SlideShare a Scribd company logo
1/13
How to build a GPT model?
leewayhertz.com/build-a-gpt-model
Introduced by OpenAI, powerful Generative Pre-trained Transformer (GPT) language models
have opened up new frontiers in Natural Language Processing (NLP). The integration of GPT
models into virtual assistants and chatbots boosts their capabilities, which has resulted in a
surge in demand for GPT models. According to a report published by Allied Market Research,
titled “Global NLP Market,” the global NLP market size was valued at $11.1 billion in 2020
and is estimated to reach $341.5 billion by 2030, growing at a CAGR of 40.9% from 2021 to
2030. Interestingly, the demand for GPT models are a major contributor to this growth.
GPT models are a collection of deep learning-based language models created by the OpenAI
team. Without supervision, these models can perform various NLP tasks like question-
answering, textual entailment, text summarization, etc. These language models require very
few or no examples to understand tasks. They perform equivalent to or even better than
state-of-the-art models trained in a supervised fashion.
The most trained GPT model -GPT-3, has 175 billion learning parameters, making it ten
times more powerful than any language model. It has the edge over other models in that it
can perform tasks without extensive tuning; it only requires little textual-interactional
demonstration, and the model does the rest. An advanced trained GPT model can make life
2/13
easier by performing language translation, text summarization, question answering, chatbot
integration, content generation, sentiment analysis, named entity recognition, text
classification, text completion, text-to-speech synthesis and much more.
This article deeply delves into all aspects of GPT models and discusses the steps required to
build a GPT model from scratch.
What is a GPT model?
GPT stands for Generative Pre-trained Transformer, the first generalized language model in
NLP. Previously, language models were only designed for single tasks like text generation,
summarization or classification. GPT is the first generalized language model ever created in
the history of natural language processing that can be used for various NLP tasks. Now let us
explore the three components of GPT, namely Generative, Pre-Trained, and Transformer and
understand what they mean.
Generative: Generative models are statistical models used to generate new data.
These models can learn the relationships between variables in a data set to generate
new data points similar to those in the original data set.
Pre-trained: These models have been pre-trained using a large data set which can be
used when it is difficult to train a new model. Although a pre-trained model might not
be perfect, it can save time and improve performance.
Transformer: The transformer model, an artificial neural network created in 2017, is
the most well-known deep learning model capable of handling sequential data such as
text. Many tasks like machine translation and text classification are performed using
transformer models.
GPT can perform various NLP tasks with high accuracy depending on the large datasets it
was trained on and its architecture of billion parameters, allowing it to understand the logical
connections within the data. GPT models, like the latest version GPT-3, have been pre-
trained using text from five large datasets, including Common Crawl and WebText2. The
corpus contains nearly a trillion words, allowing GPT-3 to perform NLP tasks quickly and
without any examples of data.
Working mechanism of GPT models
GPT is an AI language model based on transformer architecture that is pre-trained,
generative, unsupervised, and capable of performing well in zero/one/few-shot multitask
settings. It predicts the next token (an instance of a sequence of characters) from a sequence
of tokens for NLP tasks, it has not been trained on. After seeing only a few examples, it can
achieve the desired outcomes in certain benchmarks, including machine translation, Q&A
and cloze tasks. GPT models calculate the likelihood of a word appearing in a text given that
it appears in another text primarily based on conditional probability. For example, in the
3/13
sentence, “Margaret is organizing a garage sale…Perhaps we could purchase that old…” the
word chair is more likely appropriate than the word ‘elephant’. Also, transformer models use
multiple units called attention blocks that learn which parts of a text sequence to be focused
on. One transformer might have multiple attention blocks, each learning different aspects of
a language.
LeewayHertz
Output
Probabilities
Feed
Forward
Multi- Head
Attention
Multi- Head
Attention
Nx
Nx
Positional
Encoding
Positional
Encoding
Outputs
(shifted right)
Inputs
Add & Norm
Add & Norm
Add & Norm
Add & Norm
Feed
Forward
Add & Norm
Linear
Softmax
Masked
Multi-Head
Attention
Input
Embedding
Output
Embedding
Transformer architecture
A transformer architecture has two main segments: an encoder that primarily operates on
the input sequence and a decoder that operates on the target sequence during training and
predicts the next item. For example, a transformer might take a sequence of English words
and predict the French word in the correct translation until it is complete.
4/13
The encoder determines which parts of the input should be emphasized. For example, the
encoder can read a sentence like “The quick brown fox jumped.” It then calculates the
embedding matrix (embedding in NLP allows words with similar meanings to have a similar
representation) and converts it into a series of attention vectors. Now, what is an attention
vector? You can view an attention vector in a transformer model as a special calculator,
which helps the model understand which parts of any given information are most important
in making a decision. Suppose you have been asked multiple questions in an exam that you
must answer using different information pieces. The attention vector helps you to pick the
most important information to answer each question. It works in the same way in the case of
a transformer model.
The multi-head attention block initially produces these attention vectors. They are then
normalized and passed into a fully connected layer. Normalization is again done before being
passed to the decoder. During training, the encoder works directly on the target output
sequence. Let us say that the target output is the French translation of the English sentence
“The quick brown fox jumped.” The decoder computes separate embedding vectors for each
French word of the sentence. Additionally, the positional encoder is applied in the form of
sine and cosine functions. Also, masked attention is used, which means that the first word of
the French sentence is used, whereas all other words are masked. This allows the transformer
to learn to predict the next French words. These outputs are then added and normalized
before being passed on to another attention block which also receives the attention vectors
generated by the encoder.
Alongside, GPT models employ some data compression while consuming millions upon
millions of sample texts to convert words into vectors which are nothing but numerical
representations. The language model then unpacks the compressed text into human-friendly
sentences. The model’s accuracy is improved by compressing and decompressing text. This
also allows it to calculate the conditional probability of each word. GPT models can perform
well in “few shots” settings and respond to text samples that have been seen before. They
only require a few examples to produce pertinent responses because they have been trained
on many text samples.
Besides, GPT models have many capabilities, such as generating unprecedented-quality
synthetic text samples. If you prime the model with an input, it will generate a long
continuation. GPT models outperform other language models trained on domains such as
Wikipedia, news, and books without using domain-specific training data. GPT learns
language tasks such as reading comprehension, summarization and question answering from
the text alone, without task-specific training data. These tasks’ scores (“score” refers to a
numerical value the model assigns to represent the likelihood or probability of a given output
or result) are not the best, but they suggest unsupervised techniques with sufficient data and
computation that could benefit the tasks.
Here is a comprehensive comparison of GPT models with other language models.
5/13
Feature GPT
BERT (Bidirectional
Encoder Representations
from Transformers)
ELMo (Embeddings
from Language
Models)
Pretraining
approach
Unidirectional
language modeling
Bidirectional language
modeling (masked language
modeling and next sentence
prediction)
Unidirectional
language modeling
Pretraining
data
Large amounts of
text from the
internet
Large amounts of text from
the internet
A combination of
internal and
external corpus
Architecture Transformer
network
Transformer network Deep bi-directional
LSTM network
Outputs Context-aware
token-level
embeddings
Context-aware token-level
and sentence-level
embeddings
Context-aware word-
level embeddings
Fine-tuning
approach
Multi-task fine-
tuning (e.g., text
classification,
sequence labeling)
Multi-task fine-tuning (e.g.,
text classification, question
answering)
Fine-tuning on
individual tasks
Advantages Can generate text,
high flexibility in
fine-tuning, large
model size
Strong performance on a
variety of NLP tasks,
considering the context in
both directions
Generates task-
specific features,
considers context from
the entire input
sequence
Limitations Can generate
biased or
inaccurate text,
requires large
amounts of data
Limited to fine-tuning and
requires task-specific
architecture modifications;
requires large amounts of
data
Limited context and
task-specific; requires
task-specific
architecture
modifications
Prerequisites to build a GPT model
To build a GPT (Generative Pretrained Transformer) model, the following tools and
resources are required:
A deep learning framework, such as TensorFlow or PyTorch, to implement the model
and train it on large amounts of data.
A large amount of training data, such as text from books, articles, or websites to train
the model on language patterns and structure.
6/13
A high-performance computing environment, such as GPUs or TPUs, for accelerating
the training process.
Knowledge of deep learning concepts, such as neural networks and natural language
processing (NLP), to design and implement the model.
Tools for data pre-processing and cleaning, such as Numpy, Pandas, or NLTK, to
prepare the training data for input into the model.
Tools for evaluating the model, such as perplexity or BLEU scores, to measure its
performance and make improvements.
An NLP library, such as spaCy or NLTK, for tokenizing, stemming and performing
other NLP tasks on the input data.
Besides, you need to understand the following deep learning concepts to build a GPT model:
Neural networks: As GPT models implement neural networks, you must thoroughly
understand how they work and their implementation techniques in a deep learning
framework.
Natural language Processing (NLP): For GPT modeling processes, tokenization,
stemming, and text generation, NLP techniques are widely used. So, it is necessary to
have a fundamental understanding of NLP techniques and their applications.
Transformers: GPT models work based on transformer architecture, so understanding
it and its role in language processing and generation is important.
Attention mechanisms: Knowledge of how attention mechanisms work is essential to
enhance the performance of the GPT model.
Pretraining: It is essential to apply the concept of pretraining to the GPT model to
improve its performance on NLP tasks.
Generative models: Understanding the basic concepts and methods of generative
models is essential to understand how they can be applied to build your own GPT
model.
Language modeling: GPT models work based on large amounts of text data. So, a clear
understanding of language modeling is required to apply it for GPT model training.
Optimization: An understanding of optimization algorithms, such as stochastic
gradient descent, is required to optimize the GPT model during training.
Alongside this, you need proficiency in any of the following programming languages with a
solid understanding of programming concepts, such as object-oriented programming, data
structures, and algorithms, to build a GPT model.
Python: The most commonly used programming language in deep learning and AI. It
has several libraries, such as TensorFlow, PyTorch, and Numpy, used for building and
training GPT models.
R: A popular programming language for data analysis and statistical modeling, with
several packages for deep learning and AI.
7/13
Julia: A high-level, high-performance programming language well-suited for numerical
and scientific computing, including deep learning.
How to create a GPT model? A step-by-step guide
Building a GPT model involves the following steps:
Step 1: Data preparation
To prepare a dataset to build a GPT model, the following steps can be followed:
Data collection: You need to collect a large amount of text data, such as books, articles,
and websites, to use it as the training data for your GPT model.
Data cleaning: You should remove any irrelevant information, such as HTML tags or
irrelevant headers, and standardize the text format.
Tokenize the data: Divide the text into smaller units, such as words or subwords, to
enable the model to learn the language patterns and structure.
Data pre-processing: Perform any necessary pre-processing tasks on the data, such as
stemming, removing stop words, or converting the text to lowercase.
Split the data: Divide the cleaned and pre-processed data into different sets, such as
training, validation, and test sets to evaluate the model’s performance during training.
Batch creation: Create batches of the training data to feed into the model during
training. Depending on the requirements of the model, this can be done randomly or
sequentially.
Convert the data to tensor: TensorFlow and PyTorch are some basic data structures
used in deep learning frameworks. So, you need to convert the data into tensors.
It is essential to ensure that the data is of high quality, diverse, and in sufficient quantity to
train the GPT model effectively and avoid overfitting.
Step 2: Model architecture selection
Model architecture selection is a crucial step in building a GPT model. It primarily depends
on the type of data and task being addressed. While choosing an architecture, you need to
consider the following factors:
Task complexity: The task complexity should be analyzed properly to identify the
factors that can impact the architecture, such as the size of the output space, the
presence of multi-label or multi-class outputs, the presence of additional constraints,
etc. For example, complex tasks may require more layers or sophisticated attention
mechanisms.
8/13
Data characteristics: You need to identify the characteristics of the data being
processed, which include the length of the sequences, the presence of structured or
unstructured data, and the size of the vocabulary. For example, longer sequences may
require deeper networks, while convolutional neural networks benefit the structured
data.
Computational constraints: The choice of architecture also depends on the memory
requirement of the computational resources available along with GPU resources. For
example, larger models may require more memory and computational resources.
Ultimately, the choice of architecture is a trade-off between the desired performance, the
computational resources available, and the complexity of the task and data. So, it needs
careful experimentation and iteration to determine the best architecture for a given task.
Step 3: Model training
Model training is the most crucial phase of the entire GPT model-building process, as in this
step, the model is exposed to vast amounts of text data and learns to predict the next word in
a sequence based on the input context. During the training process, the model’s parameters
are adjusted in a way that its predictions become more accurate and it achieves a certain level
of performance. The quality of the training data and the choice of hyperparameters greatly
influence the performance of the final model, making model training a critical component in
the development of GPT models.
Here we will describe how to train a large GPT-2 model that can auto-complete your Python
code. You can get the code from Github by searching with the string, codeparrot.
Here are the basic steps followed in building the model:
Step 1: Data generation
Before training the model, we need a large training dataset. For this Python code generation
model, you can access the GitHub dump available on Google’s BigQuery, which is filtered for
all Python files and is a 180 GB dataset with 22 million files.
The SQL query to create the dataset is the following:
SELECT
f.repo_name, f.path, c.copies, c.size, c.content, l.license
FROM
`bigquery-public-data.github_repos.files` AS f
JOIN
`bigquery-public-data.github_repos.contents` AS c
ON
f.id = c.id
9/13
JOIN
`bigquery-public-data.github_repos.licenses` AS l
ON
f.repo_name = l.repo_name
WHERE
NOT c.binary
AND ((f.path LIKE '%.py')
AND (c.size BETWEEN 1024 AND 1048575))
Step 2: Setting up the tokenizer and model
To train a GPT model, we need a tokenizer. Here we have used an existing tokenizer (e.g.,
GPT-2) and trained it on the dataset mentioned above with
the train_new_from_iterator() method.
# Iterator for Training
def batch_iterator(batch_size=10):
for _ in tqdm(range(0, args.n_examples, batch_size)):
yield [next(iter_dataset)["content"] for _ in range(batch_size)]
# Base tokenizer
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
base_vocab = list(bytes_to_unicode().values())
# Load dataset
dataset = load_dataset("lvwerra/codeparrot-clean", split="train", streaming=True)
iter_dataset = iter(dataset)
# Training and saving
new_tokenizer = tokenizer.train_new_from_iterator(batch_iterator(),
vocab_size=args.vocab_size,
initial_alphabet=base_vocab)
new_tokenizer.save_pretrained(args.tokenizer_name, push_to_hub=args.push_to_hub)
Next, a new model is initialized using the same hyperparameters as GPT-2 large (1.5B
parameters). This model can be used to adjust the embedding layer to fit a new tokenizer, by
adding some stability tweaks. The code snippet for the same is mentioned below:
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name)
# Configuration
config_kwargs = {"vocab_size": len(tokenizer),
"scale_attn_by_layer_idx": True,
"reorder_and_upcast_attn": True}
# Load model with config and push to hub
config = AutoConfig.from_pretrained('gpt2-large', **config_kwargs)
model = AutoModelForCausalLM.from_config(config)
model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
10/13
With a streamlined tokenizer and a newly established model, we are ready to begin the model
training process.
Step 3: Implementing the training loop
Prior to commencing the training, it’s necessary to configure the optimizer and the schedule
for the learning rate. Here, a support function is used for exclusion to prevent weight decay
on biases and LayerNorm weights.
def get_grouped_params(model, args, no_decay=["bias", "LayerNorm.weight"]):
params_with_wd, params_without_wd = [], []
for n, p in model.named_parameters():
if any(nd in n for nd in no_decay): params_without_wd.append(p)
else: params_with_wd.append(p)
return [{"params": params_with_wd, "weight_decay": args.weight_decay},
{"params": params_without_wd, "weight_decay": 0.0},]
optimizer = AdamW(get_grouped_params(model, args), lr=args.learning_rate)
lr_scheduler = get_scheduler(name=args.lr_scheduler_type, optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.max_train_steps,)
We can now move forward with composing the core training cycle.It will resemble a typical
PyTorch training cycle with some modifications. You’ll notice that
accelerator functions are utilized here, instead of PyTorch’s native methods. Additionally,
after every evaluation, the model is transferred to the accelerator.
# Train model
model.train()
completed_steps = 0
for step, batch in enumerate(train_dataloader, start=1):
loss = model(batch, labels=batch, use_cache=False).loss
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if step % args.gradient_accumulation_steps == 0:
accelerator.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
completed_steps += 1
if step % args.save_checkpoint_steps == 0:
eval_loss, perplexity = evaluate(args)
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(args.save_dir, save_function=accelerator.save)
11/13
if accelerator.is_main_process:
hf_repo.push_to_hub(commit_message=f"step {step}")
model.train()
if completed_steps >= args.max_train_steps:
break
Done! That’s the code to train a full GPT-2 model. (However, you need to access the full code
from the GitHub location as mentioned above)
Step 4: Model evaluation
Model evaluation is an important step you need to perform when building a GPT model, as it
provides insight into how well the model is performing. The metrics used for evaluation vary
depending on the task, but some common metrics include accuracy, perplexity, and F1 score.
To perform an evaluation in a GPT model, you must first set aside a portion of your training
data for validation. During the training process, you can periodically evaluate the model on
this validation set rather than the training set. You can then compare the model’s
performance on the validation set to its performance on the training set to check for
overfitting.
When evaluating the model, you can calculate various metrics based on the model’s
predictions and compare them to the actual outputs. For example, you can calculate the
model’s accuracy by comparing its predictions to the true labels, or you can calculate the
perplexity of the model by evaluating how well it predicts the next word in a sequence.
After evaluating the model, you can use the metrics to make informed decisions about how to
improve the model, such as adjusting the learning rate, changing the model architecture, or
increasing the amount of training data. Regular model evaluation and adjustment help refine
the model and produce a high-performing GPT model.
Things to consider while building a GPT model
Removing bias and toxicity
As we strive to build powerful generative AI models, we must be aware of the tremendous
responsibility that comes with it. It is crucial to acknowledge that models such as GPT are
trained on vast and unpredictable data from the internet, which can lead to biases and toxic
language in the final product. As AI technology evolves, responsible practices become
increasingly important. We must ensure that our AI models are developed and deployed
ethically and with social responsibility in mind. Prioritizing responsible AI practices is vital in
reducing the risks of biased and toxic content while fully unlocking the potential of
generative AI to create a better world.
12/13
It is necessary to take a proactive approach to ensure that the output generated by AI models
is free from bias and toxicity. This includes filtering training datasets to eliminate potentially
harmful content and implementing watchdog models to monitor output in real-time.
Furthermore, leveraging first-party data to train and fine-tune AI models can significantly
enhance their quality. This allows customization to meet specific use cases, improving overall
performance.
Improving hallucination
It is essential to acknowledge that while GPT models can generate convincing arguments,
they may not always be based on factual accuracy. Within the developer community, this
issue is known as “hallucination,” which can reduce the reliability of the output produced by
these AI models. To overcome this challenge, you need to consider the measures as taken by
OpenAI and other vendors, including data augmentation, adversarial training, improved
model architectures, and human evaluation to enhance the accuracy of the output and
decrease the risk of hallucination and ensure output generated by the model is as precise and
dependable as possible.
Preventing data leakage
Establishing transparent policies is crucial to prevent developers from passing sensitive
information into GPT models, which could be incorporated into the model and resurfaced in
a public context. By implementing such policies, we can prevent the unintentional disclosure
of sensitive information, safeguard the privacy and security of individuals and organizations,
and avoid any negative consequences. This is essential to remain vigilant in safeguarding
against potential risks associated with the use of GPT models and take proactive measures to
mitigate them.
Incorporating queries and actions
Current generative models can provide answers based on their initial large training data set
or smaller “fine-tuning” data sets, which are not real-time and historical. However, the next
generation of models will take a significant leap forward. These models will possess the
capability to identify when to seek information from external sources such as a database or
Google or trigger actions in external systems, transforming generative models from isolated
oracles to fully connected conversational interfaces with the world. By enabling this new level
of connectivity, we can unlock a new set of use cases and possibilities for these models,
creating a more dynamic and seamless user experience that provides real-time, relevant
information and insights.
Endnote
13/13
GPT models are a significant milestone in the history of AI development, which is a part of a
larger LLM trend that will grow in the future. Furthermore, OpenAI’s groundbreaking move
to provide API access is part of its model-as-a-service business scheme. Additionally, GPT’s
language-based capabilities allow for creating innovative products as it excels at tasks such as
text summarization, classification, and interaction. GPT models are expected to shape the
future internet and how we use technology and software. Building a GPT model may be
challenging, but with the right approach and tools, it becomes a rewarding experience that
opens up new opportunities for NLP applications.
Want to get a competitive edge in your industry with cutting-edge GPT technology? Contact
LeewayHertz’s AI experts to take your solution’s natural language processing capabilities
to the next level!

More Related Content

What's hot (20)

PDF
Lecture-18(11-02-22)Stochastics POS Tagging.pdf
NiraliRajeshAroraAut
 
PDF
Software testing axioms
vijayalakshmijanakir1
 
PPTX
Genetic algorithms in Data Mining
Atul Khanna
 
PPTX
Web browser architecture
Nguyen Quang
 
PDF
Python programming using problem solving approach by thareja, reema (z lib.org)
arshpreetkaur07
 
PPTX
Semantic interpretation
Vivek Kumar
 
PDF
Nlp ambiguity presentation
Gurram Poorna Prudhvi
 
PPTX
IOT DATA MANAGEMENT AND COMPUTE STACK.pptx
MeghaShree665225
 
PPTX
NLP_KASHK:Minimum Edit Distance
Hemantha Kulathilake
 
PPTX
Partial redundancy elimination
Ishucs
 
PPTX
Music Genre Classification CS513
Balaji Katakam
 
PPTX
Analytical learning
swapnac12
 
PPTX
Presentation on "Knowledge acquisition & validation"
Aditya Sarkar
 
PDF
IRJET - Helmet Violation Detection using Deep Learning
IRJET Journal
 
PPTX
Software agents
rajsandhu1989
 
PPTX
Inductive analytical approaches to learning
swapnac12
 
PDF
Agreement Protocols, distributed File Systems, Distributed Shared Memory
SHIKHA GAUTAM
 
PPTX
Python for IoT
Selvaraj Seerangan
 
PPTX
Intelligent agent
Geeta Jaswani
 
PPTX
BERT.pptx
HemanthKonamanchili1
 
Lecture-18(11-02-22)Stochastics POS Tagging.pdf
NiraliRajeshAroraAut
 
Software testing axioms
vijayalakshmijanakir1
 
Genetic algorithms in Data Mining
Atul Khanna
 
Web browser architecture
Nguyen Quang
 
Python programming using problem solving approach by thareja, reema (z lib.org)
arshpreetkaur07
 
Semantic interpretation
Vivek Kumar
 
Nlp ambiguity presentation
Gurram Poorna Prudhvi
 
IOT DATA MANAGEMENT AND COMPUTE STACK.pptx
MeghaShree665225
 
NLP_KASHK:Minimum Edit Distance
Hemantha Kulathilake
 
Partial redundancy elimination
Ishucs
 
Music Genre Classification CS513
Balaji Katakam
 
Analytical learning
swapnac12
 
Presentation on "Knowledge acquisition & validation"
Aditya Sarkar
 
IRJET - Helmet Violation Detection using Deep Learning
IRJET Journal
 
Software agents
rajsandhu1989
 
Inductive analytical approaches to learning
swapnac12
 
Agreement Protocols, distributed File Systems, Distributed Shared Memory
SHIKHA GAUTAM
 
Python for IoT
Selvaraj Seerangan
 
Intelligent agent
Geeta Jaswani
 

Similar to How to build a GPT model.pdf (20)

PDF
Build Your Own GPT Model In 5 Easy Steps.pdf
SoluLab1231
 
PDF
How to Build Your Own GPT Model - SoluLab
SoluLab1231
 
PDF
How to build a GPT model step-by-step guide .pdf
alexjohnson7307
 
PDF
leewayhertz.com-How to build a GPT model (1).pdf
alexjohnson7307
 
PDF
Introduction to Large Language Models and the Transformer Architecture.pdf
sudeshnakundu10
 
PDF
leewayhertz.com-How to build a GPT model (1).pdf
KristiLBurns
 
PPTX
A brief primer on OpenAI's GPT-3
Ishan Jain
 
PPTX
Deep Learning for Natural Language Processing_FDP on 16 June 2025 MITS.pptx
resming1
 
PPTX
Understanding Large Language Models (1).pptx
RabikaKhalid
 
PPTX
What Deep Learning Means for Artificial Intelligence
Jonathan Mugan
 
PPTX
Deep Learning for Natural Language Processing
Jonathan Mugan
 
PPTX
Behind the Scenes of ChatGPT.pptx
fsxflyer789Productio
 
PDF
Frontiers of Natural Language Processing
Sebastian Ruder
 
PDF
Crafting Your Customized Legal Mastery: A Guide to Building Your Private LLM
ChristopherTHyatt
 
PPTX
Breaking down the AI magic of ChatGPT: A technologist's lens to its powerful ...
rahul_net
 
PPTX
Machine Learning - Transformers, Large Language Models and ChatGPT
MoissFreitas13
 
PDF
How do OpenAI GPT Models Work - Misconceptions and Tips for Developers
Ivo Andreev
 
PDF
Should we be afraid of Transformers?
Dominik Seisser
 
PDF
Implications of GPT-3
Raven Jiang
 
PDF
What is GPT A Comprehensive Guide to OpenAI.pdf
SoluLab1231
 
Build Your Own GPT Model In 5 Easy Steps.pdf
SoluLab1231
 
How to Build Your Own GPT Model - SoluLab
SoluLab1231
 
How to build a GPT model step-by-step guide .pdf
alexjohnson7307
 
leewayhertz.com-How to build a GPT model (1).pdf
alexjohnson7307
 
Introduction to Large Language Models and the Transformer Architecture.pdf
sudeshnakundu10
 
leewayhertz.com-How to build a GPT model (1).pdf
KristiLBurns
 
A brief primer on OpenAI's GPT-3
Ishan Jain
 
Deep Learning for Natural Language Processing_FDP on 16 June 2025 MITS.pptx
resming1
 
Understanding Large Language Models (1).pptx
RabikaKhalid
 
What Deep Learning Means for Artificial Intelligence
Jonathan Mugan
 
Deep Learning for Natural Language Processing
Jonathan Mugan
 
Behind the Scenes of ChatGPT.pptx
fsxflyer789Productio
 
Frontiers of Natural Language Processing
Sebastian Ruder
 
Crafting Your Customized Legal Mastery: A Guide to Building Your Private LLM
ChristopherTHyatt
 
Breaking down the AI magic of ChatGPT: A technologist's lens to its powerful ...
rahul_net
 
Machine Learning - Transformers, Large Language Models and ChatGPT
MoissFreitas13
 
How do OpenAI GPT Models Work - Misconceptions and Tips for Developers
Ivo Andreev
 
Should we be afraid of Transformers?
Dominik Seisser
 
Implications of GPT-3
Raven Jiang
 
What is GPT A Comprehensive Guide to OpenAI.pdf
SoluLab1231
 
Ad

More from StephenAmell4 (20)

PDF
AI in supplier management - An Overview.pdf
StephenAmell4
 
PDF
AI for customer success - An Overview.pdf
StephenAmell4
 
PDF
AI in financial planning - Your ultimate knowledge guide.pdf
StephenAmell4
 
PDF
AI in anomaly detection - An Overview.pdf
StephenAmell4
 
PDF
AI for sentiment analysis - An Overview.pdf
StephenAmell4
 
PDF
AI integration - Transforming businesses with intelligent solutions.pdf
StephenAmell4
 
PDF
AI in visual quality control - An Overview.pdf
StephenAmell4
 
PDF
AI-based credit scoring - An Overview.pdf
StephenAmell4
 
PDF
AI in marketing - A detailed insight.pdf
StephenAmell4
 
PDF
Generative AI in insurance- A comprehensive guide.pdf
StephenAmell4
 
PDF
AI IN INFORMATION TECHNOLOGY: REDEFINING OPERATIONS AND RESHAPING STRATEGIES.pdf
StephenAmell4
 
PDF
AI IN THE WORKPLACE: TRANSFORMING TODAY’S WORK DYNAMICS.pdf
StephenAmell4
 
PDF
AI IN REAL ESTATE: IMPACTING THE DYNAMICS OF THE MODERN PROPERTY MARKET.pdf
StephenAmell4
 
PDF
How AI in business process automation is changing the game.pdf
StephenAmell4
 
PDF
Generative AI in supply chain management.pdf
StephenAmell4
 
PDF
AI in telemedicine: Shaping a new era of virtual healthcare.pdf
StephenAmell4
 
PDF
AI in business management: An Overview.pdf
StephenAmell4
 
PDF
AI in fleet management : An Overview.pdf
StephenAmell4
 
PDF
AI in fuel distribution control Exploring the use cases.pdf
StephenAmell4
 
PDF
AI in pricing engines.pdf
StephenAmell4
 
AI in supplier management - An Overview.pdf
StephenAmell4
 
AI for customer success - An Overview.pdf
StephenAmell4
 
AI in financial planning - Your ultimate knowledge guide.pdf
StephenAmell4
 
AI in anomaly detection - An Overview.pdf
StephenAmell4
 
AI for sentiment analysis - An Overview.pdf
StephenAmell4
 
AI integration - Transforming businesses with intelligent solutions.pdf
StephenAmell4
 
AI in visual quality control - An Overview.pdf
StephenAmell4
 
AI-based credit scoring - An Overview.pdf
StephenAmell4
 
AI in marketing - A detailed insight.pdf
StephenAmell4
 
Generative AI in insurance- A comprehensive guide.pdf
StephenAmell4
 
AI IN INFORMATION TECHNOLOGY: REDEFINING OPERATIONS AND RESHAPING STRATEGIES.pdf
StephenAmell4
 
AI IN THE WORKPLACE: TRANSFORMING TODAY’S WORK DYNAMICS.pdf
StephenAmell4
 
AI IN REAL ESTATE: IMPACTING THE DYNAMICS OF THE MODERN PROPERTY MARKET.pdf
StephenAmell4
 
How AI in business process automation is changing the game.pdf
StephenAmell4
 
Generative AI in supply chain management.pdf
StephenAmell4
 
AI in telemedicine: Shaping a new era of virtual healthcare.pdf
StephenAmell4
 
AI in business management: An Overview.pdf
StephenAmell4
 
AI in fleet management : An Overview.pdf
StephenAmell4
 
AI in fuel distribution control Exploring the use cases.pdf
StephenAmell4
 
AI in pricing engines.pdf
StephenAmell4
 
Ad

Recently uploaded (20)

PDF
Transforming Utility Networks: Large-scale Data Migrations with FME
Safe Software
 
PPTX
New ThousandEyes Product Innovations: Cisco Live June 2025
ThousandEyes
 
PDF
Dev Dives: Accelerating agentic automation with Autopilot for Everyone
UiPathCommunity
 
DOCX
Cryptography Quiz: test your knowledge of this important security concept.
Rajni Bhardwaj Grover
 
PDF
Linux schedulers for fun and profit with SchedKit
Alessio Biancalana
 
PDF
Kit-Works Team Study_20250627_한달만에만든사내서비스키링(양다윗).pdf
Wonjun Hwang
 
PPTX
MuleSoft MCP Support (Model Context Protocol) and Use Case Demo
shyamraj55
 
PDF
NASA A Researcher’s Guide to International Space Station : Fundamental Physics
Dr. PANKAJ DHUSSA
 
PPTX
Wondershare Filmora Crack Free Download 2025
josanj305
 
PDF
“Squinting Vision Pipelines: Detecting and Correcting Errors in Vision Models...
Edge AI and Vision Alliance
 
PDF
“Computer Vision at Sea: Automated Fish Tracking for Sustainable Fishing,” a ...
Edge AI and Vision Alliance
 
PPTX
Agentforce World Tour Toronto '25 - MCP with MuleSoft
Alexandra N. Martinez
 
PPTX
Talbott's brief History of Computers for CollabDays Hamburg 2025
Talbott Crowell
 
PPTX
Securing Model Context Protocol with Keycloak: AuthN/AuthZ for MCP Servers
Hitachi, Ltd. OSS Solution Center.
 
PDF
CIFDAQ Market Wrap for the week of 4th July 2025
CIFDAQ
 
PPTX
Role_of_Artificial_Intelligence_in_Livestock_Extension_Services.pptx
DrRajdeepMadavi
 
PPTX
Essential Content-centric Plugins for your Website
Laura Byrne
 
PDF
Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 
PDF
NASA A Researcher’s Guide to International Space Station : Earth Observations
Dr. PANKAJ DHUSSA
 
PPTX
CapCut Pro PC Crack Latest Version Free Free
josanj305
 
Transforming Utility Networks: Large-scale Data Migrations with FME
Safe Software
 
New ThousandEyes Product Innovations: Cisco Live June 2025
ThousandEyes
 
Dev Dives: Accelerating agentic automation with Autopilot for Everyone
UiPathCommunity
 
Cryptography Quiz: test your knowledge of this important security concept.
Rajni Bhardwaj Grover
 
Linux schedulers for fun and profit with SchedKit
Alessio Biancalana
 
Kit-Works Team Study_20250627_한달만에만든사내서비스키링(양다윗).pdf
Wonjun Hwang
 
MuleSoft MCP Support (Model Context Protocol) and Use Case Demo
shyamraj55
 
NASA A Researcher’s Guide to International Space Station : Fundamental Physics
Dr. PANKAJ DHUSSA
 
Wondershare Filmora Crack Free Download 2025
josanj305
 
“Squinting Vision Pipelines: Detecting and Correcting Errors in Vision Models...
Edge AI and Vision Alliance
 
“Computer Vision at Sea: Automated Fish Tracking for Sustainable Fishing,” a ...
Edge AI and Vision Alliance
 
Agentforce World Tour Toronto '25 - MCP with MuleSoft
Alexandra N. Martinez
 
Talbott's brief History of Computers for CollabDays Hamburg 2025
Talbott Crowell
 
Securing Model Context Protocol with Keycloak: AuthN/AuthZ for MCP Servers
Hitachi, Ltd. OSS Solution Center.
 
CIFDAQ Market Wrap for the week of 4th July 2025
CIFDAQ
 
Role_of_Artificial_Intelligence_in_Livestock_Extension_Services.pptx
DrRajdeepMadavi
 
Essential Content-centric Plugins for your Website
Laura Byrne
 
Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 
NASA A Researcher’s Guide to International Space Station : Earth Observations
Dr. PANKAJ DHUSSA
 
CapCut Pro PC Crack Latest Version Free Free
josanj305
 

How to build a GPT model.pdf

  • 1. 1/13 How to build a GPT model? leewayhertz.com/build-a-gpt-model Introduced by OpenAI, powerful Generative Pre-trained Transformer (GPT) language models have opened up new frontiers in Natural Language Processing (NLP). The integration of GPT models into virtual assistants and chatbots boosts their capabilities, which has resulted in a surge in demand for GPT models. According to a report published by Allied Market Research, titled “Global NLP Market,” the global NLP market size was valued at $11.1 billion in 2020 and is estimated to reach $341.5 billion by 2030, growing at a CAGR of 40.9% from 2021 to 2030. Interestingly, the demand for GPT models are a major contributor to this growth. GPT models are a collection of deep learning-based language models created by the OpenAI team. Without supervision, these models can perform various NLP tasks like question- answering, textual entailment, text summarization, etc. These language models require very few or no examples to understand tasks. They perform equivalent to or even better than state-of-the-art models trained in a supervised fashion. The most trained GPT model -GPT-3, has 175 billion learning parameters, making it ten times more powerful than any language model. It has the edge over other models in that it can perform tasks without extensive tuning; it only requires little textual-interactional demonstration, and the model does the rest. An advanced trained GPT model can make life
  • 2. 2/13 easier by performing language translation, text summarization, question answering, chatbot integration, content generation, sentiment analysis, named entity recognition, text classification, text completion, text-to-speech synthesis and much more. This article deeply delves into all aspects of GPT models and discusses the steps required to build a GPT model from scratch. What is a GPT model? GPT stands for Generative Pre-trained Transformer, the first generalized language model in NLP. Previously, language models were only designed for single tasks like text generation, summarization or classification. GPT is the first generalized language model ever created in the history of natural language processing that can be used for various NLP tasks. Now let us explore the three components of GPT, namely Generative, Pre-Trained, and Transformer and understand what they mean. Generative: Generative models are statistical models used to generate new data. These models can learn the relationships between variables in a data set to generate new data points similar to those in the original data set. Pre-trained: These models have been pre-trained using a large data set which can be used when it is difficult to train a new model. Although a pre-trained model might not be perfect, it can save time and improve performance. Transformer: The transformer model, an artificial neural network created in 2017, is the most well-known deep learning model capable of handling sequential data such as text. Many tasks like machine translation and text classification are performed using transformer models. GPT can perform various NLP tasks with high accuracy depending on the large datasets it was trained on and its architecture of billion parameters, allowing it to understand the logical connections within the data. GPT models, like the latest version GPT-3, have been pre- trained using text from five large datasets, including Common Crawl and WebText2. The corpus contains nearly a trillion words, allowing GPT-3 to perform NLP tasks quickly and without any examples of data. Working mechanism of GPT models GPT is an AI language model based on transformer architecture that is pre-trained, generative, unsupervised, and capable of performing well in zero/one/few-shot multitask settings. It predicts the next token (an instance of a sequence of characters) from a sequence of tokens for NLP tasks, it has not been trained on. After seeing only a few examples, it can achieve the desired outcomes in certain benchmarks, including machine translation, Q&A and cloze tasks. GPT models calculate the likelihood of a word appearing in a text given that it appears in another text primarily based on conditional probability. For example, in the
  • 3. 3/13 sentence, “Margaret is organizing a garage sale…Perhaps we could purchase that old…” the word chair is more likely appropriate than the word ‘elephant’. Also, transformer models use multiple units called attention blocks that learn which parts of a text sequence to be focused on. One transformer might have multiple attention blocks, each learning different aspects of a language. LeewayHertz Output Probabilities Feed Forward Multi- Head Attention Multi- Head Attention Nx Nx Positional Encoding Positional Encoding Outputs (shifted right) Inputs Add & Norm Add & Norm Add & Norm Add & Norm Feed Forward Add & Norm Linear Softmax Masked Multi-Head Attention Input Embedding Output Embedding Transformer architecture A transformer architecture has two main segments: an encoder that primarily operates on the input sequence and a decoder that operates on the target sequence during training and predicts the next item. For example, a transformer might take a sequence of English words and predict the French word in the correct translation until it is complete.
  • 4. 4/13 The encoder determines which parts of the input should be emphasized. For example, the encoder can read a sentence like “The quick brown fox jumped.” It then calculates the embedding matrix (embedding in NLP allows words with similar meanings to have a similar representation) and converts it into a series of attention vectors. Now, what is an attention vector? You can view an attention vector in a transformer model as a special calculator, which helps the model understand which parts of any given information are most important in making a decision. Suppose you have been asked multiple questions in an exam that you must answer using different information pieces. The attention vector helps you to pick the most important information to answer each question. It works in the same way in the case of a transformer model. The multi-head attention block initially produces these attention vectors. They are then normalized and passed into a fully connected layer. Normalization is again done before being passed to the decoder. During training, the encoder works directly on the target output sequence. Let us say that the target output is the French translation of the English sentence “The quick brown fox jumped.” The decoder computes separate embedding vectors for each French word of the sentence. Additionally, the positional encoder is applied in the form of sine and cosine functions. Also, masked attention is used, which means that the first word of the French sentence is used, whereas all other words are masked. This allows the transformer to learn to predict the next French words. These outputs are then added and normalized before being passed on to another attention block which also receives the attention vectors generated by the encoder. Alongside, GPT models employ some data compression while consuming millions upon millions of sample texts to convert words into vectors which are nothing but numerical representations. The language model then unpacks the compressed text into human-friendly sentences. The model’s accuracy is improved by compressing and decompressing text. This also allows it to calculate the conditional probability of each word. GPT models can perform well in “few shots” settings and respond to text samples that have been seen before. They only require a few examples to produce pertinent responses because they have been trained on many text samples. Besides, GPT models have many capabilities, such as generating unprecedented-quality synthetic text samples. If you prime the model with an input, it will generate a long continuation. GPT models outperform other language models trained on domains such as Wikipedia, news, and books without using domain-specific training data. GPT learns language tasks such as reading comprehension, summarization and question answering from the text alone, without task-specific training data. These tasks’ scores (“score” refers to a numerical value the model assigns to represent the likelihood or probability of a given output or result) are not the best, but they suggest unsupervised techniques with sufficient data and computation that could benefit the tasks. Here is a comprehensive comparison of GPT models with other language models.
  • 5. 5/13 Feature GPT BERT (Bidirectional Encoder Representations from Transformers) ELMo (Embeddings from Language Models) Pretraining approach Unidirectional language modeling Bidirectional language modeling (masked language modeling and next sentence prediction) Unidirectional language modeling Pretraining data Large amounts of text from the internet Large amounts of text from the internet A combination of internal and external corpus Architecture Transformer network Transformer network Deep bi-directional LSTM network Outputs Context-aware token-level embeddings Context-aware token-level and sentence-level embeddings Context-aware word- level embeddings Fine-tuning approach Multi-task fine- tuning (e.g., text classification, sequence labeling) Multi-task fine-tuning (e.g., text classification, question answering) Fine-tuning on individual tasks Advantages Can generate text, high flexibility in fine-tuning, large model size Strong performance on a variety of NLP tasks, considering the context in both directions Generates task- specific features, considers context from the entire input sequence Limitations Can generate biased or inaccurate text, requires large amounts of data Limited to fine-tuning and requires task-specific architecture modifications; requires large amounts of data Limited context and task-specific; requires task-specific architecture modifications Prerequisites to build a GPT model To build a GPT (Generative Pretrained Transformer) model, the following tools and resources are required: A deep learning framework, such as TensorFlow or PyTorch, to implement the model and train it on large amounts of data. A large amount of training data, such as text from books, articles, or websites to train the model on language patterns and structure.
  • 6. 6/13 A high-performance computing environment, such as GPUs or TPUs, for accelerating the training process. Knowledge of deep learning concepts, such as neural networks and natural language processing (NLP), to design and implement the model. Tools for data pre-processing and cleaning, such as Numpy, Pandas, or NLTK, to prepare the training data for input into the model. Tools for evaluating the model, such as perplexity or BLEU scores, to measure its performance and make improvements. An NLP library, such as spaCy or NLTK, for tokenizing, stemming and performing other NLP tasks on the input data. Besides, you need to understand the following deep learning concepts to build a GPT model: Neural networks: As GPT models implement neural networks, you must thoroughly understand how they work and their implementation techniques in a deep learning framework. Natural language Processing (NLP): For GPT modeling processes, tokenization, stemming, and text generation, NLP techniques are widely used. So, it is necessary to have a fundamental understanding of NLP techniques and their applications. Transformers: GPT models work based on transformer architecture, so understanding it and its role in language processing and generation is important. Attention mechanisms: Knowledge of how attention mechanisms work is essential to enhance the performance of the GPT model. Pretraining: It is essential to apply the concept of pretraining to the GPT model to improve its performance on NLP tasks. Generative models: Understanding the basic concepts and methods of generative models is essential to understand how they can be applied to build your own GPT model. Language modeling: GPT models work based on large amounts of text data. So, a clear understanding of language modeling is required to apply it for GPT model training. Optimization: An understanding of optimization algorithms, such as stochastic gradient descent, is required to optimize the GPT model during training. Alongside this, you need proficiency in any of the following programming languages with a solid understanding of programming concepts, such as object-oriented programming, data structures, and algorithms, to build a GPT model. Python: The most commonly used programming language in deep learning and AI. It has several libraries, such as TensorFlow, PyTorch, and Numpy, used for building and training GPT models. R: A popular programming language for data analysis and statistical modeling, with several packages for deep learning and AI.
  • 7. 7/13 Julia: A high-level, high-performance programming language well-suited for numerical and scientific computing, including deep learning. How to create a GPT model? A step-by-step guide Building a GPT model involves the following steps: Step 1: Data preparation To prepare a dataset to build a GPT model, the following steps can be followed: Data collection: You need to collect a large amount of text data, such as books, articles, and websites, to use it as the training data for your GPT model. Data cleaning: You should remove any irrelevant information, such as HTML tags or irrelevant headers, and standardize the text format. Tokenize the data: Divide the text into smaller units, such as words or subwords, to enable the model to learn the language patterns and structure. Data pre-processing: Perform any necessary pre-processing tasks on the data, such as stemming, removing stop words, or converting the text to lowercase. Split the data: Divide the cleaned and pre-processed data into different sets, such as training, validation, and test sets to evaluate the model’s performance during training. Batch creation: Create batches of the training data to feed into the model during training. Depending on the requirements of the model, this can be done randomly or sequentially. Convert the data to tensor: TensorFlow and PyTorch are some basic data structures used in deep learning frameworks. So, you need to convert the data into tensors. It is essential to ensure that the data is of high quality, diverse, and in sufficient quantity to train the GPT model effectively and avoid overfitting. Step 2: Model architecture selection Model architecture selection is a crucial step in building a GPT model. It primarily depends on the type of data and task being addressed. While choosing an architecture, you need to consider the following factors: Task complexity: The task complexity should be analyzed properly to identify the factors that can impact the architecture, such as the size of the output space, the presence of multi-label or multi-class outputs, the presence of additional constraints, etc. For example, complex tasks may require more layers or sophisticated attention mechanisms.
  • 8. 8/13 Data characteristics: You need to identify the characteristics of the data being processed, which include the length of the sequences, the presence of structured or unstructured data, and the size of the vocabulary. For example, longer sequences may require deeper networks, while convolutional neural networks benefit the structured data. Computational constraints: The choice of architecture also depends on the memory requirement of the computational resources available along with GPU resources. For example, larger models may require more memory and computational resources. Ultimately, the choice of architecture is a trade-off between the desired performance, the computational resources available, and the complexity of the task and data. So, it needs careful experimentation and iteration to determine the best architecture for a given task. Step 3: Model training Model training is the most crucial phase of the entire GPT model-building process, as in this step, the model is exposed to vast amounts of text data and learns to predict the next word in a sequence based on the input context. During the training process, the model’s parameters are adjusted in a way that its predictions become more accurate and it achieves a certain level of performance. The quality of the training data and the choice of hyperparameters greatly influence the performance of the final model, making model training a critical component in the development of GPT models. Here we will describe how to train a large GPT-2 model that can auto-complete your Python code. You can get the code from Github by searching with the string, codeparrot. Here are the basic steps followed in building the model: Step 1: Data generation Before training the model, we need a large training dataset. For this Python code generation model, you can access the GitHub dump available on Google’s BigQuery, which is filtered for all Python files and is a 180 GB dataset with 22 million files. The SQL query to create the dataset is the following: SELECT f.repo_name, f.path, c.copies, c.size, c.content, l.license FROM `bigquery-public-data.github_repos.files` AS f JOIN `bigquery-public-data.github_repos.contents` AS c ON f.id = c.id
  • 9. 9/13 JOIN `bigquery-public-data.github_repos.licenses` AS l ON f.repo_name = l.repo_name WHERE NOT c.binary AND ((f.path LIKE '%.py') AND (c.size BETWEEN 1024 AND 1048575)) Step 2: Setting up the tokenizer and model To train a GPT model, we need a tokenizer. Here we have used an existing tokenizer (e.g., GPT-2) and trained it on the dataset mentioned above with the train_new_from_iterator() method. # Iterator for Training def batch_iterator(batch_size=10): for _ in tqdm(range(0, args.n_examples, batch_size)): yield [next(iter_dataset)["content"] for _ in range(batch_size)] # Base tokenizer tokenizer = GPT2Tokenizer.from_pretrained("gpt2") base_vocab = list(bytes_to_unicode().values()) # Load dataset dataset = load_dataset("lvwerra/codeparrot-clean", split="train", streaming=True) iter_dataset = iter(dataset) # Training and saving new_tokenizer = tokenizer.train_new_from_iterator(batch_iterator(), vocab_size=args.vocab_size, initial_alphabet=base_vocab) new_tokenizer.save_pretrained(args.tokenizer_name, push_to_hub=args.push_to_hub) Next, a new model is initialized using the same hyperparameters as GPT-2 large (1.5B parameters). This model can be used to adjust the embedding layer to fit a new tokenizer, by adding some stability tweaks. The code snippet for the same is mentioned below: tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name) # Configuration config_kwargs = {"vocab_size": len(tokenizer), "scale_attn_by_layer_idx": True, "reorder_and_upcast_attn": True} # Load model with config and push to hub config = AutoConfig.from_pretrained('gpt2-large', **config_kwargs) model = AutoModelForCausalLM.from_config(config) model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
  • 10. 10/13 With a streamlined tokenizer and a newly established model, we are ready to begin the model training process. Step 3: Implementing the training loop Prior to commencing the training, it’s necessary to configure the optimizer and the schedule for the learning rate. Here, a support function is used for exclusion to prevent weight decay on biases and LayerNorm weights. def get_grouped_params(model, args, no_decay=["bias", "LayerNorm.weight"]): params_with_wd, params_without_wd = [], [] for n, p in model.named_parameters(): if any(nd in n for nd in no_decay): params_without_wd.append(p) else: params_with_wd.append(p) return [{"params": params_with_wd, "weight_decay": args.weight_decay}, {"params": params_without_wd, "weight_decay": 0.0},] optimizer = AdamW(get_grouped_params(model, args), lr=args.learning_rate) lr_scheduler = get_scheduler(name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps,) We can now move forward with composing the core training cycle.It will resemble a typical PyTorch training cycle with some modifications. You’ll notice that accelerator functions are utilized here, instead of PyTorch’s native methods. Additionally, after every evaluation, the model is transferred to the accelerator. # Train model model.train() completed_steps = 0 for step, batch in enumerate(train_dataloader, start=1): loss = model(batch, labels=batch, use_cache=False).loss loss = loss / args.gradient_accumulation_steps accelerator.backward(loss) if step % args.gradient_accumulation_steps == 0: accelerator.clip_grad_norm_(model.parameters(), 1.0) optimizer.step() lr_scheduler.step() optimizer.zero_grad() completed_steps += 1 if step % args.save_checkpoint_steps == 0: eval_loss, perplexity = evaluate(args) accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(args.save_dir, save_function=accelerator.save)
  • 11. 11/13 if accelerator.is_main_process: hf_repo.push_to_hub(commit_message=f"step {step}") model.train() if completed_steps >= args.max_train_steps: break Done! That’s the code to train a full GPT-2 model. (However, you need to access the full code from the GitHub location as mentioned above) Step 4: Model evaluation Model evaluation is an important step you need to perform when building a GPT model, as it provides insight into how well the model is performing. The metrics used for evaluation vary depending on the task, but some common metrics include accuracy, perplexity, and F1 score. To perform an evaluation in a GPT model, you must first set aside a portion of your training data for validation. During the training process, you can periodically evaluate the model on this validation set rather than the training set. You can then compare the model’s performance on the validation set to its performance on the training set to check for overfitting. When evaluating the model, you can calculate various metrics based on the model’s predictions and compare them to the actual outputs. For example, you can calculate the model’s accuracy by comparing its predictions to the true labels, or you can calculate the perplexity of the model by evaluating how well it predicts the next word in a sequence. After evaluating the model, you can use the metrics to make informed decisions about how to improve the model, such as adjusting the learning rate, changing the model architecture, or increasing the amount of training data. Regular model evaluation and adjustment help refine the model and produce a high-performing GPT model. Things to consider while building a GPT model Removing bias and toxicity As we strive to build powerful generative AI models, we must be aware of the tremendous responsibility that comes with it. It is crucial to acknowledge that models such as GPT are trained on vast and unpredictable data from the internet, which can lead to biases and toxic language in the final product. As AI technology evolves, responsible practices become increasingly important. We must ensure that our AI models are developed and deployed ethically and with social responsibility in mind. Prioritizing responsible AI practices is vital in reducing the risks of biased and toxic content while fully unlocking the potential of generative AI to create a better world.
  • 12. 12/13 It is necessary to take a proactive approach to ensure that the output generated by AI models is free from bias and toxicity. This includes filtering training datasets to eliminate potentially harmful content and implementing watchdog models to monitor output in real-time. Furthermore, leveraging first-party data to train and fine-tune AI models can significantly enhance their quality. This allows customization to meet specific use cases, improving overall performance. Improving hallucination It is essential to acknowledge that while GPT models can generate convincing arguments, they may not always be based on factual accuracy. Within the developer community, this issue is known as “hallucination,” which can reduce the reliability of the output produced by these AI models. To overcome this challenge, you need to consider the measures as taken by OpenAI and other vendors, including data augmentation, adversarial training, improved model architectures, and human evaluation to enhance the accuracy of the output and decrease the risk of hallucination and ensure output generated by the model is as precise and dependable as possible. Preventing data leakage Establishing transparent policies is crucial to prevent developers from passing sensitive information into GPT models, which could be incorporated into the model and resurfaced in a public context. By implementing such policies, we can prevent the unintentional disclosure of sensitive information, safeguard the privacy and security of individuals and organizations, and avoid any negative consequences. This is essential to remain vigilant in safeguarding against potential risks associated with the use of GPT models and take proactive measures to mitigate them. Incorporating queries and actions Current generative models can provide answers based on their initial large training data set or smaller “fine-tuning” data sets, which are not real-time and historical. However, the next generation of models will take a significant leap forward. These models will possess the capability to identify when to seek information from external sources such as a database or Google or trigger actions in external systems, transforming generative models from isolated oracles to fully connected conversational interfaces with the world. By enabling this new level of connectivity, we can unlock a new set of use cases and possibilities for these models, creating a more dynamic and seamless user experience that provides real-time, relevant information and insights. Endnote
  • 13. 13/13 GPT models are a significant milestone in the history of AI development, which is a part of a larger LLM trend that will grow in the future. Furthermore, OpenAI’s groundbreaking move to provide API access is part of its model-as-a-service business scheme. Additionally, GPT’s language-based capabilities allow for creating innovative products as it excels at tasks such as text summarization, classification, and interaction. GPT models are expected to shape the future internet and how we use technology and software. Building a GPT model may be challenging, but with the right approach and tools, it becomes a rewarding experience that opens up new opportunities for NLP applications. Want to get a competitive edge in your industry with cutting-edge GPT technology? Contact LeewayHertz’s AI experts to take your solution’s natural language processing capabilities to the next level!