SlideShare a Scribd company logo
High Resolution Energy
Modeling that Scales with
Apache Spark 2.0
Jonathan Farland
Consultant | Data Scientist, DNV GL
About me
• Data Scientist & Technical Consultant for DNV
GL’s Policy Advisory and Research Group.
• Background in Econometrics, Forecasting,
Machine Learning and Optimization.
• Working with Big Data for 3+ years
Agenda
• Introduction to DNV GL
• Energy Data Science using Spark
– Data Scales and the DGP
– Application 1 – Princeton Score Keeping Method
(PRISM)
– Application 2 – Hourly Predictive Modelling with
Distributed Energy Resources
• Next Steps with Spark and Databricks
Introduction to DNV GL
Jonathan Farland
Consultant | Data Scientist, DNV GL
High Resolution Energy Modeling that Scales with Apache Spark 2.0 Spark Summit East talk by Jonathan Farland
Energy Data Science:
Data Scales and the DGP
Jonathan Farland
Consultant | Data Scientist, DNV GL
Metering Data: Historical measured quantities of electricity usage for a site or
meter during a particular time.
- An analogue origin requiring a physical reading of the meter on a specific cycle.
- Typically used for utility companies to bill customers for their usage
- Advanced metering technologies and machine learning now allows for millisecond
reading and disaggregation down to the end use / appliance level.
Weather Data:
- Actual Weather: Records of temperature, humidity, cloud cover, solar irradiance, etc.
- Typical Weather: 30-year / 10-year averages that define “normal” weather conditions
Data Generating Process
Electricity Distribution Grid
Transmission Distribution ConsumerGeneration Transmission Distribution ConsumerGeneration
Wind
Farms
Photo
Voltaic
Aggregated
Utility Scale
2-50 MW
Utility
Scale
100kW-2MW
Distributed
Scale
25kW-100kW
Residential
Commercial
& Industrial
DistributionTransmissionGeneration
Bulk
Storage
> 50 MW
Distribution
System
Bulk
System
PhotovoltaicWind
Farms
The Rise of The Smart Grid
Data Scales
The embarrassingly parallel ‘Primary Modeling Unit’:
I. Temporal: Sub-hourly, hourly, daily, monthly, annually
II. CrossSectional: Clusters/Segments, Geography, System Hierarchy.
III. Hybrid: Structure and Year specific
Databricks: Rapid deployment and development of existing analytics pipeline
Spark 2.0: SparkR allows for UDF’s and Partition-Based Model Learning
- gapply, dapply, lapply
Spark 2.1: Enable installing third party packages on workers using spark.addfile
- SPARK-7159: Multiclass Logistic Regression in DataFrame-based API
Analytical Solution
Energy Data Science:
Princeton Score Keeping
Method (PRISM)
Jonathan Farland
Consultant | Data Scientist, DNV GL
PRISM Algorithm
- Decomposes energy usage into it’s weather-driven and baseload
components.
- Site level modelling that combine both full and reduced form models
- Grid search over possible heating and cooling reference temperatures
- Rich history development based on fundamental structural
engineering principles
- Origin: Miriam Goldberg's dissertation "A Geometrical Approach to
Non-differentiable Regression Models as Related to Methods for
Assessing Residential Energy Conservation.“
Just a little math…
Et = β0 + βhH(τh) + βcC(τc) + εt
C(τc) =
0, xt − τc < 0
xt − τc, xt − τc ≥ 0
H(τh) =
τh − xt, xt − τh < 0
0, xt − τh ≥ 0
Explained Visually
SparkR – gapply, dapply, lapply
Local Native R
High Resolution Energy Modeling that Scales with Apache Spark 2.0 Spark Summit East talk by Jonathan Farland
High Resolution Energy Modeling that Scales with Apache Spark 2.0 Spark Summit East talk by Jonathan Farland
Energy Data Science:
Predictive Modeling with
Distributed Energy Resources
Jonathan Farland
Consultant | Data Scientist, DNV GL
21
Load Shifting: Electric Vehicles
0
5
10
15
20
25
30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Demand(kW)
Hour Ending
Standard Rate Electric Vehicle Rate
22
-
20,000
40,000
60,000
80,000
100,000
120,000
140,000
160,000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Load(kWh)
Hour Ending
Forecasted - DR Reduction Forecasted - DR Baseline
Forecasted - DR Impacted Load Actual DR - Reduction
Load Reduction: Demand Response
Cluster Sizes:
1 – 10,495
2 – 4,513
3 – 1,127
4 – 9,823
Digitalization:
Scalable Cluster Computing
(Spark, Python, R)
Data Science:
Machine Learning Algorithms
(Spectral Clustering and K-means)
Predictive Analytics
(Semiparametric Regression)
Cluster Sizes:
1 – 10,495
2 – 4,513
3 – 1,127
4 – 9,823
Digitalization:
Scalable Cluster Computing
(Spark, Python, R)
Data Science:
Machine Learning Algorithms
(Spectral Clustering and K-means)
Predictive Analytics
(Semiparametric Regression)
How well did it work?
Cluster 1 Cluster 4
ClusterSite Predictions
0
0.5
1
1.5
2
2.5
3
1
5
9
13
17
21
25
29
33
37
41
45
49
53
57
61
65
69
73
77
81
85
89
93
97
101
105
109
113
117
121
125
129
133
137
141
kW
Forecast Horizon
Load Forecast Adjusted Load Forecast PV Production Storage Discharging
ClusterSite Tech Simulations
Conclusions
Jonathan Farland
Consultant | Data Scientist, DNV GL
Spark 2.0 / 2.1 has allowed DNV GL’s existing expertise and code base
to scale
Databricks has provided an environment that facilitated existing
codebases as well as additional rapid development
- Analytical contexts, prediction goals, and model selection processes define
the Primary Modeling Unit (PMU) in any Energy Data Science Application.
- The distributed computing framework must be able to scale with the
appropriate Primary Modeling Unit for any Energy Data Science Application
Take Home Message
Modeling Additional Fuels
- Natural Gas (Therms)
- Water (Liters / Gallons)
- Hybrid (British Thermal Units)
Climate Change Simulations
- DNV GL’s BayTown System Dynamics Model
Electricity Grid Optimization with Distributed Energy Resource Assets
The Future!
Thank You.
Jonathan Farland
jon.farland@dnvgl.com
https://github.com/jfarland
Ad

More Related Content

What's hot (20)

Spark Summit EU talk by Miha Pelko and Til Piffl
Spark Summit EU talk by Miha Pelko and Til PifflSpark Summit EU talk by Miha Pelko and Til Piffl
Spark Summit EU talk by Miha Pelko and Til Piffl
Spark Summit
 
Spark Summit San Francisco 2016 - Ali Ghodsi Keynote
Spark Summit San Francisco 2016 - Ali Ghodsi KeynoteSpark Summit San Francisco 2016 - Ali Ghodsi Keynote
Spark Summit San Francisco 2016 - Ali Ghodsi Keynote
Databricks
 
From Pandas to Koalas: Reducing Time-To-Insight for Virgin Hyperloop's Data
From Pandas to Koalas: Reducing Time-To-Insight for Virgin Hyperloop's DataFrom Pandas to Koalas: Reducing Time-To-Insight for Virgin Hyperloop's Data
From Pandas to Koalas: Reducing Time-To-Insight for Virgin Hyperloop's Data
Databricks
 
Deep Learning Pipelines for High Energy Physics using Apache Spark with Distr...
Deep Learning Pipelines for High Energy Physics using Apache Spark with Distr...Deep Learning Pipelines for High Energy Physics using Apache Spark with Distr...
Deep Learning Pipelines for High Energy Physics using Apache Spark with Distr...
Databricks
 
Reliable Performance at Scale with Apache Spark on Kubernetes
Reliable Performance at Scale with Apache Spark on KubernetesReliable Performance at Scale with Apache Spark on Kubernetes
Reliable Performance at Scale with Apache Spark on Kubernetes
Databricks
 
Spark Summit EU talk by Sameer Agarwal
Spark Summit EU talk by Sameer AgarwalSpark Summit EU talk by Sameer Agarwal
Spark Summit EU talk by Sameer Agarwal
Spark Summit
 
Why Apache Spark is the Heir to MapReduce in the Hadoop Ecosystem
Why Apache Spark is the Heir to MapReduce in the Hadoop EcosystemWhy Apache Spark is the Heir to MapReduce in the Hadoop Ecosystem
Why Apache Spark is the Heir to MapReduce in the Hadoop Ecosystem
Cloudera, Inc.
 
Trends for Big Data and Apache Spark in 2017 by Matei Zaharia
Trends for Big Data and Apache Spark in 2017 by Matei ZahariaTrends for Big Data and Apache Spark in 2017 by Matei Zaharia
Trends for Big Data and Apache Spark in 2017 by Matei Zaharia
Spark Summit
 
Project Hydrogen: Unifying State-of-the-Art AI and Big Data in Apache Spark w...
Project Hydrogen: Unifying State-of-the-Art AI and Big Data in Apache Spark w...Project Hydrogen: Unifying State-of-the-Art AI and Big Data in Apache Spark w...
Project Hydrogen: Unifying State-of-the-Art AI and Big Data in Apache Spark w...
Databricks
 
Spark Summit EU talk by Christos Erotocritou
Spark Summit EU talk by Christos ErotocritouSpark Summit EU talk by Christos Erotocritou
Spark Summit EU talk by Christos Erotocritou
Spark Summit
 
Spark Summit EU 2015: Combining the Strengths of MLlib, scikit-learn, and R
Spark Summit EU 2015: Combining the Strengths of MLlib, scikit-learn, and RSpark Summit EU 2015: Combining the Strengths of MLlib, scikit-learn, and R
Spark Summit EU 2015: Combining the Strengths of MLlib, scikit-learn, and R
Databricks
 
Unified Framework for Real Time, Near Real Time and Offline Analysis of Video...
Unified Framework for Real Time, Near Real Time and Offline Analysis of Video...Unified Framework for Real Time, Near Real Time and Offline Analysis of Video...
Unified Framework for Real Time, Near Real Time and Offline Analysis of Video...
Spark Summit
 
Spark Summit EU talk by Elena Lazovik
Spark Summit EU talk by Elena LazovikSpark Summit EU talk by Elena Lazovik
Spark Summit EU talk by Elena Lazovik
Spark Summit
 
Spark Summit EU talk by Zoltan Zvara
Spark Summit EU talk by Zoltan ZvaraSpark Summit EU talk by Zoltan Zvara
Spark Summit EU talk by Zoltan Zvara
Spark Summit
 
Analyzing 2TB of Raw Trace Data from a Manufacturing Process: A First Use Cas...
Analyzing 2TB of Raw Trace Data from a Manufacturing Process: A First Use Cas...Analyzing 2TB of Raw Trace Data from a Manufacturing Process: A First Use Cas...
Analyzing 2TB of Raw Trace Data from a Manufacturing Process: A First Use Cas...
Databricks
 
Spark's Role in the Big Data Ecosystem (Spark Summit 2014)
Spark's Role in the Big Data Ecosystem (Spark Summit 2014)Spark's Role in the Big Data Ecosystem (Spark Summit 2014)
Spark's Role in the Big Data Ecosystem (Spark Summit 2014)
Databricks
 
Apache Spark AI Use Case in Telco: Network Quality Analysis and Prediction wi...
Apache Spark AI Use Case in Telco: Network Quality Analysis and Prediction wi...Apache Spark AI Use Case in Telco: Network Quality Analysis and Prediction wi...
Apache Spark AI Use Case in Telco: Network Quality Analysis and Prediction wi...
Databricks
 
Building Deep Learning Powered Big Data: Spark Summit East talk by Jiao Wang ...
Building Deep Learning Powered Big Data: Spark Summit East talk by Jiao Wang ...Building Deep Learning Powered Big Data: Spark Summit East talk by Jiao Wang ...
Building Deep Learning Powered Big Data: Spark Summit East talk by Jiao Wang ...
Spark Summit
 
Scalable Monitoring Using Prometheus with Apache Spark Clusters with Diane F...
 Scalable Monitoring Using Prometheus with Apache Spark Clusters with Diane F... Scalable Monitoring Using Prometheus with Apache Spark Clusters with Diane F...
Scalable Monitoring Using Prometheus with Apache Spark Clusters with Diane F...
Databricks
 
Accelerating Apache Spark by Several Orders of Magnitude with GPUs and RAPIDS...
Accelerating Apache Spark by Several Orders of Magnitude with GPUs and RAPIDS...Accelerating Apache Spark by Several Orders of Magnitude with GPUs and RAPIDS...
Accelerating Apache Spark by Several Orders of Magnitude with GPUs and RAPIDS...
Databricks
 
Spark Summit EU talk by Miha Pelko and Til Piffl
Spark Summit EU talk by Miha Pelko and Til PifflSpark Summit EU talk by Miha Pelko and Til Piffl
Spark Summit EU talk by Miha Pelko and Til Piffl
Spark Summit
 
Spark Summit San Francisco 2016 - Ali Ghodsi Keynote
Spark Summit San Francisco 2016 - Ali Ghodsi KeynoteSpark Summit San Francisco 2016 - Ali Ghodsi Keynote
Spark Summit San Francisco 2016 - Ali Ghodsi Keynote
Databricks
 
From Pandas to Koalas: Reducing Time-To-Insight for Virgin Hyperloop's Data
From Pandas to Koalas: Reducing Time-To-Insight for Virgin Hyperloop's DataFrom Pandas to Koalas: Reducing Time-To-Insight for Virgin Hyperloop's Data
From Pandas to Koalas: Reducing Time-To-Insight for Virgin Hyperloop's Data
Databricks
 
Deep Learning Pipelines for High Energy Physics using Apache Spark with Distr...
Deep Learning Pipelines for High Energy Physics using Apache Spark with Distr...Deep Learning Pipelines for High Energy Physics using Apache Spark with Distr...
Deep Learning Pipelines for High Energy Physics using Apache Spark with Distr...
Databricks
 
Reliable Performance at Scale with Apache Spark on Kubernetes
Reliable Performance at Scale with Apache Spark on KubernetesReliable Performance at Scale with Apache Spark on Kubernetes
Reliable Performance at Scale with Apache Spark on Kubernetes
Databricks
 
Spark Summit EU talk by Sameer Agarwal
Spark Summit EU talk by Sameer AgarwalSpark Summit EU talk by Sameer Agarwal
Spark Summit EU talk by Sameer Agarwal
Spark Summit
 
Why Apache Spark is the Heir to MapReduce in the Hadoop Ecosystem
Why Apache Spark is the Heir to MapReduce in the Hadoop EcosystemWhy Apache Spark is the Heir to MapReduce in the Hadoop Ecosystem
Why Apache Spark is the Heir to MapReduce in the Hadoop Ecosystem
Cloudera, Inc.
 
Trends for Big Data and Apache Spark in 2017 by Matei Zaharia
Trends for Big Data and Apache Spark in 2017 by Matei ZahariaTrends for Big Data and Apache Spark in 2017 by Matei Zaharia
Trends for Big Data and Apache Spark in 2017 by Matei Zaharia
Spark Summit
 
Project Hydrogen: Unifying State-of-the-Art AI and Big Data in Apache Spark w...
Project Hydrogen: Unifying State-of-the-Art AI and Big Data in Apache Spark w...Project Hydrogen: Unifying State-of-the-Art AI and Big Data in Apache Spark w...
Project Hydrogen: Unifying State-of-the-Art AI and Big Data in Apache Spark w...
Databricks
 
Spark Summit EU talk by Christos Erotocritou
Spark Summit EU talk by Christos ErotocritouSpark Summit EU talk by Christos Erotocritou
Spark Summit EU talk by Christos Erotocritou
Spark Summit
 
Spark Summit EU 2015: Combining the Strengths of MLlib, scikit-learn, and R
Spark Summit EU 2015: Combining the Strengths of MLlib, scikit-learn, and RSpark Summit EU 2015: Combining the Strengths of MLlib, scikit-learn, and R
Spark Summit EU 2015: Combining the Strengths of MLlib, scikit-learn, and R
Databricks
 
Unified Framework for Real Time, Near Real Time and Offline Analysis of Video...
Unified Framework for Real Time, Near Real Time and Offline Analysis of Video...Unified Framework for Real Time, Near Real Time and Offline Analysis of Video...
Unified Framework for Real Time, Near Real Time and Offline Analysis of Video...
Spark Summit
 
Spark Summit EU talk by Elena Lazovik
Spark Summit EU talk by Elena LazovikSpark Summit EU talk by Elena Lazovik
Spark Summit EU talk by Elena Lazovik
Spark Summit
 
Spark Summit EU talk by Zoltan Zvara
Spark Summit EU talk by Zoltan ZvaraSpark Summit EU talk by Zoltan Zvara
Spark Summit EU talk by Zoltan Zvara
Spark Summit
 
Analyzing 2TB of Raw Trace Data from a Manufacturing Process: A First Use Cas...
Analyzing 2TB of Raw Trace Data from a Manufacturing Process: A First Use Cas...Analyzing 2TB of Raw Trace Data from a Manufacturing Process: A First Use Cas...
Analyzing 2TB of Raw Trace Data from a Manufacturing Process: A First Use Cas...
Databricks
 
Spark's Role in the Big Data Ecosystem (Spark Summit 2014)
Spark's Role in the Big Data Ecosystem (Spark Summit 2014)Spark's Role in the Big Data Ecosystem (Spark Summit 2014)
Spark's Role in the Big Data Ecosystem (Spark Summit 2014)
Databricks
 
Apache Spark AI Use Case in Telco: Network Quality Analysis and Prediction wi...
Apache Spark AI Use Case in Telco: Network Quality Analysis and Prediction wi...Apache Spark AI Use Case in Telco: Network Quality Analysis and Prediction wi...
Apache Spark AI Use Case in Telco: Network Quality Analysis and Prediction wi...
Databricks
 
Building Deep Learning Powered Big Data: Spark Summit East talk by Jiao Wang ...
Building Deep Learning Powered Big Data: Spark Summit East talk by Jiao Wang ...Building Deep Learning Powered Big Data: Spark Summit East talk by Jiao Wang ...
Building Deep Learning Powered Big Data: Spark Summit East talk by Jiao Wang ...
Spark Summit
 
Scalable Monitoring Using Prometheus with Apache Spark Clusters with Diane F...
 Scalable Monitoring Using Prometheus with Apache Spark Clusters with Diane F... Scalable Monitoring Using Prometheus with Apache Spark Clusters with Diane F...
Scalable Monitoring Using Prometheus with Apache Spark Clusters with Diane F...
Databricks
 
Accelerating Apache Spark by Several Orders of Magnitude with GPUs and RAPIDS...
Accelerating Apache Spark by Several Orders of Magnitude with GPUs and RAPIDS...Accelerating Apache Spark by Several Orders of Magnitude with GPUs and RAPIDS...
Accelerating Apache Spark by Several Orders of Magnitude with GPUs and RAPIDS...
Databricks
 

Viewers also liked (20)

Realtime Analytical Query Processing and Predictive Model Building on High Di...
Realtime Analytical Query Processing and Predictive Model Building on High Di...Realtime Analytical Query Processing and Predictive Model Building on High Di...
Realtime Analytical Query Processing and Predictive Model Building on High Di...
Spark Summit
 
R&D to Product Pipeline Using Apache Spark in AdTech: Spark Summit East talk ...
R&D to Product Pipeline Using Apache Spark in AdTech: Spark Summit East talk ...R&D to Product Pipeline Using Apache Spark in AdTech: Spark Summit East talk ...
R&D to Product Pipeline Using Apache Spark in AdTech: Spark Summit East talk ...
Spark Summit
 
Powering Predictive Mapping at Scale with Spark, Kafka, and Elastic Search: S...
Powering Predictive Mapping at Scale with Spark, Kafka, and Elastic Search: S...Powering Predictive Mapping at Scale with Spark, Kafka, and Elastic Search: S...
Powering Predictive Mapping at Scale with Spark, Kafka, and Elastic Search: S...
Spark Summit
 
IoT and the Autonomous Vehicle in the Clouds: Simultaneous Localization and M...
IoT and the Autonomous Vehicle in the Clouds: Simultaneous Localization and M...IoT and the Autonomous Vehicle in the Clouds: Simultaneous Localization and M...
IoT and the Autonomous Vehicle in the Clouds: Simultaneous Localization and M...
Spark Summit
 
Sketching Data with T-Digest In Apache Spark: Spark Summit East talk by Erik ...
Sketching Data with T-Digest In Apache Spark: Spark Summit East talk by Erik ...Sketching Data with T-Digest In Apache Spark: Spark Summit East talk by Erik ...
Sketching Data with T-Digest In Apache Spark: Spark Summit East talk by Erik ...
Spark Summit
 
Virtualizing Analytics with Apache Spark: Keynote by Arsalan Tavakoli
Virtualizing Analytics with Apache Spark: Keynote by Arsalan Tavakoli Virtualizing Analytics with Apache Spark: Keynote by Arsalan Tavakoli
Virtualizing Analytics with Apache Spark: Keynote by Arsalan Tavakoli
Spark Summit
 
Distributed Real-Time Stream Processing: Why and How: Spark Summit East talk ...
Distributed Real-Time Stream Processing: Why and How: Spark Summit East talk ...Distributed Real-Time Stream Processing: Why and How: Spark Summit East talk ...
Distributed Real-Time Stream Processing: Why and How: Spark Summit East talk ...
Spark Summit
 
Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...
Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...
Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...
Spark Summit
 
Using SparkR to Scale Data Science Applications in Production. Lessons from t...
Using SparkR to Scale Data Science Applications in Production. Lessons from t...Using SparkR to Scale Data Science Applications in Production. Lessons from t...
Using SparkR to Scale Data Science Applications in Production. Lessons from t...
Spark Summit
 
Apache Spark for Machine Learning with High Dimensional Labels: Spark Summit ...
Apache Spark for Machine Learning with High Dimensional Labels: Spark Summit ...Apache Spark for Machine Learning with High Dimensional Labels: Spark Summit ...
Apache Spark for Machine Learning with High Dimensional Labels: Spark Summit ...
Spark Summit
 
Clipper: A Low-Latency Online Prediction Serving System: Spark Summit East ta...
Clipper: A Low-Latency Online Prediction Serving System: Spark Summit East ta...Clipper: A Low-Latency Online Prediction Serving System: Spark Summit East ta...
Clipper: A Low-Latency Online Prediction Serving System: Spark Summit East ta...
Spark Summit
 
Scalable Data Science with SparkR: Spark Summit East talk by Felix Cheung
Scalable Data Science with SparkR: Spark Summit East talk by Felix CheungScalable Data Science with SparkR: Spark Summit East talk by Felix Cheung
Scalable Data Science with SparkR: Spark Summit East talk by Felix Cheung
Spark Summit
 
Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...
Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...
Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...
Spark Summit
 
Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...
Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...
Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...
Spark Summit
 
Modeling Catastrophic Events in Spark: Spark Summit East Talk by Georg Hofman...
Modeling Catastrophic Events in Spark: Spark Summit East Talk by Georg Hofman...Modeling Catastrophic Events in Spark: Spark Summit East Talk by Georg Hofman...
Modeling Catastrophic Events in Spark: Spark Summit East Talk by Georg Hofman...
Spark Summit
 
Predictive Analytics for IoT Network Capacity Planning: Spark Summit East tal...
Predictive Analytics for IoT Network Capacity Planning: Spark Summit East tal...Predictive Analytics for IoT Network Capacity Planning: Spark Summit East tal...
Predictive Analytics for IoT Network Capacity Planning: Spark Summit East tal...
Spark Summit
 
Unlocking Value in Device Data Using Spark: Spark Summit East talk by John La...
Unlocking Value in Device Data Using Spark: Spark Summit East talk by John La...Unlocking Value in Device Data Using Spark: Spark Summit East talk by John La...
Unlocking Value in Device Data Using Spark: Spark Summit East talk by John La...
Spark Summit
 
Keeping Spark on Track: Productionizing Spark for ETL
Keeping Spark on Track: Productionizing Spark for ETLKeeping Spark on Track: Productionizing Spark for ETL
Keeping Spark on Track: Productionizing Spark for ETL
Databricks
 
No More “Sbt Assembly”: Rethinking Spark-Submit Using CueSheet: Spark Summit ...
No More “Sbt Assembly”: Rethinking Spark-Submit Using CueSheet: Spark Summit ...No More “Sbt Assembly”: Rethinking Spark-Submit Using CueSheet: Spark Summit ...
No More “Sbt Assembly”: Rethinking Spark-Submit Using CueSheet: Spark Summit ...
Spark Summit
 
Using Spark and Riak for IoT Apps—Patterns and Anti-Patterns: Spark Summit Ea...
Using Spark and Riak for IoT Apps—Patterns and Anti-Patterns: Spark Summit Ea...Using Spark and Riak for IoT Apps—Patterns and Anti-Patterns: Spark Summit Ea...
Using Spark and Riak for IoT Apps—Patterns and Anti-Patterns: Spark Summit Ea...
Spark Summit
 
Realtime Analytical Query Processing and Predictive Model Building on High Di...
Realtime Analytical Query Processing and Predictive Model Building on High Di...Realtime Analytical Query Processing and Predictive Model Building on High Di...
Realtime Analytical Query Processing and Predictive Model Building on High Di...
Spark Summit
 
R&D to Product Pipeline Using Apache Spark in AdTech: Spark Summit East talk ...
R&D to Product Pipeline Using Apache Spark in AdTech: Spark Summit East talk ...R&D to Product Pipeline Using Apache Spark in AdTech: Spark Summit East talk ...
R&D to Product Pipeline Using Apache Spark in AdTech: Spark Summit East talk ...
Spark Summit
 
Powering Predictive Mapping at Scale with Spark, Kafka, and Elastic Search: S...
Powering Predictive Mapping at Scale with Spark, Kafka, and Elastic Search: S...Powering Predictive Mapping at Scale with Spark, Kafka, and Elastic Search: S...
Powering Predictive Mapping at Scale with Spark, Kafka, and Elastic Search: S...
Spark Summit
 
IoT and the Autonomous Vehicle in the Clouds: Simultaneous Localization and M...
IoT and the Autonomous Vehicle in the Clouds: Simultaneous Localization and M...IoT and the Autonomous Vehicle in the Clouds: Simultaneous Localization and M...
IoT and the Autonomous Vehicle in the Clouds: Simultaneous Localization and M...
Spark Summit
 
Sketching Data with T-Digest In Apache Spark: Spark Summit East talk by Erik ...
Sketching Data with T-Digest In Apache Spark: Spark Summit East talk by Erik ...Sketching Data with T-Digest In Apache Spark: Spark Summit East talk by Erik ...
Sketching Data with T-Digest In Apache Spark: Spark Summit East talk by Erik ...
Spark Summit
 
Virtualizing Analytics with Apache Spark: Keynote by Arsalan Tavakoli
Virtualizing Analytics with Apache Spark: Keynote by Arsalan Tavakoli Virtualizing Analytics with Apache Spark: Keynote by Arsalan Tavakoli
Virtualizing Analytics with Apache Spark: Keynote by Arsalan Tavakoli
Spark Summit
 
Distributed Real-Time Stream Processing: Why and How: Spark Summit East talk ...
Distributed Real-Time Stream Processing: Why and How: Spark Summit East talk ...Distributed Real-Time Stream Processing: Why and How: Spark Summit East talk ...
Distributed Real-Time Stream Processing: Why and How: Spark Summit East talk ...
Spark Summit
 
Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...
Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...
Scaling Apache Spark MLlib to Billions of Parameters: Spark Summit East talk ...
Spark Summit
 
Using SparkR to Scale Data Science Applications in Production. Lessons from t...
Using SparkR to Scale Data Science Applications in Production. Lessons from t...Using SparkR to Scale Data Science Applications in Production. Lessons from t...
Using SparkR to Scale Data Science Applications in Production. Lessons from t...
Spark Summit
 
Apache Spark for Machine Learning with High Dimensional Labels: Spark Summit ...
Apache Spark for Machine Learning with High Dimensional Labels: Spark Summit ...Apache Spark for Machine Learning with High Dimensional Labels: Spark Summit ...
Apache Spark for Machine Learning with High Dimensional Labels: Spark Summit ...
Spark Summit
 
Clipper: A Low-Latency Online Prediction Serving System: Spark Summit East ta...
Clipper: A Low-Latency Online Prediction Serving System: Spark Summit East ta...Clipper: A Low-Latency Online Prediction Serving System: Spark Summit East ta...
Clipper: A Low-Latency Online Prediction Serving System: Spark Summit East ta...
Spark Summit
 
Scalable Data Science with SparkR: Spark Summit East talk by Felix Cheung
Scalable Data Science with SparkR: Spark Summit East talk by Felix CheungScalable Data Science with SparkR: Spark Summit East talk by Felix Cheung
Scalable Data Science with SparkR: Spark Summit East talk by Felix Cheung
Spark Summit
 
Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...
Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...
Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...
Spark Summit
 
Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...
Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...
Engineering Fast Indexes for Big-Data Applications: Spark Summit East talk by...
Spark Summit
 
Modeling Catastrophic Events in Spark: Spark Summit East Talk by Georg Hofman...
Modeling Catastrophic Events in Spark: Spark Summit East Talk by Georg Hofman...Modeling Catastrophic Events in Spark: Spark Summit East Talk by Georg Hofman...
Modeling Catastrophic Events in Spark: Spark Summit East Talk by Georg Hofman...
Spark Summit
 
Predictive Analytics for IoT Network Capacity Planning: Spark Summit East tal...
Predictive Analytics for IoT Network Capacity Planning: Spark Summit East tal...Predictive Analytics for IoT Network Capacity Planning: Spark Summit East tal...
Predictive Analytics for IoT Network Capacity Planning: Spark Summit East tal...
Spark Summit
 
Unlocking Value in Device Data Using Spark: Spark Summit East talk by John La...
Unlocking Value in Device Data Using Spark: Spark Summit East talk by John La...Unlocking Value in Device Data Using Spark: Spark Summit East talk by John La...
Unlocking Value in Device Data Using Spark: Spark Summit East talk by John La...
Spark Summit
 
Keeping Spark on Track: Productionizing Spark for ETL
Keeping Spark on Track: Productionizing Spark for ETLKeeping Spark on Track: Productionizing Spark for ETL
Keeping Spark on Track: Productionizing Spark for ETL
Databricks
 
No More “Sbt Assembly”: Rethinking Spark-Submit Using CueSheet: Spark Summit ...
No More “Sbt Assembly”: Rethinking Spark-Submit Using CueSheet: Spark Summit ...No More “Sbt Assembly”: Rethinking Spark-Submit Using CueSheet: Spark Summit ...
No More “Sbt Assembly”: Rethinking Spark-Submit Using CueSheet: Spark Summit ...
Spark Summit
 
Using Spark and Riak for IoT Apps—Patterns and Anti-Patterns: Spark Summit Ea...
Using Spark and Riak for IoT Apps—Patterns and Anti-Patterns: Spark Summit Ea...Using Spark and Riak for IoT Apps—Patterns and Anti-Patterns: Spark Summit Ea...
Using Spark and Riak for IoT Apps—Patterns and Anti-Patterns: Spark Summit Ea...
Spark Summit
 
Ad

Similar to High Resolution Energy Modeling that Scales with Apache Spark 2.0 Spark Summit East talk by Jonathan Farland (20)

Data Intensive Applications at UCSD: Driving a Campus Research Cyberinfrastru...
Data Intensive Applications at UCSD:Driving a Campus Research Cyberinfrastru...Data Intensive Applications at UCSD:Driving a Campus Research Cyberinfrastru...
Data Intensive Applications at UCSD: Driving a Campus Research Cyberinfrastru...
Larry Smarr
 
Panel: NRP Science Impacts​
Panel: NRP Science Impacts​Panel: NRP Science Impacts​
Panel: NRP Science Impacts​
Larry Smarr
 
PosterPresentation
PosterPresentationPosterPresentation
PosterPresentation
Raj Shekhar
 
Energy analytics with Apache Spark workshop
Energy analytics with Apache Spark workshopEnergy analytics with Apache Spark workshop
Energy analytics with Apache Spark workshop
QuantUniversity
 
40 Powers of 10 - Simulating the Universe with the DiRAC HPC Facility
40 Powers of 10 - Simulating the Universe with the DiRAC HPC Facility40 Powers of 10 - Simulating the Universe with the DiRAC HPC Facility
40 Powers of 10 - Simulating the Universe with the DiRAC HPC Facility
inside-BigData.com
 
Accelerators at ORNL - Application Readiness, Early Science, and Industry Impact
Accelerators at ORNL - Application Readiness, Early Science, and Industry ImpactAccelerators at ORNL - Application Readiness, Early Science, and Industry Impact
Accelerators at ORNL - Application Readiness, Early Science, and Industry Impact
inside-BigData.com
 
TeraGrid Communication and Computation
TeraGrid Communication and ComputationTeraGrid Communication and Computation
TeraGrid Communication and Computation
Tal Lavian Ph.D.
 
Breaking Down Analytical and Computational Barriers Across the Energy Industr...
Breaking Down Analytical and Computational Barriers Across the Energy Industr...Breaking Down Analytical and Computational Barriers Across the Energy Industr...
Breaking Down Analytical and Computational Barriers Across the Energy Industr...
Spark Summit
 
Optimizing Generation, Distribution, Renewables, and Demand Response for a Sm...
Optimizing Generation, Distribution, Renewables, and Demand Response for a Sm...Optimizing Generation, Distribution, Renewables, and Demand Response for a Sm...
Optimizing Generation, Distribution, Renewables, and Demand Response for a Sm...
John Dirkman, PE
 
How HPC and large-scale data analytics are transforming experimental science
How HPC and large-scale data analytics are transforming experimental scienceHow HPC and large-scale data analytics are transforming experimental science
How HPC and large-scale data analytics are transforming experimental science
inside-BigData.com
 
A Data Lake and a Data Lab to Optimize Operations and Safety within a nuclear...
A Data Lake and a Data Lab to Optimize Operations and Safety within a nuclear...A Data Lake and a Data Lab to Optimize Operations and Safety within a nuclear...
A Data Lake and a Data Lab to Optimize Operations and Safety within a nuclear...
DataWorks Summit/Hadoop Summit
 
ECP Application Development
ECP Application DevelopmentECP Application Development
ECP Application Development
inside-BigData.com
 
YingqiCV
YingqiCVYingqiCV
YingqiCV
Yingqi Xiong
 
Data-driven AI for Self-Adaptive Software Systems
Data-driven AI for Self-Adaptive Software SystemsData-driven AI for Self-Adaptive Software Systems
Data-driven AI for Self-Adaptive Software Systems
Andreas Metzger
 
Program on Mathematical and Statistical Methods for Climate and the Earth Sys...
Program on Mathematical and Statistical Methods for Climate and the Earth Sys...Program on Mathematical and Statistical Methods for Climate and the Earth Sys...
Program on Mathematical and Statistical Methods for Climate and the Earth Sys...
The Statistical and Applied Mathematical Sciences Institute
 
Big data analytics_7_giants_public_24_sep_2013
Big data analytics_7_giants_public_24_sep_2013Big data analytics_7_giants_public_24_sep_2013
Big data analytics_7_giants_public_24_sep_2013
Vijay Srinivas Agneeswaran, Ph.D
 
Target Response Electrical usage Profile Clustering using Big Data
Target Response Electrical usage Profile Clustering using Big DataTarget Response Electrical usage Profile Clustering using Big Data
Target Response Electrical usage Profile Clustering using Big Data
IRJET Journal
 
OpenACC Monthly Highlights Summer 2019
OpenACC Monthly Highlights Summer 2019OpenACC Monthly Highlights Summer 2019
OpenACC Monthly Highlights Summer 2019
OpenACC
 
OpenACC Monthly Highlights: October2020
OpenACC Monthly Highlights: October2020OpenACC Monthly Highlights: October2020
OpenACC Monthly Highlights: October2020
OpenACC
 
Physics-ML のためのフレームワーク NVIDIA Modulus 最新事情
Physics-ML のためのフレームワーク NVIDIA Modulus 最新事情Physics-ML のためのフレームワーク NVIDIA Modulus 最新事情
Physics-ML のためのフレームワーク NVIDIA Modulus 最新事情
NVIDIA Japan
 
Data Intensive Applications at UCSD: Driving a Campus Research Cyberinfrastru...
Data Intensive Applications at UCSD:Driving a Campus Research Cyberinfrastru...Data Intensive Applications at UCSD:Driving a Campus Research Cyberinfrastru...
Data Intensive Applications at UCSD: Driving a Campus Research Cyberinfrastru...
Larry Smarr
 
Panel: NRP Science Impacts​
Panel: NRP Science Impacts​Panel: NRP Science Impacts​
Panel: NRP Science Impacts​
Larry Smarr
 
PosterPresentation
PosterPresentationPosterPresentation
PosterPresentation
Raj Shekhar
 
Energy analytics with Apache Spark workshop
Energy analytics with Apache Spark workshopEnergy analytics with Apache Spark workshop
Energy analytics with Apache Spark workshop
QuantUniversity
 
40 Powers of 10 - Simulating the Universe with the DiRAC HPC Facility
40 Powers of 10 - Simulating the Universe with the DiRAC HPC Facility40 Powers of 10 - Simulating the Universe with the DiRAC HPC Facility
40 Powers of 10 - Simulating the Universe with the DiRAC HPC Facility
inside-BigData.com
 
Accelerators at ORNL - Application Readiness, Early Science, and Industry Impact
Accelerators at ORNL - Application Readiness, Early Science, and Industry ImpactAccelerators at ORNL - Application Readiness, Early Science, and Industry Impact
Accelerators at ORNL - Application Readiness, Early Science, and Industry Impact
inside-BigData.com
 
TeraGrid Communication and Computation
TeraGrid Communication and ComputationTeraGrid Communication and Computation
TeraGrid Communication and Computation
Tal Lavian Ph.D.
 
Breaking Down Analytical and Computational Barriers Across the Energy Industr...
Breaking Down Analytical and Computational Barriers Across the Energy Industr...Breaking Down Analytical and Computational Barriers Across the Energy Industr...
Breaking Down Analytical and Computational Barriers Across the Energy Industr...
Spark Summit
 
Optimizing Generation, Distribution, Renewables, and Demand Response for a Sm...
Optimizing Generation, Distribution, Renewables, and Demand Response for a Sm...Optimizing Generation, Distribution, Renewables, and Demand Response for a Sm...
Optimizing Generation, Distribution, Renewables, and Demand Response for a Sm...
John Dirkman, PE
 
How HPC and large-scale data analytics are transforming experimental science
How HPC and large-scale data analytics are transforming experimental scienceHow HPC and large-scale data analytics are transforming experimental science
How HPC and large-scale data analytics are transforming experimental science
inside-BigData.com
 
A Data Lake and a Data Lab to Optimize Operations and Safety within a nuclear...
A Data Lake and a Data Lab to Optimize Operations and Safety within a nuclear...A Data Lake and a Data Lab to Optimize Operations and Safety within a nuclear...
A Data Lake and a Data Lab to Optimize Operations and Safety within a nuclear...
DataWorks Summit/Hadoop Summit
 
Data-driven AI for Self-Adaptive Software Systems
Data-driven AI for Self-Adaptive Software SystemsData-driven AI for Self-Adaptive Software Systems
Data-driven AI for Self-Adaptive Software Systems
Andreas Metzger
 
Target Response Electrical usage Profile Clustering using Big Data
Target Response Electrical usage Profile Clustering using Big DataTarget Response Electrical usage Profile Clustering using Big Data
Target Response Electrical usage Profile Clustering using Big Data
IRJET Journal
 
OpenACC Monthly Highlights Summer 2019
OpenACC Monthly Highlights Summer 2019OpenACC Monthly Highlights Summer 2019
OpenACC Monthly Highlights Summer 2019
OpenACC
 
OpenACC Monthly Highlights: October2020
OpenACC Monthly Highlights: October2020OpenACC Monthly Highlights: October2020
OpenACC Monthly Highlights: October2020
OpenACC
 
Physics-ML のためのフレームワーク NVIDIA Modulus 最新事情
Physics-ML のためのフレームワーク NVIDIA Modulus 最新事情Physics-ML のためのフレームワーク NVIDIA Modulus 最新事情
Physics-ML のためのフレームワーク NVIDIA Modulus 最新事情
NVIDIA Japan
 
Ad

More from Spark Summit (20)

FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
Spark Summit
 
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
Spark Summit
 
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Apache Spark Structured Streaming Helps Smart Manufacturing with  Xiaochang WuApache Spark Structured Streaming Helps Smart Manufacturing with  Xiaochang Wu
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Spark Summit
 
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Improving Traffic Prediction Using Weather Data  with Ramya RaghavendraImproving Traffic Prediction Using Weather Data  with Ramya Raghavendra
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Spark Summit
 
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
Spark Summit
 
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
Spark Summit
 
Apache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim DowlingApache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
Apache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim DowlingApache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
Spark Summit
 
Next CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub WozniakNext CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub Wozniak
Spark Summit
 
Powering a Startup with Apache Spark with Kevin Kim
Powering a Startup with Apache Spark with Kevin KimPowering a Startup with Apache Spark with Kevin Kim
Powering a Startup with Apache Spark with Kevin Kim
Spark Summit
 
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Improving Traffic Prediction Using Weather Datawith Ramya RaghavendraImproving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Spark Summit
 
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Spark Summit
 
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
How Nielsen Utilized Databricks for Large-Scale Research and Development with...How Nielsen Utilized Databricks for Large-Scale Research and Development with...
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
Spark Summit
 
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spark Summit
 
Goal Based Data Production with Sim Simeonov
Goal Based Data Production with Sim SimeonovGoal Based Data Production with Sim Simeonov
Goal Based Data Production with Sim Simeonov
Spark Summit
 
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Spark Summit
 
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Getting Ready to Use Redis with Apache Spark with Dvir VolkGetting Ready to Use Redis with Apache Spark with Dvir Volk
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Spark Summit
 
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Spark Summit
 
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
Spark Summit
 
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
FPGA-Based Acceleration Architecture for Spark SQL Qi Xie and Quanfu Wang
Spark Summit
 
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
VEGAS: The Missing Matplotlib for Scala/Apache Spark with DB Tsai and Roger M...
Spark Summit
 
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Apache Spark Structured Streaming Helps Smart Manufacturing with  Xiaochang WuApache Spark Structured Streaming Helps Smart Manufacturing with  Xiaochang Wu
Apache Spark Structured Streaming Helps Smart Manufacturing with Xiaochang Wu
Spark Summit
 
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Improving Traffic Prediction Using Weather Data  with Ramya RaghavendraImproving Traffic Prediction Using Weather Data  with Ramya Raghavendra
Improving Traffic Prediction Using Weather Data with Ramya Raghavendra
Spark Summit
 
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
A Tale of Two Graph Frameworks on Spark: GraphFrames and Tinkerpop OLAP Artem...
Spark Summit
 
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
No More Cumbersomeness: Automatic Predictive Modeling on Apache Spark Marcin ...
Spark Summit
 
Apache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim DowlingApache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
Apache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim DowlingApache Spark and Tensorflow as a Service with Jim Dowling
Apache Spark and Tensorflow as a Service with Jim Dowling
Spark Summit
 
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
MMLSpark: Lessons from Building a SparkML-Compatible Machine Learning Library...
Spark Summit
 
Next CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub WozniakNext CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub Wozniak
Spark Summit
 
Powering a Startup with Apache Spark with Kevin Kim
Powering a Startup with Apache Spark with Kevin KimPowering a Startup with Apache Spark with Kevin Kim
Powering a Startup with Apache Spark with Kevin Kim
Spark Summit
 
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Improving Traffic Prediction Using Weather Datawith Ramya RaghavendraImproving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Improving Traffic Prediction Using Weather Datawith Ramya Raghavendra
Spark Summit
 
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Hiding Apache Spark Complexity for Fast Prototyping of Big Data Applications—...
Spark Summit
 
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
How Nielsen Utilized Databricks for Large-Scale Research and Development with...How Nielsen Utilized Databricks for Large-Scale Research and Development with...
How Nielsen Utilized Databricks for Large-Scale Research and Development with...
Spark Summit
 
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spline: Apache Spark Lineage not Only for the Banking Industry with Marek Nov...
Spark Summit
 
Goal Based Data Production with Sim Simeonov
Goal Based Data Production with Sim SimeonovGoal Based Data Production with Sim Simeonov
Goal Based Data Production with Sim Simeonov
Spark Summit
 
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Preventing Revenue Leakage and Monitoring Distributed Systems with Machine Le...
Spark Summit
 
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Getting Ready to Use Redis with Apache Spark with Dvir VolkGetting Ready to Use Redis with Apache Spark with Dvir Volk
Getting Ready to Use Redis with Apache Spark with Dvir Volk
Spark Summit
 
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Deduplication and Author-Disambiguation of Streaming Records via Supervised M...
Spark Summit
 
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
MatFast: In-Memory Distributed Matrix Computation Processing and Optimization...
Spark Summit
 

Recently uploaded (20)

Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnTemplate_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
cegiver630
 
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docxMASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
santosh162
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
4. Multivariable statistics_Using Stata_2025.pdf
4. Multivariable statistics_Using Stata_2025.pdf4. Multivariable statistics_Using Stata_2025.pdf
4. Multivariable statistics_Using Stata_2025.pdf
axonneurologycenter1
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 
VKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptxVKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptx
Vinod Srivastava
 
Decision Trees in Artificial-Intelligence.pdf
Decision Trees in Artificial-Intelligence.pdfDecision Trees in Artificial-Intelligence.pdf
Decision Trees in Artificial-Intelligence.pdf
Saikat Basu
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
Minions Want to eat presentacion muy linda
Minions Want to eat presentacion muy lindaMinions Want to eat presentacion muy linda
Minions Want to eat presentacion muy linda
CarlaAndradesSoler1
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Defense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptxDefense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptx
Greg Makowski
 
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnTemplate_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
cegiver630
 
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docxMASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
santosh162
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
4. Multivariable statistics_Using Stata_2025.pdf
4. Multivariable statistics_Using Stata_2025.pdf4. Multivariable statistics_Using Stata_2025.pdf
4. Multivariable statistics_Using Stata_2025.pdf
axonneurologycenter1
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 
VKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptxVKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptx
Vinod Srivastava
 
Decision Trees in Artificial-Intelligence.pdf
Decision Trees in Artificial-Intelligence.pdfDecision Trees in Artificial-Intelligence.pdf
Decision Trees in Artificial-Intelligence.pdf
Saikat Basu
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
Minions Want to eat presentacion muy linda
Minions Want to eat presentacion muy lindaMinions Want to eat presentacion muy linda
Minions Want to eat presentacion muy linda
CarlaAndradesSoler1
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Defense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptxDefense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptx
Greg Makowski
 

High Resolution Energy Modeling that Scales with Apache Spark 2.0 Spark Summit East talk by Jonathan Farland

  • 1. High Resolution Energy Modeling that Scales with Apache Spark 2.0 Jonathan Farland Consultant | Data Scientist, DNV GL
  • 2. About me • Data Scientist & Technical Consultant for DNV GL’s Policy Advisory and Research Group. • Background in Econometrics, Forecasting, Machine Learning and Optimization. • Working with Big Data for 3+ years
  • 3. Agenda • Introduction to DNV GL • Energy Data Science using Spark – Data Scales and the DGP – Application 1 – Princeton Score Keeping Method (PRISM) – Application 2 – Hourly Predictive Modelling with Distributed Energy Resources • Next Steps with Spark and Databricks
  • 4. Introduction to DNV GL Jonathan Farland Consultant | Data Scientist, DNV GL
  • 6. Energy Data Science: Data Scales and the DGP Jonathan Farland Consultant | Data Scientist, DNV GL
  • 7. Metering Data: Historical measured quantities of electricity usage for a site or meter during a particular time. - An analogue origin requiring a physical reading of the meter on a specific cycle. - Typically used for utility companies to bill customers for their usage - Advanced metering technologies and machine learning now allows for millisecond reading and disaggregation down to the end use / appliance level. Weather Data: - Actual Weather: Records of temperature, humidity, cloud cover, solar irradiance, etc. - Typical Weather: 30-year / 10-year averages that define “normal” weather conditions Data Generating Process
  • 8. Electricity Distribution Grid Transmission Distribution ConsumerGeneration Transmission Distribution ConsumerGeneration Wind Farms Photo Voltaic Aggregated Utility Scale 2-50 MW Utility Scale 100kW-2MW Distributed Scale 25kW-100kW Residential Commercial & Industrial DistributionTransmissionGeneration Bulk Storage > 50 MW Distribution System Bulk System PhotovoltaicWind Farms
  • 9. The Rise of The Smart Grid
  • 11. The embarrassingly parallel ‘Primary Modeling Unit’: I. Temporal: Sub-hourly, hourly, daily, monthly, annually II. CrossSectional: Clusters/Segments, Geography, System Hierarchy. III. Hybrid: Structure and Year specific Databricks: Rapid deployment and development of existing analytics pipeline Spark 2.0: SparkR allows for UDF’s and Partition-Based Model Learning - gapply, dapply, lapply Spark 2.1: Enable installing third party packages on workers using spark.addfile - SPARK-7159: Multiclass Logistic Regression in DataFrame-based API Analytical Solution
  • 12. Energy Data Science: Princeton Score Keeping Method (PRISM) Jonathan Farland Consultant | Data Scientist, DNV GL
  • 13. PRISM Algorithm - Decomposes energy usage into it’s weather-driven and baseload components. - Site level modelling that combine both full and reduced form models - Grid search over possible heating and cooling reference temperatures - Rich history development based on fundamental structural engineering principles - Origin: Miriam Goldberg's dissertation "A Geometrical Approach to Non-differentiable Regression Models as Related to Methods for Assessing Residential Energy Conservation.“
  • 14. Just a little math… Et = β0 + βhH(τh) + βcC(τc) + εt C(τc) = 0, xt − τc < 0 xt − τc, xt − τc ≥ 0 H(τh) = τh − xt, xt − τh < 0 0, xt − τh ≥ 0
  • 16. SparkR – gapply, dapply, lapply
  • 20. Energy Data Science: Predictive Modeling with Distributed Energy Resources Jonathan Farland Consultant | Data Scientist, DNV GL
  • 21. 21 Load Shifting: Electric Vehicles 0 5 10 15 20 25 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Demand(kW) Hour Ending Standard Rate Electric Vehicle Rate
  • 22. 22 - 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Load(kWh) Hour Ending Forecasted - DR Reduction Forecasted - DR Baseline Forecasted - DR Impacted Load Actual DR - Reduction Load Reduction: Demand Response
  • 23. Cluster Sizes: 1 – 10,495 2 – 4,513 3 – 1,127 4 – 9,823 Digitalization: Scalable Cluster Computing (Spark, Python, R) Data Science: Machine Learning Algorithms (Spectral Clustering and K-means) Predictive Analytics (Semiparametric Regression)
  • 24. Cluster Sizes: 1 – 10,495 2 – 4,513 3 – 1,127 4 – 9,823 Digitalization: Scalable Cluster Computing (Spark, Python, R) Data Science: Machine Learning Algorithms (Spectral Clustering and K-means) Predictive Analytics (Semiparametric Regression)
  • 25. How well did it work? Cluster 1 Cluster 4
  • 29. Spark 2.0 / 2.1 has allowed DNV GL’s existing expertise and code base to scale Databricks has provided an environment that facilitated existing codebases as well as additional rapid development - Analytical contexts, prediction goals, and model selection processes define the Primary Modeling Unit (PMU) in any Energy Data Science Application. - The distributed computing framework must be able to scale with the appropriate Primary Modeling Unit for any Energy Data Science Application Take Home Message
  • 30. Modeling Additional Fuels - Natural Gas (Therms) - Water (Liters / Gallons) - Hybrid (British Thermal Units) Climate Change Simulations - DNV GL’s BayTown System Dynamics Model Electricity Grid Optimization with Distributed Energy Resource Assets The Future!

Editor's Notes

  • #4: Application 1: Simple models, Application 2: Complex Models
  • #5: https://www.dnvgl.com/energy/video/watch/energy-video.html
  • #6: Application 1: Simple models, Application 2: Complex Models
  • #8: History of the utility and energy industry What is driving the explosion in data
  • #9: Explain the explosion in in data Discuss Non-Intrusive Load Metering
  • #10: Explain the explosion in in data Discuss Non-Intrusive Load Metering
  • #12: Resource: http://spark.apache.org/releases/spark-release-2-1-0.html
  • #15: Resource: http://spark.apache.org/releases/spark-release-2-1-0.html
  • #16: Resource: http://spark.apache.org/releases/spark-release-2-1-0.html
  • #17: Resource: http://spark.apache.org/releases/spark-release-2-1-0.html
  • #18: Resource: http://spark.apache.org/releases/spark-release-2-1-0.html
  • #22: Adjust the underlying data in this graphic to make this not a real forecast. - load shedding and load reductions Talk about DNV GL’s service offering for micro demand response forecasting in the short run… Briefly describe some of the algorithms and calibrations used for this project
  • #23: Adjust the underlying data in this graphic to make this not a real forecast. - load shedding and load reductions Talk about DNV GL’s service offering for micro demand response forecasting in the short run… Briefly describe some of the algorithms and calibrations used for this project
  • #30: Resource: http://spark.apache.org/releases/spark-release-2-1-0.html Extenion of Spark 2.1 in other Energy related analytics Example: Climate Change Simulations in San Francisco Bay Area (DNV GL’s BayTown System Dynamics Model). Additional Fuels / Dependent Variables to Model: Natural Gas (Therms) Water (Liters / Gallons) Hybrid (British Thermal Units) Grid Optimization with Distributed Energy Resources Assets
  • #31: Resource: http://spark.apache.org/releases/spark-release-2-1-0.html Extenion of Spark 2.1 in other Energy related analytics Example: Climate Change Simulations in San Francisco Bay Area (DNV GL’s BayTown System Dynamics Model). Additional Fuels / Dependent Variables to Model: Natural Gas (Therms) Water (Liters / Gallons) Hybrid (British Thermal Units) Grid Optimization with Distributed Energy Resources Assets