pacemaker
Server
Streaming
Benchmark 1
28
Data Sketches Algorithms
Data Sketches Algorithms Library
datasketches.github.io
 Good enough approximate answers
for problem queries
 Streamable
 Approximate with predictable error
 Sub-linear in size
 Mergeable / additive
 Highly parallelizable
 Maven deployable
Characteristics
29
Distinct Count Sketch, High-level View
Big Data
Stream
Transform Data Structure Estimator
Result + / - ε
White
Noise
Basic Sketch Elements
30
Data Sketches Algorithms
Data Sketches Algorithms Library
datasketches.github.io
31
Agenda
Platform Overview1
Infrastructure and Metrics2
CaffeOnSpark for Distributed DL3
Compute and Sketches4
Oozie6
Ease of Use7
Q&A8
HBase and Omid5
32
Apache HBase at Yahoo
 Security
 Isolated Deployment
 Multi-tenant
 Region Server Group
 Namespace
 Unsupported Features
HBase
Client
HBase
Client
JobTracker Namenode
TaskTracker
DataNode
Namenode
RegionServer
DataNode
RegionServer
DataNode
RegionServer
DataNode
HBase Master
Zookeeper
Quorum
HBase
Client
MR Client
M/R Task
TaskTracker
DataNode
M/R Task
TaskTracker
DataNode
MR Task
Compute Cluster HBase Cluster
Gateway/Launcher
Rest Proxy
HTTP
Client
33
Security
 Authentication
 Kerberos (users, processes)
 Delegation Token (MapReduce, YARN, etc.)
 Authorization
 HBase ACLs (Read, Write, Create, Admin)
 Grant permissions to User or Unix Group
 ACL for Table, Column Family or Column
34
Region Server Groups
 Dedicated region servers for a set of tables
 Resource Isolation (CPU, Memory, IO, etc)
RegionServer
Group Foo
RegionServer
RegionServer
RegionServer
Region Server 1...5
TableA TableB TableC
TableD TableE TableF
RegionServer
Group Bar
RegionServer
RegionServer
RegionServer
Region Server 6…10
Table1 Table2 Table3
Table4 Table5 Table6
35
Namespaces
 Analogous to “Database”
 Namespace ACL to create tables
 Default group
 Quota
 Tables
 Regions
Namespace
Group Tables Quota ACL
36
Split Meta to Spread Load and Avoid Large Regions
37
Favored Nodes for HDFS Locality
38
Humongous Tables
39
Scaling HBase to Handle Millions of Regions on a Cluster
Region Server
Groups
Split
Meta
Split
ZK
Favored
Nodes
Humongous
Tables
40
Transactions on HBase with Omid1
Highly performant and fault tolerant ACID
transactional framework
New Apache Incubator project
incubator.apache.org/projects/omid.html
Handles million of transactions per day for
search and personalization products
1 Omid stands for “Hope” in Persian
41
Omid Components
42
Omid Data Model
43
Agenda
Platform Overview1
Infrastructure and Metrics2
CaffeOnSpark for Distributed DL3
Compute and Sketches4
Oozie6
Ease of Use7
Q&A8
HBase and Omid5
44
Oozie Data Pipelines
Oozie
Message Bus
HCatalog
3. Push notification
<New Partition>
2. Register Topic
4. Notify New Partition
Data Producer HDFS
Produce data (distcp, pig, M/R..)
/data/click/2014/06/02
1. Query/Poll Partition
Start workflow
Update metadata
(ALTER TABLE click ADD PARTITION(data=‘2014/06/02’)
location ’hdfs://data/click/2014/06/02’)
45
Large Scale Data Pipeline Requirements
Administrative
 One should be able to start, stop and pause
all related pipelines at a same time
Dependency Management
 Output of a coordinator “n+1” action is
dependent on coordinator “n” action (dataset
dependency)
 If dataset has a BCP instance, workflow
should run with either, whichever arrives first
 Start as soon as mandatory data is available,
other feeds are optional
 Data is not guaranteed, start processing
even if partial data is available
SLA Management
 Monitor pipeline processing to take
immediate action in case of failures or
SLA misses
 Pipelines owners should get notified if
an SLA is missed
Multiple Providers
 If data is available from multiple
providers, I want to specify the provider
priority
 Combine datasets from multiple
providers to fill the gaps in data a single
provider may have
46
Large Scale Data Pipeline Requirements
Administrative
 One should be able to start, stop and pause
all related pipelines at a same time
Dependency Management
 Output of a coordinator “n+1” action is
dependent on coordinator “n” action (dataset
dependency)
 If dataset has a BCP instance, workflow
should run with either, whichever arrives first
 Start as soon as mandatory data is available,
other feeds are optional
 Data is not guaranteed, start processing
even if partial data is available
SLA Management
 Monitor pipeline processing to take
immediate action in case of failures or
SLA misses
 Pipelines owners should get notified if
an SLA is missed
Multiple Providers
 If data is available from multiple
providers, I want to specify the provider
priority
 Combine datasets from multiple
providers to fill the gaps in data a single
provider may have
47
BCP And Mandatory / Optional Feeds
Pull data from A or B. Specify dataset as
AorB. Action will start running as soon
either dataset A or B is available.
<input-logic>
<or name=“AorB”>
<data-in dataset="A” wait=“10”/>
<data-in dataset="B"/>
</or>
</input-logic>
Dataset B is optional, Oozie will start
processing as soon as A is available. It
will include dataset from A and whatever
is available from B.
<input-logic>
<and name="optional
<data-in dataset="A"/>
<data-in dataset="B" min=”0”/>
</and>
</input-logic>
48
Data Not Guaranteed / Priority Among Dataset Instances
A will have higher precedence over B
and B will have higher precedence
over C.
<input-logic>
<or name="AorBorC">
<data-in dataset="A"/>
<data-in dataset="B"/>
<data-in dataset="C”/>
</or>
</input-logic>
49
Oozie will start processing if available A
instances are >= 10. Min can also be
combined with wait (as shown for dataset B).
<input-logic>
<data-in dataset="A" min=”10”/>
<data-in dataset=“B” min =“10”
wait=“20”/>
</input-logic>
Combining Dataset From Multiple Providers
Combine function will first check instances from A and go to B next for whatever is
missing in A.
<data-in name="A" dataset="dataset_A">
<start-instance> ${coord:CURRENT(-5)} </start-instance>
<end-instance> ${coord:latest(-1)} </end-instance>
</data-in>
<data-in name="B" dataset="dataset_B">
<start-instance>${coord:CURRENT(-5)}</start-instance>
<end-instance>${coord:CURRENT(-1)}</end-instance>
</data-in>
<input-logic>
<combine name="AB">
<data-in dataset="A"/>
<data-in dataset="B"/>
</combine>
</input-logic>
50
Agenda
Platform Overview1
Infrastructure and Metrics2
CaffeOnSpark for Distributed DL3
Compute and Sketches4
Oozie6
Ease of Use7
Q&A8
HBase and Omid5
51
Automated Onboarding / Collaboration Portal
52
Built for Tenant Transparency
53
Queue Utilization Dashboard
54
Data Discovery and Access
55
Audits, Compliance, and Efficiency
Starling
FS, Job, Task logs
Cluster 1 Cluster 2 Cluster n...
CF, Region, Action, Query Stats
Cluster 1 Cluster 2 Cluster n...
DB, Tbl., Part., Colmn. Access Stats
...MS 1 MS 2 MS n
GDM
Data Defn., Flow, Feed, Source
F 1 F 2 F n
Log Warehouse
Log Sources
56
Audits, Compliance, and Efficiency (cont’d)
Data Discovery and Access
Public
Non-sensitive
Financial $
Governance
Classification
No addn. reqmt.
LMS Integration
Stock Admin
Integration
Approval Flow
Restricted
57
Hosted UI – Hue as a Service
WSGI
Hue-1.Cluster-1 (Hot)
VIPUsers
HS2
Hue
MySQL DB
(HA)
Hadoop Cluster
HCat
Meta
Oozie
Server
YARN
RM
Web
HDFS
NMs
WSGI
Hue-2.Cluster-1 (hot)
HS2
IdP
SAML
Auth.
Serving pages and static content
Cookies, saved queries,
workflows etc.
FullStackHA
REST / Thrift
(jQuery, Bootstrap, Knockout.js, Love)
58
Going Forward
Increased
Intelligence
Greater
Speed
Higher
Efficiency
Necessary
Scale
59
Increased Intelligence
GBDT FTRL SGD
Deep
Learning
Random
Forests
ML Libraries
Click
Prediction Search RankingKeyword Auctions Ad
Relevance Abuse Detection
Applications
Proven to
Work at Scale
Solve Complex
Problems
YARN (Resource Manager)
Heterogeneous
Scheduling
Long-running
Services
GPUs
Large
Memory Support
Core Grid
Enhancements
…
Parameter ServerGlobally Shared
Parameters
Compute Engines
Distributed
Processing
…
60
Greater Speed
DeData
Management
Ease of
Use
Productivity
Dimensions
Real-time
Pipelines
Unified Metadata &
Lineage
Fine-grained
Access Control
Self-serve Data
Movement
SLA & Cost
Transparency
Intuitive
UIs
Planning &
Collab. Tools
Central Grid
Portal
Improvements
Query times
< 1 sec
4x Speedups in
ETL
SQL on
HBase
Limitless BI
Clients
Analytics, BI &
Reporting
61
Higher Efficiency
Achieve five 9’s availability and 70% average compute utilization across clusters
62
Hadoop Users at Yahoo
Slingstone & Aviate Mail Anti-Spam
Gemini Campaign
Mgmt.
Search Assist
Audience Analytics Flickr YAM+ & Targeting Membership Abuse
… and many more.
63
Yahoo at the Apache Open Source Foundation
10 Committers (6 PMC)
3 Committers (3 PMC)
3 Committers (2 PMC)
6 Committer (5 PMC)
1 Committer
3 Committers (2 PMCs)
7 Committers (6 PMCs)
1 2
43
5 6
7 8
1 Committer
64
Join Us @ yahoohadoop.tumblr.com
65
THANK YOU
SUMEET SINGH (@sumeetksingh)
Sr. Director, Cloud and Big Data Platforms
Icon Courtesy – iconfinder.com (under Creative Commons)
Ad

More Related Content

What's hot (20)

FLiP Into Trino
FLiP Into TrinoFLiP Into Trino
FLiP Into Trino
Timothy Spann
 
What it takes to run Hadoop at Scale: Yahoo! Perspectives
What it takes to run Hadoop at Scale: Yahoo! PerspectivesWhat it takes to run Hadoop at Scale: Yahoo! Perspectives
What it takes to run Hadoop at Scale: Yahoo! Perspectives
DataWorks Summit
 
Hadoop vs Apache Spark
Hadoop vs Apache SparkHadoop vs Apache Spark
Hadoop vs Apache Spark
ALTEN Calsoft Labs
 
Spark SQL Tutorial | Spark Tutorial for Beginners | Apache Spark Training | E...
Spark SQL Tutorial | Spark Tutorial for Beginners | Apache Spark Training | E...Spark SQL Tutorial | Spark Tutorial for Beginners | Apache Spark Training | E...
Spark SQL Tutorial | Spark Tutorial for Beginners | Apache Spark Training | E...
Edureka!
 
HBase Tutorial For Beginners | HBase Architecture | HBase Tutorial | Hadoop T...
HBase Tutorial For Beginners | HBase Architecture | HBase Tutorial | Hadoop T...HBase Tutorial For Beginners | HBase Architecture | HBase Tutorial | Hadoop T...
HBase Tutorial For Beginners | HBase Architecture | HBase Tutorial | Hadoop T...
Simplilearn
 
Cassandra Database
Cassandra DatabaseCassandra Database
Cassandra Database
YounesCharfaoui
 
Azure Databricks (For Data Analytics).pptx
Azure Databricks (For Data Analytics).pptxAzure Databricks (For Data Analytics).pptx
Azure Databricks (For Data Analytics).pptx
Knoldus Inc.
 
Optimizing Apache Spark SQL Joins
Optimizing Apache Spark SQL JoinsOptimizing Apache Spark SQL Joins
Optimizing Apache Spark SQL Joins
Databricks
 
Solving Enterprise Data Challenges with Apache Arrow
Solving Enterprise Data Challenges with Apache ArrowSolving Enterprise Data Challenges with Apache Arrow
Solving Enterprise Data Challenges with Apache Arrow
Wes McKinney
 
Apache Kafka With Spark Structured Streaming With Emma Liu, Nitin Saksena, Ra...
Apache Kafka With Spark Structured Streaming With Emma Liu, Nitin Saksena, Ra...Apache Kafka With Spark Structured Streaming With Emma Liu, Nitin Saksena, Ra...
Apache Kafka With Spark Structured Streaming With Emma Liu, Nitin Saksena, Ra...
HostedbyConfluent
 
Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...
Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...
Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...
Cathrine Wilhelmsen
 
Spark (Structured) Streaming vs. Kafka Streams
Spark (Structured) Streaming vs. Kafka StreamsSpark (Structured) Streaming vs. Kafka Streams
Spark (Structured) Streaming vs. Kafka Streams
Guido Schmutz
 
Apache Spark vs Apache Spark: An On-Prem Comparison of Databricks and Open-So...
Apache Spark vs Apache Spark: An On-Prem Comparison of Databricks and Open-So...Apache Spark vs Apache Spark: An On-Prem Comparison of Databricks and Open-So...
Apache Spark vs Apache Spark: An On-Prem Comparison of Databricks and Open-So...
Databricks
 
Modern Data Warehousing with the Microsoft Analytics Platform System
Modern Data Warehousing with the Microsoft Analytics Platform SystemModern Data Warehousing with the Microsoft Analytics Platform System
Modern Data Warehousing with the Microsoft Analytics Platform System
James Serra
 
The delta architecture
The delta architectureThe delta architecture
The delta architecture
Prakash Chockalingam
 
Introducing Azure SQL Database
Introducing Azure SQL DatabaseIntroducing Azure SQL Database
Introducing Azure SQL Database
James Serra
 
Azure purview
Azure purviewAzure purview
Azure purview
Shafqat Turza
 
Microsoft Azure Technical Overview
Microsoft Azure Technical OverviewMicrosoft Azure Technical Overview
Microsoft Azure Technical Overview
gjuljo
 
Impala: Real-time Queries in Hadoop
Impala: Real-time Queries in HadoopImpala: Real-time Queries in Hadoop
Impala: Real-time Queries in Hadoop
Cloudera, Inc.
 
Apache Iceberg: An Architectural Look Under the Covers
Apache Iceberg: An Architectural Look Under the CoversApache Iceberg: An Architectural Look Under the Covers
Apache Iceberg: An Architectural Look Under the Covers
ScyllaDB
 
What it takes to run Hadoop at Scale: Yahoo! Perspectives
What it takes to run Hadoop at Scale: Yahoo! PerspectivesWhat it takes to run Hadoop at Scale: Yahoo! Perspectives
What it takes to run Hadoop at Scale: Yahoo! Perspectives
DataWorks Summit
 
Spark SQL Tutorial | Spark Tutorial for Beginners | Apache Spark Training | E...
Spark SQL Tutorial | Spark Tutorial for Beginners | Apache Spark Training | E...Spark SQL Tutorial | Spark Tutorial for Beginners | Apache Spark Training | E...
Spark SQL Tutorial | Spark Tutorial for Beginners | Apache Spark Training | E...
Edureka!
 
HBase Tutorial For Beginners | HBase Architecture | HBase Tutorial | Hadoop T...
HBase Tutorial For Beginners | HBase Architecture | HBase Tutorial | Hadoop T...HBase Tutorial For Beginners | HBase Architecture | HBase Tutorial | Hadoop T...
HBase Tutorial For Beginners | HBase Architecture | HBase Tutorial | Hadoop T...
Simplilearn
 
Azure Databricks (For Data Analytics).pptx
Azure Databricks (For Data Analytics).pptxAzure Databricks (For Data Analytics).pptx
Azure Databricks (For Data Analytics).pptx
Knoldus Inc.
 
Optimizing Apache Spark SQL Joins
Optimizing Apache Spark SQL JoinsOptimizing Apache Spark SQL Joins
Optimizing Apache Spark SQL Joins
Databricks
 
Solving Enterprise Data Challenges with Apache Arrow
Solving Enterprise Data Challenges with Apache ArrowSolving Enterprise Data Challenges with Apache Arrow
Solving Enterprise Data Challenges with Apache Arrow
Wes McKinney
 
Apache Kafka With Spark Structured Streaming With Emma Liu, Nitin Saksena, Ra...
Apache Kafka With Spark Structured Streaming With Emma Liu, Nitin Saksena, Ra...Apache Kafka With Spark Structured Streaming With Emma Liu, Nitin Saksena, Ra...
Apache Kafka With Spark Structured Streaming With Emma Liu, Nitin Saksena, Ra...
HostedbyConfluent
 
Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...
Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...
Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...
Cathrine Wilhelmsen
 
Spark (Structured) Streaming vs. Kafka Streams
Spark (Structured) Streaming vs. Kafka StreamsSpark (Structured) Streaming vs. Kafka Streams
Spark (Structured) Streaming vs. Kafka Streams
Guido Schmutz
 
Apache Spark vs Apache Spark: An On-Prem Comparison of Databricks and Open-So...
Apache Spark vs Apache Spark: An On-Prem Comparison of Databricks and Open-So...Apache Spark vs Apache Spark: An On-Prem Comparison of Databricks and Open-So...
Apache Spark vs Apache Spark: An On-Prem Comparison of Databricks and Open-So...
Databricks
 
Modern Data Warehousing with the Microsoft Analytics Platform System
Modern Data Warehousing with the Microsoft Analytics Platform SystemModern Data Warehousing with the Microsoft Analytics Platform System
Modern Data Warehousing with the Microsoft Analytics Platform System
James Serra
 
Introducing Azure SQL Database
Introducing Azure SQL DatabaseIntroducing Azure SQL Database
Introducing Azure SQL Database
James Serra
 
Microsoft Azure Technical Overview
Microsoft Azure Technical OverviewMicrosoft Azure Technical Overview
Microsoft Azure Technical Overview
gjuljo
 
Impala: Real-time Queries in Hadoop
Impala: Real-time Queries in HadoopImpala: Real-time Queries in Hadoop
Impala: Real-time Queries in Hadoop
Cloudera, Inc.
 
Apache Iceberg: An Architectural Look Under the Covers
Apache Iceberg: An Architectural Look Under the CoversApache Iceberg: An Architectural Look Under the Covers
Apache Iceberg: An Architectural Look Under the Covers
ScyllaDB
 

Viewers also liked (20)

Process Scheduling on Hadoop at Expedia
Process Scheduling on Hadoop at ExpediaProcess Scheduling on Hadoop at Expedia
Process Scheduling on Hadoop at Expedia
huguk
 
BIG Data & Hadoop Applications in Social Media
BIG Data & Hadoop Applications in Social MediaBIG Data & Hadoop Applications in Social Media
BIG Data & Hadoop Applications in Social Media
Skillspeed
 
Pinterest hadoop summit_talk
Pinterest hadoop summit_talkPinterest hadoop summit_talk
Pinterest hadoop summit_talk
Krishna Gade
 
August 2016 HUG: Recent development in Apache Oozie
August 2016 HUG: Recent development in Apache OozieAugust 2016 HUG: Recent development in Apache Oozie
August 2016 HUG: Recent development in Apache Oozie
Yahoo Developer Network
 
August 2016 HUG: Better together: Fast Data with Apache Spark™ and Apache Ign...
August 2016 HUG: Better together: Fast Data with Apache Spark™ and Apache Ign...August 2016 HUG: Better together: Fast Data with Apache Spark™ and Apache Ign...
August 2016 HUG: Better together: Fast Data with Apache Spark™ and Apache Ign...
Yahoo Developer Network
 
August 2016 HUG: Open Source Big Data Ingest with StreamSets Data Collector
August 2016 HUG: Open Source Big Data Ingest with StreamSets Data Collector August 2016 HUG: Open Source Big Data Ingest with StreamSets Data Collector
August 2016 HUG: Open Source Big Data Ingest with StreamSets Data Collector
Yahoo Developer Network
 
IT業界のリーディングカンパニーとして描く「少し先の未来」〜Yahoo! JAPANの事例を通して〜#a11yfuture
IT業界のリーディングカンパニーとして描く「少し先の未来」〜Yahoo! JAPANの事例を通して〜#a11yfutureIT業界のリーディングカンパニーとして描く「少し先の未来」〜Yahoo! JAPANの事例を通して〜#a11yfuture
IT業界のリーディングカンパニーとして描く「少し先の未来」〜Yahoo! JAPANの事例を通して〜#a11yfuture
Yahoo!デベロッパーネットワーク
 
ユーザー企業内製CSIRTにおける対応のポイント
ユーザー企業内製CSIRTにおける対応のポイントユーザー企業内製CSIRTにおける対応のポイント
ユーザー企業内製CSIRTにおける対応のポイント
Recruit Technologies
 
What i learned from translation of the sre ryuji tamagawa
What i learned from translation of the sre ryuji tamagawaWhat i learned from translation of the sre ryuji tamagawa
What i learned from translation of the sre ryuji tamagawa
Rakuten Group, Inc.
 
Rakutenとsreと私 yanagimoto koichi
Rakutenとsreと私 yanagimoto koichiRakutenとsreと私 yanagimoto koichi
Rakutenとsreと私 yanagimoto koichi
Rakuten Group, Inc.
 
Yahoo! JAPANのデータ基盤とHadoop #dbts2016
Yahoo! JAPANのデータ基盤とHadoop #dbts2016Yahoo! JAPANのデータ基盤とHadoop #dbts2016
Yahoo! JAPANのデータ基盤とHadoop #dbts2016
Yahoo!デベロッパーネットワーク
 
Yahoo! JAPANにおけるオンライン機械学習実例 #streamctjp
Yahoo! JAPANにおけるオンライン機械学習実例 #streamctjpYahoo! JAPANにおけるオンライン機械学習実例 #streamctjp
Yahoo! JAPANにおけるオンライン機械学習実例 #streamctjp
Yahoo!デベロッパーネットワーク
 
Kafka Connect(Japanese)
Kafka Connect(Japanese)Kafka Connect(Japanese)
Kafka Connect(Japanese)
Roman Shtykh
 
ビックデータ処理技術の全体像とリクルートでの使い分け
ビックデータ処理技術の全体像とリクルートでの使い分けビックデータ処理技術の全体像とリクルートでの使い分け
ビックデータ処理技術の全体像とリクルートでの使い分け
Tetsutaro Watanabe
 
Apache Big Data Miami 2017 - Hadoop Source Code Reading #23 #hadoopreading
Apache Big Data Miami 2017 - Hadoop Source Code Reading #23 #hadoopreadingApache Big Data Miami 2017 - Hadoop Source Code Reading #23 #hadoopreading
Apache Big Data Miami 2017 - Hadoop Source Code Reading #23 #hadoopreading
Yahoo!デベロッパーネットワーク
 
Struggling with BIGDATA -リクルートおけるデータサイエンス/エンジニアリング-
Struggling with BIGDATA -リクルートおけるデータサイエンス/エンジニアリング-Struggling with BIGDATA -リクルートおけるデータサイエンス/エンジニアリング-
Struggling with BIGDATA -リクルートおけるデータサイエンス/エンジニアリング-
Recruit Technologies
 
新卒2年目が鍛えられたコードレビュー道場
新卒2年目が鍛えられたコードレビュー道場新卒2年目が鍛えられたコードレビュー道場
新卒2年目が鍛えられたコードレビュー道場
Recruit Technologies
 
Company Recommendation for New Graduates via Implicit Feedback Multiple Matri...
Company Recommendation for New Graduates via Implicit Feedback Multiple Matri...Company Recommendation for New Graduates via Implicit Feedback Multiple Matri...
Company Recommendation for New Graduates via Implicit Feedback Multiple Matri...
Recruit Technologies
 
Process Scheduling on Hadoop at Expedia
Process Scheduling on Hadoop at ExpediaProcess Scheduling on Hadoop at Expedia
Process Scheduling on Hadoop at Expedia
huguk
 
BIG Data & Hadoop Applications in Social Media
BIG Data & Hadoop Applications in Social MediaBIG Data & Hadoop Applications in Social Media
BIG Data & Hadoop Applications in Social Media
Skillspeed
 
Pinterest hadoop summit_talk
Pinterest hadoop summit_talkPinterest hadoop summit_talk
Pinterest hadoop summit_talk
Krishna Gade
 
August 2016 HUG: Recent development in Apache Oozie
August 2016 HUG: Recent development in Apache OozieAugust 2016 HUG: Recent development in Apache Oozie
August 2016 HUG: Recent development in Apache Oozie
Yahoo Developer Network
 
August 2016 HUG: Better together: Fast Data with Apache Spark™ and Apache Ign...
August 2016 HUG: Better together: Fast Data with Apache Spark™ and Apache Ign...August 2016 HUG: Better together: Fast Data with Apache Spark™ and Apache Ign...
August 2016 HUG: Better together: Fast Data with Apache Spark™ and Apache Ign...
Yahoo Developer Network
 
August 2016 HUG: Open Source Big Data Ingest with StreamSets Data Collector
August 2016 HUG: Open Source Big Data Ingest with StreamSets Data Collector August 2016 HUG: Open Source Big Data Ingest with StreamSets Data Collector
August 2016 HUG: Open Source Big Data Ingest with StreamSets Data Collector
Yahoo Developer Network
 
IT業界のリーディングカンパニーとして描く「少し先の未来」〜Yahoo! JAPANの事例を通して〜#a11yfuture
IT業界のリーディングカンパニーとして描く「少し先の未来」〜Yahoo! JAPANの事例を通して〜#a11yfutureIT業界のリーディングカンパニーとして描く「少し先の未来」〜Yahoo! JAPANの事例を通して〜#a11yfuture
IT業界のリーディングカンパニーとして描く「少し先の未来」〜Yahoo! JAPANの事例を通して〜#a11yfuture
Yahoo!デベロッパーネットワーク
 
ユーザー企業内製CSIRTにおける対応のポイント
ユーザー企業内製CSIRTにおける対応のポイントユーザー企業内製CSIRTにおける対応のポイント
ユーザー企業内製CSIRTにおける対応のポイント
Recruit Technologies
 
What i learned from translation of the sre ryuji tamagawa
What i learned from translation of the sre ryuji tamagawaWhat i learned from translation of the sre ryuji tamagawa
What i learned from translation of the sre ryuji tamagawa
Rakuten Group, Inc.
 
Rakutenとsreと私 yanagimoto koichi
Rakutenとsreと私 yanagimoto koichiRakutenとsreと私 yanagimoto koichi
Rakutenとsreと私 yanagimoto koichi
Rakuten Group, Inc.
 
Kafka Connect(Japanese)
Kafka Connect(Japanese)Kafka Connect(Japanese)
Kafka Connect(Japanese)
Roman Shtykh
 
ビックデータ処理技術の全体像とリクルートでの使い分け
ビックデータ処理技術の全体像とリクルートでの使い分けビックデータ処理技術の全体像とリクルートでの使い分け
ビックデータ処理技術の全体像とリクルートでの使い分け
Tetsutaro Watanabe
 
Struggling with BIGDATA -リクルートおけるデータサイエンス/エンジニアリング-
Struggling with BIGDATA -リクルートおけるデータサイエンス/エンジニアリング-Struggling with BIGDATA -リクルートおけるデータサイエンス/エンジニアリング-
Struggling with BIGDATA -リクルートおけるデータサイエンス/エンジニアリング-
Recruit Technologies
 
新卒2年目が鍛えられたコードレビュー道場
新卒2年目が鍛えられたコードレビュー道場新卒2年目が鍛えられたコードレビュー道場
新卒2年目が鍛えられたコードレビュー道場
Recruit Technologies
 
Company Recommendation for New Graduates via Implicit Feedback Multiple Matri...
Company Recommendation for New Graduates via Implicit Feedback Multiple Matri...Company Recommendation for New Graduates via Implicit Feedback Multiple Matri...
Company Recommendation for New Graduates via Implicit Feedback Multiple Matri...
Recruit Technologies
 
Ad

Similar to Hadoop Platform at Yahoo (20)

Hadoop Summit Dublin 2016: Hadoop Platform at Yahoo - A Year in Review
Hadoop Summit Dublin 2016: Hadoop Platform at Yahoo - A Year in Review Hadoop Summit Dublin 2016: Hadoop Platform at Yahoo - A Year in Review
Hadoop Summit Dublin 2016: Hadoop Platform at Yahoo - A Year in Review
Sumeet Singh
 
sudoers: Benchmarking Hadoop with ALOJA
sudoers: Benchmarking Hadoop with ALOJAsudoers: Benchmarking Hadoop with ALOJA
sudoers: Benchmarking Hadoop with ALOJA
Nicolas Poggi
 
Hadoop and big data training
Hadoop and big data trainingHadoop and big data training
Hadoop and big data training
agiamas
 
Hadoop - Past, Present and Future - v1.1
Hadoop - Past, Present and Future - v1.1Hadoop - Past, Present and Future - v1.1
Hadoop - Past, Present and Future - v1.1
Big Data Joe™ Rossi
 
Tajo_Meetup_20141120
Tajo_Meetup_20141120Tajo_Meetup_20141120
Tajo_Meetup_20141120
Hyoungjun Kim
 
Hadoop Summit San Jose 2015: What it Takes to Run Hadoop at Scale Yahoo Persp...
Hadoop Summit San Jose 2015: What it Takes to Run Hadoop at Scale Yahoo Persp...Hadoop Summit San Jose 2015: What it Takes to Run Hadoop at Scale Yahoo Persp...
Hadoop Summit San Jose 2015: What it Takes to Run Hadoop at Scale Yahoo Persp...
Sumeet Singh
 
TDWI Accelerate, Seattle, Oct 16, 2017: Distributed and In-Database Analytics...
TDWI Accelerate, Seattle, Oct 16, 2017: Distributed and In-Database Analytics...TDWI Accelerate, Seattle, Oct 16, 2017: Distributed and In-Database Analytics...
TDWI Accelerate, Seattle, Oct 16, 2017: Distributed and In-Database Analytics...
Debraj GuhaThakurta
 
TWDI Accelerate Seattle, Oct 16, 2017: Distributed and In-Database Analytics ...
TWDI Accelerate Seattle, Oct 16, 2017: Distributed and In-Database Analytics ...TWDI Accelerate Seattle, Oct 16, 2017: Distributed and In-Database Analytics ...
TWDI Accelerate Seattle, Oct 16, 2017: Distributed and In-Database Analytics ...
Debraj GuhaThakurta
 
Experience sql server on l inux and docker
Experience sql server on l inux and dockerExperience sql server on l inux and docker
Experience sql server on l inux and docker
Bob Ward
 
Hortonworks.bdb
Hortonworks.bdbHortonworks.bdb
Hortonworks.bdb
Emil Andreas Siemes
 
Fórum E-Commerce Brasil | Tecnologias NVIDIA aplicadas ao e-commerce. Muito a...
Fórum E-Commerce Brasil | Tecnologias NVIDIA aplicadas ao e-commerce. Muito a...Fórum E-Commerce Brasil | Tecnologias NVIDIA aplicadas ao e-commerce. Muito a...
Fórum E-Commerce Brasil | Tecnologias NVIDIA aplicadas ao e-commerce. Muito a...
E-Commerce Brasil
 
Introduction to PowerAI - The Enterprise AI Platform
Introduction to PowerAI - The Enterprise AI PlatformIntroduction to PowerAI - The Enterprise AI Platform
Introduction to PowerAI - The Enterprise AI Platform
Indrajit Poddar
 
Eric Baldeschwieler Keynote from Storage Developers Conference
Eric Baldeschwieler Keynote from Storage Developers ConferenceEric Baldeschwieler Keynote from Storage Developers Conference
Eric Baldeschwieler Keynote from Storage Developers Conference
Hortonworks
 
HBaseCon 2013: Apache Drill - A Community-driven Initiative to Deliver ANSI S...
HBaseCon 2013: Apache Drill - A Community-driven Initiative to Deliver ANSI S...HBaseCon 2013: Apache Drill - A Community-driven Initiative to Deliver ANSI S...
HBaseCon 2013: Apache Drill - A Community-driven Initiative to Deliver ANSI S...
Cloudera, Inc.
 
Overview of big data & hadoop v1
Overview of big data & hadoop   v1Overview of big data & hadoop   v1
Overview of big data & hadoop v1
Thanh Nguyen
 
xPatterns ... beyond Hadoop (Spark, Shark, Mesos, Tachyon)
xPatterns ... beyond Hadoop (Spark, Shark, Mesos, Tachyon)xPatterns ... beyond Hadoop (Spark, Shark, Mesos, Tachyon)
xPatterns ... beyond Hadoop (Spark, Shark, Mesos, Tachyon)
Claudiu Barbura
 
Huhadoop - v1.1
Huhadoop - v1.1Huhadoop - v1.1
Huhadoop - v1.1
Big Data Joe™ Rossi
 
6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...
6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...
6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...
Jürgen Ambrosi
 
Backend.AI Technical Introduction (19.09 / 2019 Autumn)
Backend.AI Technical Introduction (19.09 / 2019 Autumn)Backend.AI Technical Introduction (19.09 / 2019 Autumn)
Backend.AI Technical Introduction (19.09 / 2019 Autumn)
Lablup Inc.
 
Prashanth Kumar_Hadoop_NEW
Prashanth Kumar_Hadoop_NEWPrashanth Kumar_Hadoop_NEW
Prashanth Kumar_Hadoop_NEW
Prashanth Shankar kumar
 
Hadoop Summit Dublin 2016: Hadoop Platform at Yahoo - A Year in Review
Hadoop Summit Dublin 2016: Hadoop Platform at Yahoo - A Year in Review Hadoop Summit Dublin 2016: Hadoop Platform at Yahoo - A Year in Review
Hadoop Summit Dublin 2016: Hadoop Platform at Yahoo - A Year in Review
Sumeet Singh
 
sudoers: Benchmarking Hadoop with ALOJA
sudoers: Benchmarking Hadoop with ALOJAsudoers: Benchmarking Hadoop with ALOJA
sudoers: Benchmarking Hadoop with ALOJA
Nicolas Poggi
 
Hadoop and big data training
Hadoop and big data trainingHadoop and big data training
Hadoop and big data training
agiamas
 
Hadoop - Past, Present and Future - v1.1
Hadoop - Past, Present and Future - v1.1Hadoop - Past, Present and Future - v1.1
Hadoop - Past, Present and Future - v1.1
Big Data Joe™ Rossi
 
Tajo_Meetup_20141120
Tajo_Meetup_20141120Tajo_Meetup_20141120
Tajo_Meetup_20141120
Hyoungjun Kim
 
Hadoop Summit San Jose 2015: What it Takes to Run Hadoop at Scale Yahoo Persp...
Hadoop Summit San Jose 2015: What it Takes to Run Hadoop at Scale Yahoo Persp...Hadoop Summit San Jose 2015: What it Takes to Run Hadoop at Scale Yahoo Persp...
Hadoop Summit San Jose 2015: What it Takes to Run Hadoop at Scale Yahoo Persp...
Sumeet Singh
 
TDWI Accelerate, Seattle, Oct 16, 2017: Distributed and In-Database Analytics...
TDWI Accelerate, Seattle, Oct 16, 2017: Distributed and In-Database Analytics...TDWI Accelerate, Seattle, Oct 16, 2017: Distributed and In-Database Analytics...
TDWI Accelerate, Seattle, Oct 16, 2017: Distributed and In-Database Analytics...
Debraj GuhaThakurta
 
TWDI Accelerate Seattle, Oct 16, 2017: Distributed and In-Database Analytics ...
TWDI Accelerate Seattle, Oct 16, 2017: Distributed and In-Database Analytics ...TWDI Accelerate Seattle, Oct 16, 2017: Distributed and In-Database Analytics ...
TWDI Accelerate Seattle, Oct 16, 2017: Distributed and In-Database Analytics ...
Debraj GuhaThakurta
 
Experience sql server on l inux and docker
Experience sql server on l inux and dockerExperience sql server on l inux and docker
Experience sql server on l inux and docker
Bob Ward
 
Fórum E-Commerce Brasil | Tecnologias NVIDIA aplicadas ao e-commerce. Muito a...
Fórum E-Commerce Brasil | Tecnologias NVIDIA aplicadas ao e-commerce. Muito a...Fórum E-Commerce Brasil | Tecnologias NVIDIA aplicadas ao e-commerce. Muito a...
Fórum E-Commerce Brasil | Tecnologias NVIDIA aplicadas ao e-commerce. Muito a...
E-Commerce Brasil
 
Introduction to PowerAI - The Enterprise AI Platform
Introduction to PowerAI - The Enterprise AI PlatformIntroduction to PowerAI - The Enterprise AI Platform
Introduction to PowerAI - The Enterprise AI Platform
Indrajit Poddar
 
Eric Baldeschwieler Keynote from Storage Developers Conference
Eric Baldeschwieler Keynote from Storage Developers ConferenceEric Baldeschwieler Keynote from Storage Developers Conference
Eric Baldeschwieler Keynote from Storage Developers Conference
Hortonworks
 
HBaseCon 2013: Apache Drill - A Community-driven Initiative to Deliver ANSI S...
HBaseCon 2013: Apache Drill - A Community-driven Initiative to Deliver ANSI S...HBaseCon 2013: Apache Drill - A Community-driven Initiative to Deliver ANSI S...
HBaseCon 2013: Apache Drill - A Community-driven Initiative to Deliver ANSI S...
Cloudera, Inc.
 
Overview of big data & hadoop v1
Overview of big data & hadoop   v1Overview of big data & hadoop   v1
Overview of big data & hadoop v1
Thanh Nguyen
 
xPatterns ... beyond Hadoop (Spark, Shark, Mesos, Tachyon)
xPatterns ... beyond Hadoop (Spark, Shark, Mesos, Tachyon)xPatterns ... beyond Hadoop (Spark, Shark, Mesos, Tachyon)
xPatterns ... beyond Hadoop (Spark, Shark, Mesos, Tachyon)
Claudiu Barbura
 
6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...
6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...
6° Sessione - Ambiti applicativi nella ricerca di tecnologie statistiche avan...
Jürgen Ambrosi
 
Backend.AI Technical Introduction (19.09 / 2019 Autumn)
Backend.AI Technical Introduction (19.09 / 2019 Autumn)Backend.AI Technical Introduction (19.09 / 2019 Autumn)
Backend.AI Technical Introduction (19.09 / 2019 Autumn)
Lablup Inc.
 
Ad

More from DataWorks Summit/Hadoop Summit (20)

Running Apache Spark & Apache Zeppelin in Production
Running Apache Spark & Apache Zeppelin in ProductionRunning Apache Spark & Apache Zeppelin in Production
Running Apache Spark & Apache Zeppelin in Production
DataWorks Summit/Hadoop Summit
 
State of Security: Apache Spark & Apache Zeppelin
State of Security: Apache Spark & Apache ZeppelinState of Security: Apache Spark & Apache Zeppelin
State of Security: Apache Spark & Apache Zeppelin
DataWorks Summit/Hadoop Summit
 
Unleashing the Power of Apache Atlas with Apache Ranger
Unleashing the Power of Apache Atlas with Apache RangerUnleashing the Power of Apache Atlas with Apache Ranger
Unleashing the Power of Apache Atlas with Apache Ranger
DataWorks Summit/Hadoop Summit
 
Enabling Digital Diagnostics with a Data Science Platform
Enabling Digital Diagnostics with a Data Science PlatformEnabling Digital Diagnostics with a Data Science Platform
Enabling Digital Diagnostics with a Data Science Platform
DataWorks Summit/Hadoop Summit
 
Revolutionize Text Mining with Spark and Zeppelin
Revolutionize Text Mining with Spark and ZeppelinRevolutionize Text Mining with Spark and Zeppelin
Revolutionize Text Mining with Spark and Zeppelin
DataWorks Summit/Hadoop Summit
 
Double Your Hadoop Performance with Hortonworks SmartSense
Double Your Hadoop Performance with Hortonworks SmartSenseDouble Your Hadoop Performance with Hortonworks SmartSense
Double Your Hadoop Performance with Hortonworks SmartSense
DataWorks Summit/Hadoop Summit
 
Hadoop Crash Course
Hadoop Crash CourseHadoop Crash Course
Hadoop Crash Course
DataWorks Summit/Hadoop Summit
 
Data Science Crash Course
Data Science Crash CourseData Science Crash Course
Data Science Crash Course
DataWorks Summit/Hadoop Summit
 
Apache Spark Crash Course
Apache Spark Crash CourseApache Spark Crash Course
Apache Spark Crash Course
DataWorks Summit/Hadoop Summit
 
Dataflow with Apache NiFi
Dataflow with Apache NiFiDataflow with Apache NiFi
Dataflow with Apache NiFi
DataWorks Summit/Hadoop Summit
 
Schema Registry - Set you Data Free
Schema Registry - Set you Data FreeSchema Registry - Set you Data Free
Schema Registry - Set you Data Free
DataWorks Summit/Hadoop Summit
 
Building a Large-Scale, Adaptive Recommendation Engine with Apache Flink and ...
Building a Large-Scale, Adaptive Recommendation Engine with Apache Flink and ...Building a Large-Scale, Adaptive Recommendation Engine with Apache Flink and ...
Building a Large-Scale, Adaptive Recommendation Engine with Apache Flink and ...
DataWorks Summit/Hadoop Summit
 
Real-Time Anomaly Detection using LSTM Auto-Encoders with Deep Learning4J on ...
Real-Time Anomaly Detection using LSTM Auto-Encoders with Deep Learning4J on ...Real-Time Anomaly Detection using LSTM Auto-Encoders with Deep Learning4J on ...
Real-Time Anomaly Detection using LSTM Auto-Encoders with Deep Learning4J on ...
DataWorks Summit/Hadoop Summit
 
Mool - Automated Log Analysis using Data Science and ML
Mool - Automated Log Analysis using Data Science and MLMool - Automated Log Analysis using Data Science and ML
Mool - Automated Log Analysis using Data Science and ML
DataWorks Summit/Hadoop Summit
 
How Hadoop Makes the Natixis Pack More Efficient
How Hadoop Makes the Natixis Pack More Efficient How Hadoop Makes the Natixis Pack More Efficient
How Hadoop Makes the Natixis Pack More Efficient
DataWorks Summit/Hadoop Summit
 
HBase in Practice
HBase in Practice HBase in Practice
HBase in Practice
DataWorks Summit/Hadoop Summit
 
The Challenge of Driving Business Value from the Analytics of Things (AOT)
The Challenge of Driving Business Value from the Analytics of Things (AOT)The Challenge of Driving Business Value from the Analytics of Things (AOT)
The Challenge of Driving Business Value from the Analytics of Things (AOT)
DataWorks Summit/Hadoop Summit
 
Breaking the 1 Million OPS/SEC Barrier in HOPS Hadoop
Breaking the 1 Million OPS/SEC Barrier in HOPS HadoopBreaking the 1 Million OPS/SEC Barrier in HOPS Hadoop
Breaking the 1 Million OPS/SEC Barrier in HOPS Hadoop
DataWorks Summit/Hadoop Summit
 
From Regulatory Process Verification to Predictive Maintenance and Beyond wit...
From Regulatory Process Verification to Predictive Maintenance and Beyond wit...From Regulatory Process Verification to Predictive Maintenance and Beyond wit...
From Regulatory Process Verification to Predictive Maintenance and Beyond wit...
DataWorks Summit/Hadoop Summit
 
Backup and Disaster Recovery in Hadoop
Backup and Disaster Recovery in Hadoop Backup and Disaster Recovery in Hadoop
Backup and Disaster Recovery in Hadoop
DataWorks Summit/Hadoop Summit
 
Unleashing the Power of Apache Atlas with Apache Ranger
Unleashing the Power of Apache Atlas with Apache RangerUnleashing the Power of Apache Atlas with Apache Ranger
Unleashing the Power of Apache Atlas with Apache Ranger
DataWorks Summit/Hadoop Summit
 
Enabling Digital Diagnostics with a Data Science Platform
Enabling Digital Diagnostics with a Data Science PlatformEnabling Digital Diagnostics with a Data Science Platform
Enabling Digital Diagnostics with a Data Science Platform
DataWorks Summit/Hadoop Summit
 
Double Your Hadoop Performance with Hortonworks SmartSense
Double Your Hadoop Performance with Hortonworks SmartSenseDouble Your Hadoop Performance with Hortonworks SmartSense
Double Your Hadoop Performance with Hortonworks SmartSense
DataWorks Summit/Hadoop Summit
 
Building a Large-Scale, Adaptive Recommendation Engine with Apache Flink and ...
Building a Large-Scale, Adaptive Recommendation Engine with Apache Flink and ...Building a Large-Scale, Adaptive Recommendation Engine with Apache Flink and ...
Building a Large-Scale, Adaptive Recommendation Engine with Apache Flink and ...
DataWorks Summit/Hadoop Summit
 
Real-Time Anomaly Detection using LSTM Auto-Encoders with Deep Learning4J on ...
Real-Time Anomaly Detection using LSTM Auto-Encoders with Deep Learning4J on ...Real-Time Anomaly Detection using LSTM Auto-Encoders with Deep Learning4J on ...
Real-Time Anomaly Detection using LSTM Auto-Encoders with Deep Learning4J on ...
DataWorks Summit/Hadoop Summit
 
Mool - Automated Log Analysis using Data Science and ML
Mool - Automated Log Analysis using Data Science and MLMool - Automated Log Analysis using Data Science and ML
Mool - Automated Log Analysis using Data Science and ML
DataWorks Summit/Hadoop Summit
 
The Challenge of Driving Business Value from the Analytics of Things (AOT)
The Challenge of Driving Business Value from the Analytics of Things (AOT)The Challenge of Driving Business Value from the Analytics of Things (AOT)
The Challenge of Driving Business Value from the Analytics of Things (AOT)
DataWorks Summit/Hadoop Summit
 
From Regulatory Process Verification to Predictive Maintenance and Beyond wit...
From Regulatory Process Verification to Predictive Maintenance and Beyond wit...From Regulatory Process Verification to Predictive Maintenance and Beyond wit...
From Regulatory Process Verification to Predictive Maintenance and Beyond wit...
DataWorks Summit/Hadoop Summit
 

Recently uploaded (20)

ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Automation Dreamin' 2022: Sharing Some Gratitude with Your Users
Automation Dreamin' 2022: Sharing Some Gratitude with Your UsersAutomation Dreamin' 2022: Sharing Some Gratitude with Your Users
Automation Dreamin' 2022: Sharing Some Gratitude with Your Users
Lynda Kane
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
Automation Dreamin': Capture User Feedback From Anywhere
Automation Dreamin': Capture User Feedback From AnywhereAutomation Dreamin': Capture User Feedback From Anywhere
Automation Dreamin': Capture User Feedback From Anywhere
Lynda Kane
 
Network Security. Different aspects of Network Security.
Network Security. Different aspects of Network Security.Network Security. Different aspects of Network Security.
Network Security. Different aspects of Network Security.
gregtap1
 
Buckeye Dreamin' 2023: De-fogging Debug Logs
Buckeye Dreamin' 2023: De-fogging Debug LogsBuckeye Dreamin' 2023: De-fogging Debug Logs
Buckeye Dreamin' 2023: De-fogging Debug Logs
Lynda Kane
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
#AdminHour presents: Hour of Code2018 slide deck from 12/6/2018
#AdminHour presents: Hour of Code2018 slide deck from 12/6/2018#AdminHour presents: Hour of Code2018 slide deck from 12/6/2018
#AdminHour presents: Hour of Code2018 slide deck from 12/6/2018
Lynda Kane
 
Asthma presentación en inglés abril 2025 pdf
Asthma presentación en inglés abril 2025 pdfAsthma presentación en inglés abril 2025 pdf
Asthma presentación en inglés abril 2025 pdf
VanessaRaudez
 
Automation Hour 1/28/2022: Capture User Feedback from Anywhere
Automation Hour 1/28/2022: Capture User Feedback from AnywhereAutomation Hour 1/28/2022: Capture User Feedback from Anywhere
Automation Hour 1/28/2022: Capture User Feedback from Anywhere
Lynda Kane
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Learn the Basics of Agile Development: Your Step-by-Step Guide
Learn the Basics of Agile Development: Your Step-by-Step GuideLearn the Basics of Agile Development: Your Step-by-Step Guide
Learn the Basics of Agile Development: Your Step-by-Step Guide
Marcel David
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Image processinglab image processing image processing
Image processinglab image processing  image processingImage processinglab image processing  image processing
Image processinglab image processing image processing
RaghadHany
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Automation Dreamin' 2022: Sharing Some Gratitude with Your Users
Automation Dreamin' 2022: Sharing Some Gratitude with Your UsersAutomation Dreamin' 2022: Sharing Some Gratitude with Your Users
Automation Dreamin' 2022: Sharing Some Gratitude with Your Users
Lynda Kane
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
Automation Dreamin': Capture User Feedback From Anywhere
Automation Dreamin': Capture User Feedback From AnywhereAutomation Dreamin': Capture User Feedback From Anywhere
Automation Dreamin': Capture User Feedback From Anywhere
Lynda Kane
 
Network Security. Different aspects of Network Security.
Network Security. Different aspects of Network Security.Network Security. Different aspects of Network Security.
Network Security. Different aspects of Network Security.
gregtap1
 
Buckeye Dreamin' 2023: De-fogging Debug Logs
Buckeye Dreamin' 2023: De-fogging Debug LogsBuckeye Dreamin' 2023: De-fogging Debug Logs
Buckeye Dreamin' 2023: De-fogging Debug Logs
Lynda Kane
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
#AdminHour presents: Hour of Code2018 slide deck from 12/6/2018
#AdminHour presents: Hour of Code2018 slide deck from 12/6/2018#AdminHour presents: Hour of Code2018 slide deck from 12/6/2018
#AdminHour presents: Hour of Code2018 slide deck from 12/6/2018
Lynda Kane
 
Asthma presentación en inglés abril 2025 pdf
Asthma presentación en inglés abril 2025 pdfAsthma presentación en inglés abril 2025 pdf
Asthma presentación en inglés abril 2025 pdf
VanessaRaudez
 
Automation Hour 1/28/2022: Capture User Feedback from Anywhere
Automation Hour 1/28/2022: Capture User Feedback from AnywhereAutomation Hour 1/28/2022: Capture User Feedback from Anywhere
Automation Hour 1/28/2022: Capture User Feedback from Anywhere
Lynda Kane
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Learn the Basics of Agile Development: Your Step-by-Step Guide
Learn the Basics of Agile Development: Your Step-by-Step GuideLearn the Basics of Agile Development: Your Step-by-Step Guide
Learn the Basics of Agile Development: Your Step-by-Step Guide
Marcel David
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Image processinglab image processing image processing
Image processinglab image processing  image processingImage processinglab image processing  image processing
Image processinglab image processing image processing
RaghadHany
 

Hadoop Platform at Yahoo

  • 1. HADOOP PLATFORM AT YAHOO A YEAR IN REVIEW SUMEET SINGH (@sumeetksingh) Sr. Director, Cloud and Big Data Platforms
  • 2. Agenda 2 Platform Overview1 Infrastructure and Metrics2 CaffeOnSpark for Distributed DL3 Compute and Sketches4 Oozie6 Ease of Use7 Q&A8 HBase and Omid5
  • 3. 0 100 200 300 400 500 600 700 800 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 RawHDFS(inPB) #Servers Year Servers Storage Yahoo! Commits to Scaling Hadoop for Production Use Research Workloads in Search and Advertising Production (Modeling) with machine learning & WebMap Revenue Systems with Security, Multi- tenancy, and SLAs Open Sourced with Apache Hortonworks Spinoff for Enterprise hardening Nextgen Hadoop (H 0.23 YARN) New Services (HBase, Storm, Spark, Hive) Increased User-base with partitioned namespaces Apache H2.7 (Scalable ML, Latency, Utilization, Productivity) Platform Evolution 3
  • 4. Deployment Models Private (dedicated) Clusters Hosted Multi-tenant (private cloud) Clusters Hosted Compute Clusters  Large demanding use cases  New technology not yet platformized  Data movement and regulation issues  When more cost effective than on- premise  Time to market/ results matter  Data already in public cloud  Source of truth for all of orgs data  App delivery agility  Operational efficiency and cost savings through economies of scale On-Premise Public Cloud Purpose-built Big Data Clusters  For performance, tighter integration with tech stack  Value added services such as monitoring, alerts, tuning and common tools 4
  • 5. Platform Today ZK DBMS MON SSHOP LOG WH TOOLS Apache / Open Source Projects Yahoo Projects HDFS HBase HCat Kafka CMS DH Pig Hive Oozie Hue GDM Big ML YARN CS MR Tez Spark Storm Services Compute Storage / Msg. Tools 5
  • 6. Technology Stack Assembly ZK DBMS MON SSHOP LOG WH TOOLS Apache Projects Yahoo Projects HDFS HBase HCat Kafka CMS DH Pig Hive Oozie Hue GDM Big ML YARN CS MR Tez Spark Storm Services Compute Storage / Msg. Tools HDFS (File System) YARN (Scheduling, Resource Management) Common RHEL6 64-bit, JDK8 Platformized Tech with Production Support In- progress, Unmet needs or Apache Alignment 6
  • 7. Common Backplane DataNode NodeManager NameNode RM DataNodes RegionServers NameNode HBase Master Nimbus Supervisor Administration, Management and Monitoring ZooKeeper Pools HTTP/HDFS/GDM Load Proxies Applications and Data Data Feeds Data Stores Oozie Server HS2/ HCat Network Backplane 7
  • 8. 0 10 20 30 Cluster 1 (2,000 servers) HDFS 12 PB Compute 23 TB Avg. Util: 26% Research Cluster Consolidation 0 20 40 60 80 ComputeTotalandUsed(TB) Cluster 3 (5,400 servers) HDFS 36 PB Compute 70 TB Avg. Util: 59% Cluster 2 (3,100 servers) HDFS 21 PB Compute 52 TB Avg. Util: 40% 0 20 40 60 One Month Sample (2015) Total Used 8
  • 9. 0 50 100 150 200 250 300 Consolidated Cluster HDFS 65 PB Compute 240 TB Avg. Util: 70% Consolidated Research Cluster Characteristics One Month Sample (2016) 40% decrease in TCO 10,500 servers 2,200 servers Before After 65% increase in compute capacity 50% increase in avg. utilization Total Used ComputeTotalandUsed(TB) 9
  • 10. Common Hadoop Cluster Configuration Rack 1 Network Backplane CPU Servers with JBODs & 10GbE Rack 2 Rack N . . . . . . . . . 10
  • 11. New Hadoop Cluster Configuration Rack 1 Network Backplane CPU Servers with JBODs & 10GbE Rack 2 Rack N 100Gbps InfiniBand GPU Servers Hi-Mem Servers . . . 11
  • 12. YARN Node Labels J2J3 J4 Queue 1, 40% Label x Queue 2, 40% Label x, y J1 Queue 3, 20% x x x x x x x x x x x x y y y y y y y y y y y y yarn.scheduler.capacity.root.<queue name>.accessible-node-labels = <label name> yarn.scheduler.capacity.root.<label name>.default-node-label-expression sets the default label asked for by queue Hadoop Cluster 12
  • 13. Agenda Platform Overview1 Infrastructure and Metrics2 CaffeOnSpark for Distributed DL3 Compute and Sketches4 Oozie6 Ease of Use7 Q&A8 HBase and Omid5 13
  • 14. CaffeOnSpark – Distributed Deep Learning CaffeOnSpark for DL MLLib for non-DL Hive or SparkSQL Spark YARN (RM and Scheduling) HDFS (Datasets) . . . 14
  • 15. Few Use Cases – Yahoo Weather 15
  • 16. Few Use Cases – Flickr Facial Recognition 16
  • 17. Few Use Cases – Flickr Scene Detection 17
  • 18. CaffeOnSpark Architecture – Common Cluster Spark Driver Caffe (enhanced with multi-GPU/CPU) Model Synchronizer (across nodes) HDFS Datasets Spark Executor (for data feeding and control) Caffe (enhanced with multi-GPU/CPU) Model Synchronizer (across nodes) HDFS Datasets Spark Executor (for data feeding and control) Caffe (enhanced with multi-GPU/CPU) Model Synchronizer (across nodes) HDFS Datasets Spark Executor (for data feeding and control) Model O/P on HDFS MPI on RDMA / TCP 18
  • 19. CaffeOnSpark Architecture – Incremental Learning cos = new CaffeOnSpark(ctx) conf = new Config(ctx, args).init() dl_train_source = DataSource.getSource(conf, true) cos.train(dl_train_source) //training DL model lr_raw_source = DataSource.getSource(conf, false) ext_df = cos.features(lr_raw_source) // extract features via DL Feature Engineering: DeepLearning 19
  • 20. CaffeOnSpark Architecture – Incremental Learning cos = new CaffeOnSpark(ctx) conf = new Config(ctx, args).init() dl_train_source = DataSource.getSource(conf, true) cos.train(dl_train_source) //training DL model lr_raw_source = DataSource.getSource(conf, false) ext_df = cos.features(lr_raw_source) // extract features via DL vlr_input=ext_df.withColumn(“L",cos.floats2doubleUDF(ext_df(conf.label)) ) .withColumn(“F",cos.floats2doublesUDF(ext_df(conf.features(0)))) lr = new LogisticRegression().setLabelCol(”L").setFeaturesCol(”F") lr_model = lr.fit(lr_input_df) … Feature Engineering: DeepLearning 20 TrainClassifiers: Non-deep Learning
  • 21. CaffeOnSpark Architecture – Single Command spark-submit --num-executors #Exes --class CaffeOnSpark my-caffe-on-spark.jar -devices #GPUs -model dl_model_file -output lr_model_file 21
  • 22. Distributed Deep Learning Apache License Existing Clusters Powerful DL Platform Fully Distributed High-level API Incremental Learning CaffeOnSpark github.com/yahoo/caffeonspark 22
  • 23. Agenda Platform Overview1 Infrastructure and Metrics2 CaffeOnSpark for Distributed DL3 Compute and Sketches4 Oozie6 Ease of Use7 Q&A8 HBase and Omid5 23
  • 24. Hadoop Compute Sources HDFS (File System and Storage) Pig (Scripting) Hive (SQL) Java MR APIs YARN (Resource Management and Scheduling) Tez (Execution Engine for Pig and Hive) Spark (Alternate Exec Engine) MapReduce (Legacy) Data Processing ML Custom App on Slider Oozie Data Management 24
  • 26. 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Pushing Batch Compute Boundaries%ofTotalCompute(memory-sec) Q1 2016 MapReduce Tez Spark 112 Million Batch Jobs in Q1’16 Jan 78% Mar 67% Mar 21% 12%Jan 8% 14% 26
  • 28. Recent Apache Storm Developments at Yahoo MT & RA Scheduler Dist. Cache API 8 x Throughput Improved Debuggability 1 github.com/yahoo/streaming-benchmarks Pacemaker Server Streaming Benchmark 1 28
  • 29. Data Sketches Algorithms Data Sketches Algorithms Library datasketches.github.io  Good enough approximate answers for problem queries  Streamable  Approximate with predictable error  Sub-linear in size  Mergeable / additive  Highly parallelizable  Maven deployable Characteristics 29
  • 30. Distinct Count Sketch, High-level View Big Data Stream Transform Data Structure Estimator Result + / - ε White Noise Basic Sketch Elements 30
  • 31. Data Sketches Algorithms Data Sketches Algorithms Library datasketches.github.io 31
  • 32. Agenda Platform Overview1 Infrastructure and Metrics2 CaffeOnSpark for Distributed DL3 Compute and Sketches4 Oozie6 Ease of Use7 Q&A8 HBase and Omid5 32
  • 33. Apache HBase at Yahoo  Security  Isolated Deployment  Multi-tenant  Region Server Group  Namespace  Unsupported Features HBase Client HBase Client JobTracker Namenode TaskTracker DataNode Namenode RegionServer DataNode RegionServer DataNode RegionServer DataNode HBase Master Zookeeper Quorum HBase Client MR Client M/R Task TaskTracker DataNode M/R Task TaskTracker DataNode MR Task Compute Cluster HBase Cluster Gateway/Launcher Rest Proxy HTTP Client 33
  • 34. Security  Authentication  Kerberos (users, processes)  Delegation Token (MapReduce, YARN, etc.)  Authorization  HBase ACLs (Read, Write, Create, Admin)  Grant permissions to User or Unix Group  ACL for Table, Column Family or Column 34
  • 35. Region Server Groups  Dedicated region servers for a set of tables  Resource Isolation (CPU, Memory, IO, etc) RegionServer Group Foo RegionServer RegionServer RegionServer Region Server 1...5 TableA TableB TableC TableD TableE TableF RegionServer Group Bar RegionServer RegionServer RegionServer Region Server 6…10 Table1 Table2 Table3 Table4 Table5 Table6 35
  • 36. Namespaces  Analogous to “Database”  Namespace ACL to create tables  Default group  Quota  Tables  Regions Namespace Group Tables Quota ACL 36
  • 37. Split Meta to Spread Load and Avoid Large Regions 37
  • 38. Favored Nodes for HDFS Locality 38
  • 40. Scaling HBase to Handle Millions of Regions on a Cluster Region Server Groups Split Meta Split ZK Favored Nodes Humongous Tables 40
  • 41. Transactions on HBase with Omid1 Highly performant and fault tolerant ACID transactional framework New Apache Incubator project incubator.apache.org/projects/omid.html Handles million of transactions per day for search and personalization products 1 Omid stands for “Hope” in Persian 41
  • 44. Agenda Platform Overview1 Infrastructure and Metrics2 CaffeOnSpark for Distributed DL3 Compute and Sketches4 Oozie6 Ease of Use7 Q&A8 HBase and Omid5 44
  • 45. Oozie Data Pipelines Oozie Message Bus HCatalog 3. Push notification <New Partition> 2. Register Topic 4. Notify New Partition Data Producer HDFS Produce data (distcp, pig, M/R..) /data/click/2014/06/02 1. Query/Poll Partition Start workflow Update metadata (ALTER TABLE click ADD PARTITION(data=‘2014/06/02’) location ’hdfs://data/click/2014/06/02’) 45
  • 46. Large Scale Data Pipeline Requirements Administrative  One should be able to start, stop and pause all related pipelines at a same time Dependency Management  Output of a coordinator “n+1” action is dependent on coordinator “n” action (dataset dependency)  If dataset has a BCP instance, workflow should run with either, whichever arrives first  Start as soon as mandatory data is available, other feeds are optional  Data is not guaranteed, start processing even if partial data is available SLA Management  Monitor pipeline processing to take immediate action in case of failures or SLA misses  Pipelines owners should get notified if an SLA is missed Multiple Providers  If data is available from multiple providers, I want to specify the provider priority  Combine datasets from multiple providers to fill the gaps in data a single provider may have 46
  • 47. Large Scale Data Pipeline Requirements Administrative  One should be able to start, stop and pause all related pipelines at a same time Dependency Management  Output of a coordinator “n+1” action is dependent on coordinator “n” action (dataset dependency)  If dataset has a BCP instance, workflow should run with either, whichever arrives first  Start as soon as mandatory data is available, other feeds are optional  Data is not guaranteed, start processing even if partial data is available SLA Management  Monitor pipeline processing to take immediate action in case of failures or SLA misses  Pipelines owners should get notified if an SLA is missed Multiple Providers  If data is available from multiple providers, I want to specify the provider priority  Combine datasets from multiple providers to fill the gaps in data a single provider may have 47
  • 48. BCP And Mandatory / Optional Feeds Pull data from A or B. Specify dataset as AorB. Action will start running as soon either dataset A or B is available. <input-logic> <or name=“AorB”> <data-in dataset="A” wait=“10”/> <data-in dataset="B"/> </or> </input-logic> Dataset B is optional, Oozie will start processing as soon as A is available. It will include dataset from A and whatever is available from B. <input-logic> <and name="optional <data-in dataset="A"/> <data-in dataset="B" min=”0”/> </and> </input-logic> 48
  • 49. Data Not Guaranteed / Priority Among Dataset Instances A will have higher precedence over B and B will have higher precedence over C. <input-logic> <or name="AorBorC"> <data-in dataset="A"/> <data-in dataset="B"/> <data-in dataset="C”/> </or> </input-logic> 49 Oozie will start processing if available A instances are >= 10. Min can also be combined with wait (as shown for dataset B). <input-logic> <data-in dataset="A" min=”10”/> <data-in dataset=“B” min =“10” wait=“20”/> </input-logic>
  • 50. Combining Dataset From Multiple Providers Combine function will first check instances from A and go to B next for whatever is missing in A. <data-in name="A" dataset="dataset_A"> <start-instance> ${coord:CURRENT(-5)} </start-instance> <end-instance> ${coord:latest(-1)} </end-instance> </data-in> <data-in name="B" dataset="dataset_B"> <start-instance>${coord:CURRENT(-5)}</start-instance> <end-instance>${coord:CURRENT(-1)}</end-instance> </data-in> <input-logic> <combine name="AB"> <data-in dataset="A"/> <data-in dataset="B"/> </combine> </input-logic> 50
  • 51. Agenda Platform Overview1 Infrastructure and Metrics2 CaffeOnSpark for Distributed DL3 Compute and Sketches4 Oozie6 Ease of Use7 Q&A8 HBase and Omid5 51
  • 52. Automated Onboarding / Collaboration Portal 52
  • 53. Built for Tenant Transparency 53
  • 55. Data Discovery and Access 55
  • 56. Audits, Compliance, and Efficiency Starling FS, Job, Task logs Cluster 1 Cluster 2 Cluster n... CF, Region, Action, Query Stats Cluster 1 Cluster 2 Cluster n... DB, Tbl., Part., Colmn. Access Stats ...MS 1 MS 2 MS n GDM Data Defn., Flow, Feed, Source F 1 F 2 F n Log Warehouse Log Sources 56
  • 57. Audits, Compliance, and Efficiency (cont’d) Data Discovery and Access Public Non-sensitive Financial $ Governance Classification No addn. reqmt. LMS Integration Stock Admin Integration Approval Flow Restricted 57
  • 58. Hosted UI – Hue as a Service WSGI Hue-1.Cluster-1 (Hot) VIPUsers HS2 Hue MySQL DB (HA) Hadoop Cluster HCat Meta Oozie Server YARN RM Web HDFS NMs WSGI Hue-2.Cluster-1 (hot) HS2 IdP SAML Auth. Serving pages and static content Cookies, saved queries, workflows etc. FullStackHA REST / Thrift (jQuery, Bootstrap, Knockout.js, Love) 58
  • 60. Increased Intelligence GBDT FTRL SGD Deep Learning Random Forests ML Libraries Click Prediction Search RankingKeyword Auctions Ad Relevance Abuse Detection Applications Proven to Work at Scale Solve Complex Problems YARN (Resource Manager) Heterogeneous Scheduling Long-running Services GPUs Large Memory Support Core Grid Enhancements … Parameter ServerGlobally Shared Parameters Compute Engines Distributed Processing … 60
  • 61. Greater Speed DeData Management Ease of Use Productivity Dimensions Real-time Pipelines Unified Metadata & Lineage Fine-grained Access Control Self-serve Data Movement SLA & Cost Transparency Intuitive UIs Planning & Collab. Tools Central Grid Portal Improvements Query times < 1 sec 4x Speedups in ETL SQL on HBase Limitless BI Clients Analytics, BI & Reporting 61
  • 62. Higher Efficiency Achieve five 9’s availability and 70% average compute utilization across clusters 62
  • 63. Hadoop Users at Yahoo Slingstone & Aviate Mail Anti-Spam Gemini Campaign Mgmt. Search Assist Audience Analytics Flickr YAM+ & Targeting Membership Abuse … and many more. 63
  • 64. Yahoo at the Apache Open Source Foundation 10 Committers (6 PMC) 3 Committers (3 PMC) 3 Committers (2 PMC) 6 Committer (5 PMC) 1 Committer 3 Committers (2 PMCs) 7 Committers (6 PMCs) 1 2 43 5 6 7 8 1 Committer 64
  • 65. Join Us @ yahoohadoop.tumblr.com 65
  • 66. THANK YOU SUMEET SINGH (@sumeetksingh) Sr. Director, Cloud and Big Data Platforms Icon Courtesy – iconfinder.com (under Creative Commons)

Editor's Notes

  • #49: JIRA 1976 (Oozie 4.3)
  • #50: While $coord:latest allows skipping to available ones, the workflow will never trigger unless mentioned number of instances are found. Min can be also combined with wait. If all dependencies are not met and if we have met MIN dependencies and then Oozie keeps on waiting for more instance till wait time elapses or all data dependencies are met.
  • #55: (30 secs) T: 2 min 30 secs xyz
  • #57: Protocols REST – Use pyhton-requests and a custom client to streamline RESTful interface calls Thrift – Custom connection pooling and socket multiplexing to streamline thrift calls Accessibility Middleware – Make Hadoop interfaces accessible in request objects Hue uses CherryPy web server. You can use the following options to change the IP address and port that the web server listens on. The default setting is port 8888 on all configured IP addresses. If you don’t specify a secret key, your session cookies will not be secure. Hue will run but it will also display error messages telling you to set the secret key. You can configure Hue to serve over HTTPS. To do so, you must install "pyOpenSSL" within Hue’s context and configure your keys.
  • #58: Protocols REST – Use pyhton-requests and a custom client to streamline RESTful interface calls Thrift – Custom connection pooling and socket multiplexing to streamline thrift calls Accessibility Middleware – Make Hadoop interfaces accessible in request objects Hue uses CherryPy web server. You can use the following options to change the IP address and port that the web server listens on. The default setting is port 8888 on all configured IP addresses. If you don’t specify a secret key, your session cookies will not be secure. Hue will run but it will also display error messages telling you to set the secret key. You can configure Hue to serve over HTTPS. To do so, you must install "pyOpenSSL" within Hue’s context and configure your keys.