As advanced sensor technologies are becoming widely deployed in the energy industry, the availability of higher-frequency data results in both analytical benefits and computational costs. To an energy forecaster or data scientist, some of these benefits might include enhanced predictive performance from forecasting models as well as improved pattern recognition in energy consumption across building types, economic sectors, and geographies. To a utility or electricity service provider, these benefits might include significantly deeper insights into their diverse customer base. However, these advantages can come with a high computational price tag. With Spark 2.0, User-Defined Functions can be applied across grouped SparkDataFrames in the SparkR API to solve the multivariate optimization and model selection problems typically required for fitting site-level models. This recently added feature of Spark 2.0 on Databricks has allowed DNV GL to efficiently fit predictive models that relate weather, electricity, water, and gas consumption across virtually any number of buildings.