SlideShare a Scribd company logo
Christoforos Kachris
ICCS-NTUA
Speedup Spark
Applications using FPGA
Accelerators on the cloud
#EUres8
Performance in Spark
• 91% if Spark
users care about
performance
2Christoforos Kachris, www.inaccel.com, 2017, #EUres8
FEATURES USERS CONSIDER IMPORTANT
Accelerators versus Processors
3Christoforos Kachris, www.inaccel.com, 2017, #EUres8
[Source: National Instruments: Smart Grid Ready Instrumentation”
Flexibility versus Performance
4Christoforos Kachris, www.inaccel.com, 2017, #EUres8
CPU: High flexibility, lower efficiency Accelerators: High throughput, higher efficiency
GPUs and FPGAs can provide massive parallelism and higher efficiency
than CPUs for certain categories of applications
[Source: Amazon AWS f1]
Hardware Acceleration
5Christoforos Kachris, www.inaccel.com, 2017, #EUres8
module fi lter1 ( clock, rst, st rm_in, out)
for (i =0; i<N UMUNITS ; i=i+1 )
always @(posed ge cloc k)
intege r i,j; //index for lo ops
tm p_kerne l[j] = k[i*OFF SETX];
FPGA handles compute-
intensive, deeply pipelined,
hardware-accelerated
operations
CPU handles the rest
application
[Source: Amazon AWS f1]
Process flow using Accelerators
6Christoforos Kachris, www.inaccel.com, 2017, #EUres8
user
c4, m4
F1 (FPGA)
Amazon
Marketplace
Download
Accelerator
from Marketplace
Run your code on CPU
Offload hard
work on F1
Amazon Resources
7
Amazon
Machine
Image (AMI)
Amazon FPGA
Image (AFI)
EC2 F1
Instance
CPU
Application
on F1
DDR-4
Attached
Memory
DDR-4
Attached
Memory
DDR-4
Attached
Memory
DDR-4
Attached
Memory
DDR-4
Attached
Memory
DDR-4
Attached
Memory
DDR-4
Attached
Memory
DDR-4
Attached
Memory
FPGA Link
PCIe
DDR
Controllers
Launch Instance
and Load AFI
[Source: Amazon AWS f1]
FPGAs in Amazon AWS
8
Amazon EC2 FPGA
Deployment via Marketplace
Amazon
Machine
Image (AMI)
Amazon FPGA Image
(AFI)
AFI is secured, encrypted,
dynamically loaded into the
FPGA - can’t be copied or
downloaded
Customers
AWS Marketplace
[Source: Amazon AWS f1]
A use case on Logistic regression
LR is used for building
predictive models for many
complex pattern-matching and
classification problems.
It can be applied widely in such
diverse areas as
• bioinformatics,
• finance and
• data analytics.
One of the most popular
Machine Learning techniques.
9Christoforos Kachris, www.inaccel.com, 2017, #EUres8
Hardware accelerator for LR
10Christoforos Kachris, www.inaccel.com, 2017, #EUres8
Accelerated Mllib
• Extension of Spark libraries
11Christoforos Kachris, www.inaccel.com, 2017, #EUres8
Spark – FPGA interface
• Spark worker
• Python API
• C API
Support for:
12Christoforos Kachris, www.inaccel.com, 2017, #EUres8
ML acceleration library
13Christoforos Kachris, www.inaccel.com, 2017, #EUres8
Evaluation in cluster
14Christoforos Kachris, www.inaccel.com, 2017, #EUres8
• Evaluation on a Handwritten Digit
Recognition Problem
– Take an image of a handwritten single digit,
and determine what that digit is.
• 10 classes, 786 features
• 40k lines train file
• Given a new data point, models will be
run, and the class with largest probability
will be chosen as the predicted class.
Evaluation
• Evaluation on a
Handwritten Digit
Recognition Problem
– Take an image of a
handwritten single
digit, and determine
what that digit is.
• Features of evaluated
platforms
15Christoforos Kachris, www.inaccel.com, 2017, #EUres8
Spark implementation
16Christoforos Kachris, www.inaccel.com, 2017, #EUres8
Cluster on FPGA nodes
17Christoforos Kachris, www.inaccel.com, 2017, #EUres8
18Christoforos Kachris, www.inaccel.com, 2017, #EUres8
Spark running on FPGA-based cluster
19Christoforos Kachris, www.inaccel.com, 2017, #EUres8
Speedup
• Xeon vs
Xeon +
small
FPGA
cluster
20Christoforos Kachris, www.inaccel.com, 2017, #EUres8
Comparison
21Christoforos Kachris, www.inaccel.com, 2017, #EUres8
SW (Intel Xeon)
SW+HW
(Accel on FPGA SoCs)
Spark Accelerators
22Christoforos Kachris, www.inaccel.com, 2017, #EUres8
• Develop	hardware	components	
as	IP	cores	for	widely	used	
applications
• Spark
• Logistic	regression
• Recommendation	 (ALS)
• K-means
• Linear	regression
• PageRank
• Graph	computing
Source: C. Kachris et al.,
Spark acceleration using
FPGAs, best paper award,
IEEE MOCAST 2017
3x – 50x speedup
Comparison with Amazon AWS EC
• c4 (36 cores)
• m4 (16 cores)
• f1 with our
Accelerator
23Christoforos Kachris, www.inaccel.com, 2017, #EUres8
0
10
20
30
40
50
60
c4	(36) m4	(16) f1	(Accel)
Logistic	regression	comparison
3x	- 10x	
speedup
Mllib library to be covered
MLlib contains many algorithms and utilities.
• Classification: logistic regression, naive Bayes,...
• Regression: generalized linear regression, survival
regression,...
• Recommendation: alternating least squares (ALS)
• Clustering: K-means, Gaussian mixtures (GMMs),...
• Topic modeling: latent Dirichlet allocation (LDA)
• Frequent itemsets, association rules, and sequential pattern
mining
24Christoforos Kachris, www.inaccel.com, 2017, #EUres8
VINEYARD framework
• Utilize FPGA
resources
seamlessly
More info :
vineyardh2020.eu
25Christoforos Kachris, www.inaccel.com, 2017, #EUres8
www.vineyard-
h2020.eu
26
Overview - InAccel
27Christoforos Kachris, www.inaccel.com, 2017, #EUres8
InAccel provides high performance accelerators for your
application based on novel hardware reconfigurable engines as IP
blocks.
The hardware accelerators can be used to improve the
performance of your applications both in terms of throughput and
execution time (latency).
Spark integration
The hardware accelerators of InAccel are compatible with
the Apache Spark framework and allow faster execution of
Spark applications based on MLlib (machine learning) and
GraphX libraries.
Overview - InAccel
28Christoforos Kachris, www.inaccel.com, 2017, #EUres8
Amazon compatibility
InAccel develops hardware accelerators that are compatible
with the Amazon AWS F1 platform. Use the hardware
accelerators as an IP to speedup your application, seamlessly,
without the purchase of any hardware.​
No need for code changes
InAccel provides all the
required APIs for the
seamless integration of the
accelerators without any
modifications on your
original code.
Thank you
Questions?
kachris@microlab.ntua.gr
29Christoforos Kachris, www.inaccel.com, 2017, #EUres8
Ad

More Related Content

What's hot (20)

MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
Spark Summit
 
Feature Hashing for Scalable Machine Learning with Nick Pentreath
Feature Hashing for Scalable Machine Learning with Nick PentreathFeature Hashing for Scalable Machine Learning with Nick Pentreath
Feature Hashing for Scalable Machine Learning with Nick Pentreath
Spark Summit
 
Speeding Up Spark with Data Compression on Xeon+FPGA with David Ojika
Speeding Up Spark with Data Compression on Xeon+FPGA with David OjikaSpeeding Up Spark with Data Compression on Xeon+FPGA with David Ojika
Speeding Up Spark with Data Compression on Xeon+FPGA with David Ojika
Databricks
 
Spark Summit EU talk by Ahsan Javed Awan
Spark Summit EU talk by Ahsan Javed AwanSpark Summit EU talk by Ahsan Javed Awan
Spark Summit EU talk by Ahsan Javed Awan
Spark Summit
 
Scaling out Tensorflow-as-a-Service on Spark and Commodity GPUs
Scaling out Tensorflow-as-a-Service on Spark and Commodity GPUsScaling out Tensorflow-as-a-Service on Spark and Commodity GPUs
Scaling out Tensorflow-as-a-Service on Spark and Commodity GPUs
Jim Dowling
 
Spark Summit EU talk by Patrick Baier and Stanimir Dragiev
Spark Summit EU talk by Patrick Baier and Stanimir DragievSpark Summit EU talk by Patrick Baier and Stanimir Dragiev
Spark Summit EU talk by Patrick Baier and Stanimir Dragiev
Spark Summit
 
Elastify Cloud-Native Spark Application with Persistent Memory
Elastify Cloud-Native Spark Application with Persistent MemoryElastify Cloud-Native Spark Application with Persistent Memory
Elastify Cloud-Native Spark Application with Persistent Memory
Databricks
 
Supporting Highly Multitenant Spark Notebook Workloads with Craig Ingram and ...
Supporting Highly Multitenant Spark Notebook Workloads with Craig Ingram and ...Supporting Highly Multitenant Spark Notebook Workloads with Craig Ingram and ...
Supporting Highly Multitenant Spark Notebook Workloads with Craig Ingram and ...
Spark Summit
 
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
Spark Summit
 
High Performance Enterprise Data Processing with Apache Spark with Sandeep Va...
High Performance Enterprise Data Processing with Apache Spark with Sandeep Va...High Performance Enterprise Data Processing with Apache Spark with Sandeep Va...
High Performance Enterprise Data Processing with Apache Spark with Sandeep Va...
Spark Summit
 
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Apache Spark Structured Streaming Helps Smart Manufacturing with  Xiaochang WuApache Spark Structured Streaming Helps Smart Manufacturing with  Xiaochang Wu
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Spark Summit
 
VEGAS: The Missing Matplotlib for Scala/Apache Spark with Roger Menezes and D...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with Roger Menezes and D...VEGAS: The Missing Matplotlib for Scala/Apache Spark with Roger Menezes and D...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with Roger Menezes and D...
Spark Summit
 
Spark Summit EU talk by Kaarthik Sivashanmugam
Spark Summit EU talk by Kaarthik SivashanmugamSpark Summit EU talk by Kaarthik Sivashanmugam
Spark Summit EU talk by Kaarthik Sivashanmugam
Spark Summit
 
Spark Summit EU talk by Yaroslav Nedashkovsky and Andy Starzhinsky
Spark Summit EU talk by Yaroslav Nedashkovsky and Andy StarzhinskySpark Summit EU talk by Yaroslav Nedashkovsky and Andy Starzhinsky
Spark Summit EU talk by Yaroslav Nedashkovsky and Andy Starzhinsky
Spark Summit
 
Parallelizing Large Simulations with Apache SparkR with Daniel Jeavons and Wa...
Parallelizing Large Simulations with Apache SparkR with Daniel Jeavons and Wa...Parallelizing Large Simulations with Apache SparkR with Daniel Jeavons and Wa...
Parallelizing Large Simulations with Apache SparkR with Daniel Jeavons and Wa...
Spark Summit
 
End-to-End Data Pipelines with Apache Spark
End-to-End Data Pipelines with Apache SparkEnd-to-End Data Pipelines with Apache Spark
End-to-End Data Pipelines with Apache Spark
Burak Yavuz
 
Cooperative Task Execution for Apache Spark
Cooperative Task Execution for Apache SparkCooperative Task Execution for Apache Spark
Cooperative Task Execution for Apache Spark
Databricks
 
Spark Summit EU talk by Bas Geerdink
Spark Summit EU talk by Bas GeerdinkSpark Summit EU talk by Bas Geerdink
Spark Summit EU talk by Bas Geerdink
Spark Summit
 
High Performance Python on Apache Spark
High Performance Python on Apache SparkHigh Performance Python on Apache Spark
High Performance Python on Apache Spark
Wes McKinney
 
Spark Summit EU talk by Berni Schiefer
Spark Summit EU talk by Berni SchieferSpark Summit EU talk by Berni Schiefer
Spark Summit EU talk by Berni Schiefer
Spark Summit
 
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
Spark Summit
 
Feature Hashing for Scalable Machine Learning with Nick Pentreath
Feature Hashing for Scalable Machine Learning with Nick PentreathFeature Hashing for Scalable Machine Learning with Nick Pentreath
Feature Hashing for Scalable Machine Learning with Nick Pentreath
Spark Summit
 
Speeding Up Spark with Data Compression on Xeon+FPGA with David Ojika
Speeding Up Spark with Data Compression on Xeon+FPGA with David OjikaSpeeding Up Spark with Data Compression on Xeon+FPGA with David Ojika
Speeding Up Spark with Data Compression on Xeon+FPGA with David Ojika
Databricks
 
Spark Summit EU talk by Ahsan Javed Awan
Spark Summit EU talk by Ahsan Javed AwanSpark Summit EU talk by Ahsan Javed Awan
Spark Summit EU talk by Ahsan Javed Awan
Spark Summit
 
Scaling out Tensorflow-as-a-Service on Spark and Commodity GPUs
Scaling out Tensorflow-as-a-Service on Spark and Commodity GPUsScaling out Tensorflow-as-a-Service on Spark and Commodity GPUs
Scaling out Tensorflow-as-a-Service on Spark and Commodity GPUs
Jim Dowling
 
Spark Summit EU talk by Patrick Baier and Stanimir Dragiev
Spark Summit EU talk by Patrick Baier and Stanimir DragievSpark Summit EU talk by Patrick Baier and Stanimir Dragiev
Spark Summit EU talk by Patrick Baier and Stanimir Dragiev
Spark Summit
 
Elastify Cloud-Native Spark Application with Persistent Memory
Elastify Cloud-Native Spark Application with Persistent MemoryElastify Cloud-Native Spark Application with Persistent Memory
Elastify Cloud-Native Spark Application with Persistent Memory
Databricks
 
Supporting Highly Multitenant Spark Notebook Workloads with Craig Ingram and ...
Supporting Highly Multitenant Spark Notebook Workloads with Craig Ingram and ...Supporting Highly Multitenant Spark Notebook Workloads with Craig Ingram and ...
Supporting Highly Multitenant Spark Notebook Workloads with Craig Ingram and ...
Spark Summit
 
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
Spark Summit
 
High Performance Enterprise Data Processing with Apache Spark with Sandeep Va...
High Performance Enterprise Data Processing with Apache Spark with Sandeep Va...High Performance Enterprise Data Processing with Apache Spark with Sandeep Va...
High Performance Enterprise Data Processing with Apache Spark with Sandeep Va...
Spark Summit
 
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Apache Spark Structured Streaming Helps Smart Manufacturing with  Xiaochang WuApache Spark Structured Streaming Helps Smart Manufacturing with  Xiaochang Wu
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Spark Summit
 
VEGAS: The Missing Matplotlib for Scala/Apache Spark with Roger Menezes and D...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with Roger Menezes and D...VEGAS: The Missing Matplotlib for Scala/Apache Spark with Roger Menezes and D...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with Roger Menezes and D...
Spark Summit
 
Spark Summit EU talk by Kaarthik Sivashanmugam
Spark Summit EU talk by Kaarthik SivashanmugamSpark Summit EU talk by Kaarthik Sivashanmugam
Spark Summit EU talk by Kaarthik Sivashanmugam
Spark Summit
 
Spark Summit EU talk by Yaroslav Nedashkovsky and Andy Starzhinsky
Spark Summit EU talk by Yaroslav Nedashkovsky and Andy StarzhinskySpark Summit EU talk by Yaroslav Nedashkovsky and Andy Starzhinsky
Spark Summit EU talk by Yaroslav Nedashkovsky and Andy Starzhinsky
Spark Summit
 
Parallelizing Large Simulations with Apache SparkR with Daniel Jeavons and Wa...
Parallelizing Large Simulations with Apache SparkR with Daniel Jeavons and Wa...Parallelizing Large Simulations with Apache SparkR with Daniel Jeavons and Wa...
Parallelizing Large Simulations with Apache SparkR with Daniel Jeavons and Wa...
Spark Summit
 
End-to-End Data Pipelines with Apache Spark
End-to-End Data Pipelines with Apache SparkEnd-to-End Data Pipelines with Apache Spark
End-to-End Data Pipelines with Apache Spark
Burak Yavuz
 
Cooperative Task Execution for Apache Spark
Cooperative Task Execution for Apache SparkCooperative Task Execution for Apache Spark
Cooperative Task Execution for Apache Spark
Databricks
 
Spark Summit EU talk by Bas Geerdink
Spark Summit EU talk by Bas GeerdinkSpark Summit EU talk by Bas Geerdink
Spark Summit EU talk by Bas Geerdink
Spark Summit
 
High Performance Python on Apache Spark
High Performance Python on Apache SparkHigh Performance Python on Apache Spark
High Performance Python on Apache Spark
Wes McKinney
 
Spark Summit EU talk by Berni Schiefer
Spark Summit EU talk by Berni SchieferSpark Summit EU talk by Berni Schiefer
Spark Summit EU talk by Berni Schiefer
Spark Summit
 

Similar to Hardware Acceleration of Apache Spark on Energy-Efficient FPGAs with Christoforos Kachris (20)

Apache Spark Acceleration Using Hardware Resources in the Cloud, Seamlessl wi...
Apache Spark Acceleration Using Hardware Resources in the Cloud, Seamlessl wi...Apache Spark Acceleration Using Hardware Resources in the Cloud, Seamlessl wi...
Apache Spark Acceleration Using Hardware Resources in the Cloud, Seamlessl wi...
Databricks
 
Big Data Everywhere Chicago: High Performance Computing - Contributions Towar...
Big Data Everywhere Chicago: High Performance Computing - Contributions Towar...Big Data Everywhere Chicago: High Performance Computing - Contributions Towar...
Big Data Everywhere Chicago: High Performance Computing - Contributions Towar...
BigDataEverywhere
 
2018 03 25 system ml ai and openpower meetup
2018 03 25 system ml ai and openpower meetup2018 03 25 system ml ai and openpower meetup
2018 03 25 system ml ai and openpower meetup
Ganesan Narayanasamy
 
Bergman Enabling Computation for neuro ML external
Bergman Enabling Computation for neuro ML externalBergman Enabling Computation for neuro ML external
Bergman Enabling Computation for neuro ML external
azlefty
 
FPGA Hardware Accelerator for Machine Learning
FPGA Hardware Accelerator for Machine Learning FPGA Hardware Accelerator for Machine Learning
FPGA Hardware Accelerator for Machine Learning
Dr. Swaminathan Kathirvel
 
Azure 機器學習 - 使用Python, R, Spark, CNTK 深度學習
Azure 機器學習 - 使用Python, R, Spark, CNTK 深度學習 Azure 機器學習 - 使用Python, R, Spark, CNTK 深度學習
Azure 機器學習 - 使用Python, R, Spark, CNTK 深度學習
Herman Wu
 
Typesafe spark- Zalando meetup
Typesafe spark- Zalando meetupTypesafe spark- Zalando meetup
Typesafe spark- Zalando meetup
Stavros Kontopoulos
 
A Semantic-Based Approach to Attain Reproducibility of Computational Environm...
A Semantic-Based Approach to Attain Reproducibility of Computational Environm...A Semantic-Based Approach to Attain Reproducibility of Computational Environm...
A Semantic-Based Approach to Attain Reproducibility of Computational Environm...
Idafen Santana Pérez
 
SF Big Analytics & SF Machine Learning Meetup: Machine Learning at the Limit ...
SF Big Analytics & SF Machine Learning Meetup: Machine Learning at the Limit ...SF Big Analytics & SF Machine Learning Meetup: Machine Learning at the Limit ...
SF Big Analytics & SF Machine Learning Meetup: Machine Learning at the Limit ...
Chester Chen
 
OpenCAPI-based Image Analysis Pipeline for 18 GB/s kilohertz-framerate X-ray ...
OpenCAPI-based Image Analysis Pipeline for 18 GB/s kilohertz-framerate X-ray ...OpenCAPI-based Image Analysis Pipeline for 18 GB/s kilohertz-framerate X-ray ...
OpenCAPI-based Image Analysis Pipeline for 18 GB/s kilohertz-framerate X-ray ...
Ganesan Narayanasamy
 
Compare Performance-power of Arm Cortex vs RISC-V for AI applications_oct_2021
Compare Performance-power of Arm Cortex vs RISC-V for AI applications_oct_2021Compare Performance-power of Arm Cortex vs RISC-V for AI applications_oct_2021
Compare Performance-power of Arm Cortex vs RISC-V for AI applications_oct_2021
Deepak Shankar
 
Track A-2 基於 Spark 的數據分析
Track A-2 基於 Spark 的數據分析Track A-2 基於 Spark 的數據分析
Track A-2 基於 Spark 的數據分析
Etu Solution
 
FPGAs as Components in Heterogeneous HPC Systems (paraFPGA 2015 keynote)
FPGAs as Components in Heterogeneous HPC Systems (paraFPGA 2015 keynote) FPGAs as Components in Heterogeneous HPC Systems (paraFPGA 2015 keynote)
FPGAs as Components in Heterogeneous HPC Systems (paraFPGA 2015 keynote)
Wim Vanderbauwhede
 
Stories About Spark, HPC and Barcelona by Jordi Torres
Stories About Spark, HPC and Barcelona by Jordi TorresStories About Spark, HPC and Barcelona by Jordi Torres
Stories About Spark, HPC and Barcelona by Jordi Torres
Spark Summit
 
RISC-V & SoC Architectural Exploration for AI and ML Accelerators
RISC-V & SoC Architectural Exploration for AI and ML AcceleratorsRISC-V & SoC Architectural Exploration for AI and ML Accelerators
RISC-V & SoC Architectural Exploration for AI and ML Accelerators
RISC-V International
 
Panda scalable hpc_bestpractices_tue100418
Panda scalable hpc_bestpractices_tue100418Panda scalable hpc_bestpractices_tue100418
Panda scalable hpc_bestpractices_tue100418
inside-BigData.com
 
Designing Scalable HPC, Deep Learning and Cloud Middleware for Exascale Systems
Designing Scalable HPC, Deep Learning and Cloud Middleware for Exascale SystemsDesigning Scalable HPC, Deep Learning and Cloud Middleware for Exascale Systems
Designing Scalable HPC, Deep Learning and Cloud Middleware for Exascale Systems
inside-BigData.com
 
Pathways for EOSC-hub and MaX collaboration
Pathways for EOSC-hub and MaX collaborationPathways for EOSC-hub and MaX collaboration
Pathways for EOSC-hub and MaX collaboration
EOSC-hub project
 
Fighting Fraud with Apache Spark
Fighting Fraud with Apache SparkFighting Fraud with Apache Spark
Fighting Fraud with Apache Spark
Miklos Christine
 
Using Deep Learning on Apache Spark to Diagnose Thoracic Pathology from Chest...
Using Deep Learning on Apache Spark to Diagnose Thoracic Pathology from Chest...Using Deep Learning on Apache Spark to Diagnose Thoracic Pathology from Chest...
Using Deep Learning on Apache Spark to Diagnose Thoracic Pathology from Chest...
Databricks
 
Apache Spark Acceleration Using Hardware Resources in the Cloud, Seamlessl wi...
Apache Spark Acceleration Using Hardware Resources in the Cloud, Seamlessl wi...Apache Spark Acceleration Using Hardware Resources in the Cloud, Seamlessl wi...
Apache Spark Acceleration Using Hardware Resources in the Cloud, Seamlessl wi...
Databricks
 
Big Data Everywhere Chicago: High Performance Computing - Contributions Towar...
Big Data Everywhere Chicago: High Performance Computing - Contributions Towar...Big Data Everywhere Chicago: High Performance Computing - Contributions Towar...
Big Data Everywhere Chicago: High Performance Computing - Contributions Towar...
BigDataEverywhere
 
2018 03 25 system ml ai and openpower meetup
2018 03 25 system ml ai and openpower meetup2018 03 25 system ml ai and openpower meetup
2018 03 25 system ml ai and openpower meetup
Ganesan Narayanasamy
 
Bergman Enabling Computation for neuro ML external
Bergman Enabling Computation for neuro ML externalBergman Enabling Computation for neuro ML external
Bergman Enabling Computation for neuro ML external
azlefty
 
FPGA Hardware Accelerator for Machine Learning
FPGA Hardware Accelerator for Machine Learning FPGA Hardware Accelerator for Machine Learning
FPGA Hardware Accelerator for Machine Learning
Dr. Swaminathan Kathirvel
 
Azure 機器學習 - 使用Python, R, Spark, CNTK 深度學習
Azure 機器學習 - 使用Python, R, Spark, CNTK 深度學習 Azure 機器學習 - 使用Python, R, Spark, CNTK 深度學習
Azure 機器學習 - 使用Python, R, Spark, CNTK 深度學習
Herman Wu
 
A Semantic-Based Approach to Attain Reproducibility of Computational Environm...
A Semantic-Based Approach to Attain Reproducibility of Computational Environm...A Semantic-Based Approach to Attain Reproducibility of Computational Environm...
A Semantic-Based Approach to Attain Reproducibility of Computational Environm...
Idafen Santana Pérez
 
SF Big Analytics & SF Machine Learning Meetup: Machine Learning at the Limit ...
SF Big Analytics & SF Machine Learning Meetup: Machine Learning at the Limit ...SF Big Analytics & SF Machine Learning Meetup: Machine Learning at the Limit ...
SF Big Analytics & SF Machine Learning Meetup: Machine Learning at the Limit ...
Chester Chen
 
OpenCAPI-based Image Analysis Pipeline for 18 GB/s kilohertz-framerate X-ray ...
OpenCAPI-based Image Analysis Pipeline for 18 GB/s kilohertz-framerate X-ray ...OpenCAPI-based Image Analysis Pipeline for 18 GB/s kilohertz-framerate X-ray ...
OpenCAPI-based Image Analysis Pipeline for 18 GB/s kilohertz-framerate X-ray ...
Ganesan Narayanasamy
 
Compare Performance-power of Arm Cortex vs RISC-V for AI applications_oct_2021
Compare Performance-power of Arm Cortex vs RISC-V for AI applications_oct_2021Compare Performance-power of Arm Cortex vs RISC-V for AI applications_oct_2021
Compare Performance-power of Arm Cortex vs RISC-V for AI applications_oct_2021
Deepak Shankar
 
Track A-2 基於 Spark 的數據分析
Track A-2 基於 Spark 的數據分析Track A-2 基於 Spark 的數據分析
Track A-2 基於 Spark 的數據分析
Etu Solution
 
FPGAs as Components in Heterogeneous HPC Systems (paraFPGA 2015 keynote)
FPGAs as Components in Heterogeneous HPC Systems (paraFPGA 2015 keynote) FPGAs as Components in Heterogeneous HPC Systems (paraFPGA 2015 keynote)
FPGAs as Components in Heterogeneous HPC Systems (paraFPGA 2015 keynote)
Wim Vanderbauwhede
 
Stories About Spark, HPC and Barcelona by Jordi Torres
Stories About Spark, HPC and Barcelona by Jordi TorresStories About Spark, HPC and Barcelona by Jordi Torres
Stories About Spark, HPC and Barcelona by Jordi Torres
Spark Summit
 
RISC-V & SoC Architectural Exploration for AI and ML Accelerators
RISC-V & SoC Architectural Exploration for AI and ML AcceleratorsRISC-V & SoC Architectural Exploration for AI and ML Accelerators
RISC-V & SoC Architectural Exploration for AI and ML Accelerators
RISC-V International
 
Panda scalable hpc_bestpractices_tue100418
Panda scalable hpc_bestpractices_tue100418Panda scalable hpc_bestpractices_tue100418
Panda scalable hpc_bestpractices_tue100418
inside-BigData.com
 
Designing Scalable HPC, Deep Learning and Cloud Middleware for Exascale Systems
Designing Scalable HPC, Deep Learning and Cloud Middleware for Exascale SystemsDesigning Scalable HPC, Deep Learning and Cloud Middleware for Exascale Systems
Designing Scalable HPC, Deep Learning and Cloud Middleware for Exascale Systems
inside-BigData.com
 
Pathways for EOSC-hub and MaX collaboration
Pathways for EOSC-hub and MaX collaborationPathways for EOSC-hub and MaX collaboration
Pathways for EOSC-hub and MaX collaboration
EOSC-hub project
 
Fighting Fraud with Apache Spark
Fighting Fraud with Apache SparkFighting Fraud with Apache Spark
Fighting Fraud with Apache Spark
Miklos Christine
 
Using Deep Learning on Apache Spark to Diagnose Thoracic Pathology from Chest...
Using Deep Learning on Apache Spark to Diagnose Thoracic Pathology from Chest...Using Deep Learning on Apache Spark to Diagnose Thoracic Pathology from Chest...
Using Deep Learning on Apache Spark to Diagnose Thoracic Pathology from Chest...
Databricks
 
Ad

More from Spark Summit (20)

FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
Spark Summit
 
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
Spark Summit
 
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Improving Traffic Prediction Using Weather Data  with Ramya RaghavendraImproving Traffic Prediction Using Weather Data  with Ramya Raghavendra
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Spark Summit
 
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
Spark Summit
 
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
Spark Summit
 
Apache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim DowlingApache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
Apache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim DowlingApache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
Next CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub WozniakNext CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub Wozniak
Spark Summit
 
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Improving Traffic Prediction Using Weather Datawith Ramya RaghavendraImproving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Spark Summit
 
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Spark Summit
 
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
How Nielsen Utilized Databricks for Large-Scale Research and Development with...How Nielsen Utilized Databricks for Large-Scale Research and Development with...
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
Spark Summit
 
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spark Summit
 
Goal Based Data Production with Sim Simeonov
Goal Based Data Production with Sim SimeonovGoal Based Data Production with Sim Simeonov
Goal Based Data Production with Sim Simeonov
Spark Summit
 
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Spark Summit
 
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Getting Ready to Use Redis with Apache Spark with Dvir VolkGetting Ready to Use Redis with Apache Spark with Dvir Volk
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Spark Summit
 
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Spark Summit
 
Indicium: Interactive Querying at Scale Using Apache Spark, Zeppelin, and Spa...
Indicium: Interactive Querying at Scale Using Apache Spark, Zeppelin, and Spa...Indicium: Interactive Querying at Scale Using Apache Spark, Zeppelin, and Spa...
Indicium: Interactive Querying at Scale Using Apache Spark, Zeppelin, and Spa...
Spark Summit
 
Apache Spark-Bench: Simulate, Test, Compare, Exercise, and Yes, Benchmark wit...
Apache Spark-Bench: Simulate, Test, Compare, Exercise, and Yes, Benchmark wit...Apache Spark-Bench: Simulate, Test, Compare, Exercise, and Yes, Benchmark wit...
Apache Spark-Bench: Simulate, Test, Compare, Exercise, and Yes, Benchmark wit...
Spark Summit
 
Apache Spark—Apache HBase Connector: Feature Rich and Efficient Access to HBa...
Apache Spark—Apache HBase Connector: Feature Rich and Efficient Access to HBa...Apache Spark—Apache HBase Connector: Feature Rich and Efficient Access to HBa...
Apache Spark—Apache HBase Connector: Feature Rich and Efficient Access to HBa...
Spark Summit
 
Variant-Apache Spark for Bioinformatics with Piotr Szul
Variant-Apache Spark for Bioinformatics with Piotr SzulVariant-Apache Spark for Bioinformatics with Piotr Szul
Variant-Apache Spark for Bioinformatics with Piotr Szul
Spark Summit
 
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
Spark Summit
 
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
Spark Summit
 
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Improving Traffic Prediction Using Weather Data  with Ramya RaghavendraImproving Traffic Prediction Using Weather Data  with Ramya Raghavendra
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Spark Summit
 
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
Spark Summit
 
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
Spark Summit
 
Apache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim DowlingApache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
Apache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim DowlingApache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
Next CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub WozniakNext CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub Wozniak
Spark Summit
 
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Improving Traffic Prediction Using Weather Datawith Ramya RaghavendraImproving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Spark Summit
 
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Spark Summit
 
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
How Nielsen Utilized Databricks for Large-Scale Research and Development with...How Nielsen Utilized Databricks for Large-Scale Research and Development with...
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
Spark Summit
 
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spark Summit
 
Goal Based Data Production with Sim Simeonov
Goal Based Data Production with Sim SimeonovGoal Based Data Production with Sim Simeonov
Goal Based Data Production with Sim Simeonov
Spark Summit
 
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Spark Summit
 
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Getting Ready to Use Redis with Apache Spark with Dvir VolkGetting Ready to Use Redis with Apache Spark with Dvir Volk
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Spark Summit
 
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Spark Summit
 
Indicium: Interactive Querying at Scale Using Apache Spark, Zeppelin, and Spa...
Indicium: Interactive Querying at Scale Using Apache Spark, Zeppelin, and Spa...Indicium: Interactive Querying at Scale Using Apache Spark, Zeppelin, and Spa...
Indicium: Interactive Querying at Scale Using Apache Spark, Zeppelin, and Spa...
Spark Summit
 
Apache Spark-Bench: Simulate, Test, Compare, Exercise, and Yes, Benchmark wit...
Apache Spark-Bench: Simulate, Test, Compare, Exercise, and Yes, Benchmark wit...Apache Spark-Bench: Simulate, Test, Compare, Exercise, and Yes, Benchmark wit...
Apache Spark-Bench: Simulate, Test, Compare, Exercise, and Yes, Benchmark wit...
Spark Summit
 
Apache Spark—Apache HBase Connector: Feature Rich and Efficient Access to HBa...
Apache Spark—Apache HBase Connector: Feature Rich and Efficient Access to HBa...Apache Spark—Apache HBase Connector: Feature Rich and Efficient Access to HBa...
Apache Spark—Apache HBase Connector: Feature Rich and Efficient Access to HBa...
Spark Summit
 
Variant-Apache Spark for Bioinformatics with Piotr Szul
Variant-Apache Spark for Bioinformatics with Piotr SzulVariant-Apache Spark for Bioinformatics with Piotr Szul
Variant-Apache Spark for Bioinformatics with Piotr Szul
Spark Summit
 
Ad

Recently uploaded (20)

Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia
Alexander Romero Arosquipa
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...
Pixellion
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Data Analytics Overview and its applications
Data Analytics Overview and its applicationsData Analytics Overview and its applications
Data Analytics Overview and its applications
JanmejayaMishra7
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...
Pixellion
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Data Analytics Overview and its applications
Data Analytics Overview and its applicationsData Analytics Overview and its applications
Data Analytics Overview and its applications
JanmejayaMishra7
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 

Hardware Acceleration of Apache Spark on Energy-Efficient FPGAs with Christoforos Kachris

  • 1. Christoforos Kachris ICCS-NTUA Speedup Spark Applications using FPGA Accelerators on the cloud #EUres8
  • 2. Performance in Spark • 91% if Spark users care about performance 2Christoforos Kachris, www.inaccel.com, 2017, #EUres8 FEATURES USERS CONSIDER IMPORTANT
  • 3. Accelerators versus Processors 3Christoforos Kachris, www.inaccel.com, 2017, #EUres8 [Source: National Instruments: Smart Grid Ready Instrumentation”
  • 4. Flexibility versus Performance 4Christoforos Kachris, www.inaccel.com, 2017, #EUres8 CPU: High flexibility, lower efficiency Accelerators: High throughput, higher efficiency GPUs and FPGAs can provide massive parallelism and higher efficiency than CPUs for certain categories of applications [Source: Amazon AWS f1]
  • 5. Hardware Acceleration 5Christoforos Kachris, www.inaccel.com, 2017, #EUres8 module fi lter1 ( clock, rst, st rm_in, out) for (i =0; i<N UMUNITS ; i=i+1 ) always @(posed ge cloc k) intege r i,j; //index for lo ops tm p_kerne l[j] = k[i*OFF SETX]; FPGA handles compute- intensive, deeply pipelined, hardware-accelerated operations CPU handles the rest application [Source: Amazon AWS f1]
  • 6. Process flow using Accelerators 6Christoforos Kachris, www.inaccel.com, 2017, #EUres8 user c4, m4 F1 (FPGA) Amazon Marketplace Download Accelerator from Marketplace Run your code on CPU Offload hard work on F1
  • 7. Amazon Resources 7 Amazon Machine Image (AMI) Amazon FPGA Image (AFI) EC2 F1 Instance CPU Application on F1 DDR-4 Attached Memory DDR-4 Attached Memory DDR-4 Attached Memory DDR-4 Attached Memory DDR-4 Attached Memory DDR-4 Attached Memory DDR-4 Attached Memory DDR-4 Attached Memory FPGA Link PCIe DDR Controllers Launch Instance and Load AFI [Source: Amazon AWS f1]
  • 8. FPGAs in Amazon AWS 8 Amazon EC2 FPGA Deployment via Marketplace Amazon Machine Image (AMI) Amazon FPGA Image (AFI) AFI is secured, encrypted, dynamically loaded into the FPGA - can’t be copied or downloaded Customers AWS Marketplace [Source: Amazon AWS f1]
  • 9. A use case on Logistic regression LR is used for building predictive models for many complex pattern-matching and classification problems. It can be applied widely in such diverse areas as • bioinformatics, • finance and • data analytics. One of the most popular Machine Learning techniques. 9Christoforos Kachris, www.inaccel.com, 2017, #EUres8
  • 10. Hardware accelerator for LR 10Christoforos Kachris, www.inaccel.com, 2017, #EUres8
  • 11. Accelerated Mllib • Extension of Spark libraries 11Christoforos Kachris, www.inaccel.com, 2017, #EUres8
  • 12. Spark – FPGA interface • Spark worker • Python API • C API Support for: 12Christoforos Kachris, www.inaccel.com, 2017, #EUres8
  • 13. ML acceleration library 13Christoforos Kachris, www.inaccel.com, 2017, #EUres8
  • 14. Evaluation in cluster 14Christoforos Kachris, www.inaccel.com, 2017, #EUres8 • Evaluation on a Handwritten Digit Recognition Problem – Take an image of a handwritten single digit, and determine what that digit is. • 10 classes, 786 features • 40k lines train file • Given a new data point, models will be run, and the class with largest probability will be chosen as the predicted class.
  • 15. Evaluation • Evaluation on a Handwritten Digit Recognition Problem – Take an image of a handwritten single digit, and determine what that digit is. • Features of evaluated platforms 15Christoforos Kachris, www.inaccel.com, 2017, #EUres8
  • 16. Spark implementation 16Christoforos Kachris, www.inaccel.com, 2017, #EUres8
  • 17. Cluster on FPGA nodes 17Christoforos Kachris, www.inaccel.com, 2017, #EUres8
  • 19. Spark running on FPGA-based cluster 19Christoforos Kachris, www.inaccel.com, 2017, #EUres8
  • 20. Speedup • Xeon vs Xeon + small FPGA cluster 20Christoforos Kachris, www.inaccel.com, 2017, #EUres8
  • 21. Comparison 21Christoforos Kachris, www.inaccel.com, 2017, #EUres8 SW (Intel Xeon) SW+HW (Accel on FPGA SoCs)
  • 22. Spark Accelerators 22Christoforos Kachris, www.inaccel.com, 2017, #EUres8 • Develop hardware components as IP cores for widely used applications • Spark • Logistic regression • Recommendation (ALS) • K-means • Linear regression • PageRank • Graph computing Source: C. Kachris et al., Spark acceleration using FPGAs, best paper award, IEEE MOCAST 2017 3x – 50x speedup
  • 23. Comparison with Amazon AWS EC • c4 (36 cores) • m4 (16 cores) • f1 with our Accelerator 23Christoforos Kachris, www.inaccel.com, 2017, #EUres8 0 10 20 30 40 50 60 c4 (36) m4 (16) f1 (Accel) Logistic regression comparison 3x - 10x speedup
  • 24. Mllib library to be covered MLlib contains many algorithms and utilities. • Classification: logistic regression, naive Bayes,... • Regression: generalized linear regression, survival regression,... • Recommendation: alternating least squares (ALS) • Clustering: K-means, Gaussian mixtures (GMMs),... • Topic modeling: latent Dirichlet allocation (LDA) • Frequent itemsets, association rules, and sequential pattern mining 24Christoforos Kachris, www.inaccel.com, 2017, #EUres8
  • 25. VINEYARD framework • Utilize FPGA resources seamlessly More info : vineyardh2020.eu 25Christoforos Kachris, www.inaccel.com, 2017, #EUres8
  • 27. Overview - InAccel 27Christoforos Kachris, www.inaccel.com, 2017, #EUres8 InAccel provides high performance accelerators for your application based on novel hardware reconfigurable engines as IP blocks. The hardware accelerators can be used to improve the performance of your applications both in terms of throughput and execution time (latency). Spark integration The hardware accelerators of InAccel are compatible with the Apache Spark framework and allow faster execution of Spark applications based on MLlib (machine learning) and GraphX libraries.
  • 28. Overview - InAccel 28Christoforos Kachris, www.inaccel.com, 2017, #EUres8 Amazon compatibility InAccel develops hardware accelerators that are compatible with the Amazon AWS F1 platform. Use the hardware accelerators as an IP to speedup your application, seamlessly, without the purchase of any hardware.​ No need for code changes InAccel provides all the required APIs for the seamless integration of the accelerators without any modifications on your original code.