SlideShare a Scribd company logo
Dipping Your Toe Into
Hadoop
How to get started in Big Data without Big
Costs
Bobby Dewitt
VP, Systems Architect
Aisle411
StampedeCon 2016
My Background
• Oracle, MySQL, and PostgreSQL DBA with 15
years of experience
• Led database, infrastructure, and business
intelligence teams to deliver highly available
data systems
• Currently responsible for design,
implementation, and operational availability of
infrastructure and systems at Aisle411
Aisle411
• Digitizing the indoor world
• Indoor maps, positioning, and analytics
• Asset and customer tracking within
locations
• Using augmented reality to make
indoor solutions more interactive
• Small company - big data
RDBMS Versus Hadoop
• Relational databases
• Very structured data
• Good for transactional and operational systems
• Difficult to scale out
• Hardware failures can be disastrous
• Hadoop
• Semistructured or unstructured data
• Good for batch and bulk processing as well as
analytic systems
• Simple to scale out
• Hardware failures are handled seamlessly
Hadoop Adoption
• Still not a reality for many companies
• Major barriers include
• Lack of skilled employees
• Getting value out of the investment
• Constant changes to the ecosystem
Kick the Tires
• Play around with it
• A Hadoop cluster can reside on a single
machine
• Pre-loaded virtual machines
• Install on EC2 or other cloud VM
What Data Should I Use?
• Stick with what you know
• Choose a dataset that is not specific to
your company
• Try documented examples and use
cases
Example Datasets
• Apache web server logs
• Twitter feeds
• Stock market prices
• Census data
• Sports statistics
• Song data
Apache Web Log Data
• Many online resources
• Potentially large data set
• Real business value
• Combine with other data sources
From Batch to Streaming
• Initial testing done with a batch load using HDFS
tools
• Setup streaming to provide near real-time
updates
• Used several Hadoop components
• HDFS
• Flume
• Morphlines
• Avro
• Hive
• Impala
Quick Wins
• Get data into HDFS
• Get data into Hive or Impala
• Stream live data
• Combine with other data sources
• Create pretty graphs and charts
Costs
• Start small with a data puddle
• Use virtual machines, not the big
appliance
• Research and experimentation time
may be biggest cost
Where Am I?
• Evaluate your initial trials
• Is Hadoop everything you thought it would
be?
• Do you have a real business need to use it?
• Can you migrate any existing data or
processes?
Training
• Hortonworks University
• MapR Academy
• Cloudera quick start tutorials
• Online classes through Coursera, edX, and
others
• Conferences like StampedeCon
Hadoop Is Not For Everyone
• Your “big data” may not be big enough
• Still some work to be done with security
and tools
• Skills are being learned, but not quickly
enough
Thank You
• Questions?
rdewitt@aisle411.com

More Related Content

What's hot (19)

Hadoop Powers Modern Enterprise Data Architectures
Hadoop Powers Modern Enterprise Data ArchitecturesHadoop Powers Modern Enterprise Data Architectures
Hadoop Powers Modern Enterprise Data Architectures
DataWorks Summit
 
Solving Big Data Problems using Hortonworks
Solving Big Data Problems using Hortonworks Solving Big Data Problems using Hortonworks
Solving Big Data Problems using Hortonworks
DataWorks Summit/Hadoop Summit
 
Big Data Analytics in the Cloud with Microsoft Azure
Big Data Analytics in the Cloud with Microsoft AzureBig Data Analytics in the Cloud with Microsoft Azure
Big Data Analytics in the Cloud with Microsoft Azure
Mark Kromer
 
IlOUG Tech Days 2016 - Unlock the Value in your Data Reservoir using Oracle B...
IlOUG Tech Days 2016 - Unlock the Value in your Data Reservoir using Oracle B...IlOUG Tech Days 2016 - Unlock the Value in your Data Reservoir using Oracle B...
IlOUG Tech Days 2016 - Unlock the Value in your Data Reservoir using Oracle B...
Mark Rittman
 
Big Data in Azure
Big Data in AzureBig Data in Azure
Big Data in Azure
DataWorks Summit/Hadoop Summit
 
Accelerating Big Data Analytics
Accelerating Big Data AnalyticsAccelerating Big Data Analytics
Accelerating Big Data Analytics
Attunity
 
Hadoop Data Lake vs classical Data Warehouse: How to utilize best of both wor...
Hadoop Data Lake vs classical Data Warehouse: How to utilize best of both wor...Hadoop Data Lake vs classical Data Warehouse: How to utilize best of both wor...
Hadoop Data Lake vs classical Data Warehouse: How to utilize best of both wor...
Kolja Manuel Rödel
 
Big Data: Setting Up the Big Data Lake
Big Data: Setting Up the Big Data LakeBig Data: Setting Up the Big Data Lake
Big Data: Setting Up the Big Data Lake
Caserta
 
Swimming Across the Data Lake, Lessons learned and keys to success
Swimming Across the Data Lake, Lessons learned and keys to success Swimming Across the Data Lake, Lessons learned and keys to success
Swimming Across the Data Lake, Lessons learned and keys to success
DataWorks Summit/Hadoop Summit
 
"Integration of Hadoop in Business landscape", Michal Alexa, IT and Innovatio...
"Integration of Hadoop in Business landscape", Michal Alexa, IT and Innovatio..."Integration of Hadoop in Business landscape", Michal Alexa, IT and Innovatio...
"Integration of Hadoop in Business landscape", Michal Alexa, IT and Innovatio...
Dataconomy Media
 
Beyond TCO
Beyond TCOBeyond TCO
Beyond TCO
DataWorks Summit/Hadoop Summit
 
Top Trends in Building Data Lakes for Machine Learning and AI
Top Trends in Building Data Lakes for Machine Learning and AI Top Trends in Building Data Lakes for Machine Learning and AI
Top Trends in Building Data Lakes for Machine Learning and AI
Holden Ackerman
 
Data lake benefits
Data lake benefitsData lake benefits
Data lake benefits
Ricky Barron
 
Open-BDA Hadoop Summit 2014 - Mr. Slim Baltagi (Building a Modern Data Archit...
Open-BDA Hadoop Summit 2014 - Mr. Slim Baltagi (Building a Modern Data Archit...Open-BDA Hadoop Summit 2014 - Mr. Slim Baltagi (Building a Modern Data Archit...
Open-BDA Hadoop Summit 2014 - Mr. Slim Baltagi (Building a Modern Data Archit...
Innovative Management Services
 
The EDW Ecosystem
The EDW EcosystemThe EDW Ecosystem
The EDW Ecosystem
DataWorks Summit/Hadoop Summit
 
Enterprise Search: Addressing the First Problem of Big Data & Analytics - Sta...
Enterprise Search: Addressing the First Problem of Big Data & Analytics - Sta...Enterprise Search: Addressing the First Problem of Big Data & Analytics - Sta...
Enterprise Search: Addressing the First Problem of Big Data & Analytics - Sta...
StampedeCon
 
Why Data Lake should be the foundation of Enterprise Data Architecture
Why Data Lake should be the foundation of Enterprise Data ArchitectureWhy Data Lake should be the foundation of Enterprise Data Architecture
Why Data Lake should be the foundation of Enterprise Data Architecture
Agilisium Consulting
 
Creating a Next-Generation Big Data Architecture
Creating a Next-Generation Big Data ArchitectureCreating a Next-Generation Big Data Architecture
Creating a Next-Generation Big Data Architecture
Perficient, Inc.
 
Artur Fejklowicz - “Data Lake architecture” AI&BigDataDay 2017
Artur Fejklowicz - “Data Lake architecture” AI&BigDataDay 2017Artur Fejklowicz - “Data Lake architecture” AI&BigDataDay 2017
Artur Fejklowicz - “Data Lake architecture” AI&BigDataDay 2017
Lviv Startup Club
 
Hadoop Powers Modern Enterprise Data Architectures
Hadoop Powers Modern Enterprise Data ArchitecturesHadoop Powers Modern Enterprise Data Architectures
Hadoop Powers Modern Enterprise Data Architectures
DataWorks Summit
 
Big Data Analytics in the Cloud with Microsoft Azure
Big Data Analytics in the Cloud with Microsoft AzureBig Data Analytics in the Cloud with Microsoft Azure
Big Data Analytics in the Cloud with Microsoft Azure
Mark Kromer
 
IlOUG Tech Days 2016 - Unlock the Value in your Data Reservoir using Oracle B...
IlOUG Tech Days 2016 - Unlock the Value in your Data Reservoir using Oracle B...IlOUG Tech Days 2016 - Unlock the Value in your Data Reservoir using Oracle B...
IlOUG Tech Days 2016 - Unlock the Value in your Data Reservoir using Oracle B...
Mark Rittman
 
Accelerating Big Data Analytics
Accelerating Big Data AnalyticsAccelerating Big Data Analytics
Accelerating Big Data Analytics
Attunity
 
Hadoop Data Lake vs classical Data Warehouse: How to utilize best of both wor...
Hadoop Data Lake vs classical Data Warehouse: How to utilize best of both wor...Hadoop Data Lake vs classical Data Warehouse: How to utilize best of both wor...
Hadoop Data Lake vs classical Data Warehouse: How to utilize best of both wor...
Kolja Manuel Rödel
 
Big Data: Setting Up the Big Data Lake
Big Data: Setting Up the Big Data LakeBig Data: Setting Up the Big Data Lake
Big Data: Setting Up the Big Data Lake
Caserta
 
Swimming Across the Data Lake, Lessons learned and keys to success
Swimming Across the Data Lake, Lessons learned and keys to success Swimming Across the Data Lake, Lessons learned and keys to success
Swimming Across the Data Lake, Lessons learned and keys to success
DataWorks Summit/Hadoop Summit
 
"Integration of Hadoop in Business landscape", Michal Alexa, IT and Innovatio...
"Integration of Hadoop in Business landscape", Michal Alexa, IT and Innovatio..."Integration of Hadoop in Business landscape", Michal Alexa, IT and Innovatio...
"Integration of Hadoop in Business landscape", Michal Alexa, IT and Innovatio...
Dataconomy Media
 
Top Trends in Building Data Lakes for Machine Learning and AI
Top Trends in Building Data Lakes for Machine Learning and AI Top Trends in Building Data Lakes for Machine Learning and AI
Top Trends in Building Data Lakes for Machine Learning and AI
Holden Ackerman
 
Data lake benefits
Data lake benefitsData lake benefits
Data lake benefits
Ricky Barron
 
Open-BDA Hadoop Summit 2014 - Mr. Slim Baltagi (Building a Modern Data Archit...
Open-BDA Hadoop Summit 2014 - Mr. Slim Baltagi (Building a Modern Data Archit...Open-BDA Hadoop Summit 2014 - Mr. Slim Baltagi (Building a Modern Data Archit...
Open-BDA Hadoop Summit 2014 - Mr. Slim Baltagi (Building a Modern Data Archit...
Innovative Management Services
 
Enterprise Search: Addressing the First Problem of Big Data & Analytics - Sta...
Enterprise Search: Addressing the First Problem of Big Data & Analytics - Sta...Enterprise Search: Addressing the First Problem of Big Data & Analytics - Sta...
Enterprise Search: Addressing the First Problem of Big Data & Analytics - Sta...
StampedeCon
 
Why Data Lake should be the foundation of Enterprise Data Architecture
Why Data Lake should be the foundation of Enterprise Data ArchitectureWhy Data Lake should be the foundation of Enterprise Data Architecture
Why Data Lake should be the foundation of Enterprise Data Architecture
Agilisium Consulting
 
Creating a Next-Generation Big Data Architecture
Creating a Next-Generation Big Data ArchitectureCreating a Next-Generation Big Data Architecture
Creating a Next-Generation Big Data Architecture
Perficient, Inc.
 
Artur Fejklowicz - “Data Lake architecture” AI&BigDataDay 2017
Artur Fejklowicz - “Data Lake architecture” AI&BigDataDay 2017Artur Fejklowicz - “Data Lake architecture” AI&BigDataDay 2017
Artur Fejklowicz - “Data Lake architecture” AI&BigDataDay 2017
Lviv Startup Club
 

Viewers also liked (16)

Big Data Meets IoT: Lessons From the Cloud on Polling, Collecting, and Analyz...
Big Data Meets IoT: Lessons From the Cloud on Polling, Collecting, and Analyz...Big Data Meets IoT: Lessons From the Cloud on Polling, Collecting, and Analyz...
Big Data Meets IoT: Lessons From the Cloud on Polling, Collecting, and Analyz...
StampedeCon
 
Analyzing Time-Series Data with Apache Spark and Cassandra - StampedeCon 2016
Analyzing Time-Series Data with Apache Spark and Cassandra - StampedeCon 2016Analyzing Time-Series Data with Apache Spark and Cassandra - StampedeCon 2016
Analyzing Time-Series Data with Apache Spark and Cassandra - StampedeCon 2016
StampedeCon
 
Creating a Data Driven Organization - StampedeCon 2016
Creating a Data Driven Organization - StampedeCon 2016Creating a Data Driven Organization - StampedeCon 2016
Creating a Data Driven Organization - StampedeCon 2016
StampedeCon
 
Interplay of Big Data and IoT - StampedeCon 2016
Interplay of Big Data and IoT - StampedeCon 2016Interplay of Big Data and IoT - StampedeCon 2016
Interplay of Big Data and IoT - StampedeCon 2016
StampedeCon
 
Resource Management in Impala - StampedeCon 2016
Resource Management in Impala - StampedeCon 2016Resource Management in Impala - StampedeCon 2016
Resource Management in Impala - StampedeCon 2016
StampedeCon
 
Batch and Real-time EHR updates into Hadoop - StampedeCon 2015
Batch and Real-time EHR updates into Hadoop - StampedeCon 2015Batch and Real-time EHR updates into Hadoop - StampedeCon 2015
Batch and Real-time EHR updates into Hadoop - StampedeCon 2015
StampedeCon
 
Hadoop Security and Compliance - StampedeCon 2016
Hadoop Security and Compliance - StampedeCon 2016Hadoop Security and Compliance - StampedeCon 2016
Hadoop Security and Compliance - StampedeCon 2016
StampedeCon
 
Visualizing Big Data – The Fundamentals
Visualizing Big Data – The FundamentalsVisualizing Big Data – The Fundamentals
Visualizing Big Data – The Fundamentals
StampedeCon
 
Enabling Diverse Workload Scheduling in YARN
Enabling Diverse Workload Scheduling in YARNEnabling Diverse Workload Scheduling in YARN
Enabling Diverse Workload Scheduling in YARN
DataWorks Summit
 
Get most out of Spark on YARN
Get most out of Spark on YARNGet most out of Spark on YARN
Get most out of Spark on YARN
DataWorks Summit
 
Using The Internet of Things for Population Health Management - StampedeCon 2016
Using The Internet of Things for Population Health Management - StampedeCon 2016Using The Internet of Things for Population Health Management - StampedeCon 2016
Using The Internet of Things for Population Health Management - StampedeCon 2016
StampedeCon
 
Apache Hadoop YARN – Multi-Tenancy, Capacity Scheduler & Preemption - Stamped...
Apache Hadoop YARN – Multi-Tenancy, Capacity Scheduler & Preemption - Stamped...Apache Hadoop YARN – Multi-Tenancy, Capacity Scheduler & Preemption - Stamped...
Apache Hadoop YARN – Multi-Tenancy, Capacity Scheduler & Preemption - Stamped...
StampedeCon
 
Building large scale applications in yarn with apache twill
Building large scale applications in yarn with apache twillBuilding large scale applications in yarn with apache twill
Building large scale applications in yarn with apache twill
Henry Saputra
 
Harnessing the power of YARN with Apache Twill
Harnessing the power of YARN with Apache TwillHarnessing the power of YARN with Apache Twill
Harnessing the power of YARN with Apache Twill
Terence Yim
 
A Multi Colored YARN
A Multi Colored YARNA Multi Colored YARN
A Multi Colored YARN
DataWorks Summit/Hadoop Summit
 
Building a Next-gen Data Platform and Leveraging the OSS Ecosystem for Easy W...
Building a Next-gen Data Platform and Leveraging the OSS Ecosystem for Easy W...Building a Next-gen Data Platform and Leveraging the OSS Ecosystem for Easy W...
Building a Next-gen Data Platform and Leveraging the OSS Ecosystem for Easy W...
StampedeCon
 
Big Data Meets IoT: Lessons From the Cloud on Polling, Collecting, and Analyz...
Big Data Meets IoT: Lessons From the Cloud on Polling, Collecting, and Analyz...Big Data Meets IoT: Lessons From the Cloud on Polling, Collecting, and Analyz...
Big Data Meets IoT: Lessons From the Cloud on Polling, Collecting, and Analyz...
StampedeCon
 
Analyzing Time-Series Data with Apache Spark and Cassandra - StampedeCon 2016
Analyzing Time-Series Data with Apache Spark and Cassandra - StampedeCon 2016Analyzing Time-Series Data with Apache Spark and Cassandra - StampedeCon 2016
Analyzing Time-Series Data with Apache Spark and Cassandra - StampedeCon 2016
StampedeCon
 
Creating a Data Driven Organization - StampedeCon 2016
Creating a Data Driven Organization - StampedeCon 2016Creating a Data Driven Organization - StampedeCon 2016
Creating a Data Driven Organization - StampedeCon 2016
StampedeCon
 
Interplay of Big Data and IoT - StampedeCon 2016
Interplay of Big Data and IoT - StampedeCon 2016Interplay of Big Data and IoT - StampedeCon 2016
Interplay of Big Data and IoT - StampedeCon 2016
StampedeCon
 
Resource Management in Impala - StampedeCon 2016
Resource Management in Impala - StampedeCon 2016Resource Management in Impala - StampedeCon 2016
Resource Management in Impala - StampedeCon 2016
StampedeCon
 
Batch and Real-time EHR updates into Hadoop - StampedeCon 2015
Batch and Real-time EHR updates into Hadoop - StampedeCon 2015Batch and Real-time EHR updates into Hadoop - StampedeCon 2015
Batch and Real-time EHR updates into Hadoop - StampedeCon 2015
StampedeCon
 
Hadoop Security and Compliance - StampedeCon 2016
Hadoop Security and Compliance - StampedeCon 2016Hadoop Security and Compliance - StampedeCon 2016
Hadoop Security and Compliance - StampedeCon 2016
StampedeCon
 
Visualizing Big Data – The Fundamentals
Visualizing Big Data – The FundamentalsVisualizing Big Data – The Fundamentals
Visualizing Big Data – The Fundamentals
StampedeCon
 
Enabling Diverse Workload Scheduling in YARN
Enabling Diverse Workload Scheduling in YARNEnabling Diverse Workload Scheduling in YARN
Enabling Diverse Workload Scheduling in YARN
DataWorks Summit
 
Get most out of Spark on YARN
Get most out of Spark on YARNGet most out of Spark on YARN
Get most out of Spark on YARN
DataWorks Summit
 
Using The Internet of Things for Population Health Management - StampedeCon 2016
Using The Internet of Things for Population Health Management - StampedeCon 2016Using The Internet of Things for Population Health Management - StampedeCon 2016
Using The Internet of Things for Population Health Management - StampedeCon 2016
StampedeCon
 
Apache Hadoop YARN – Multi-Tenancy, Capacity Scheduler & Preemption - Stamped...
Apache Hadoop YARN – Multi-Tenancy, Capacity Scheduler & Preemption - Stamped...Apache Hadoop YARN – Multi-Tenancy, Capacity Scheduler & Preemption - Stamped...
Apache Hadoop YARN – Multi-Tenancy, Capacity Scheduler & Preemption - Stamped...
StampedeCon
 
Building large scale applications in yarn with apache twill
Building large scale applications in yarn with apache twillBuilding large scale applications in yarn with apache twill
Building large scale applications in yarn with apache twill
Henry Saputra
 
Harnessing the power of YARN with Apache Twill
Harnessing the power of YARN with Apache TwillHarnessing the power of YARN with Apache Twill
Harnessing the power of YARN with Apache Twill
Terence Yim
 
Building a Next-gen Data Platform and Leveraging the OSS Ecosystem for Easy W...
Building a Next-gen Data Platform and Leveraging the OSS Ecosystem for Easy W...Building a Next-gen Data Platform and Leveraging the OSS Ecosystem for Easy W...
Building a Next-gen Data Platform and Leveraging the OSS Ecosystem for Easy W...
StampedeCon
 

Similar to How to get started in Big Data without Big Costs - StampedeCon 2016 (20)

Hitachi Data Systems Hadoop Solution
Hitachi Data Systems Hadoop SolutionHitachi Data Systems Hadoop Solution
Hitachi Data Systems Hadoop Solution
Hitachi Vantara
 
SQL Server Konferenz 2014 - SSIS & HDInsight
SQL Server Konferenz 2014 - SSIS & HDInsightSQL Server Konferenz 2014 - SSIS & HDInsight
SQL Server Konferenz 2014 - SSIS & HDInsight
Tillmann Eitelberg
 
50 Shades of SQL
50 Shades of SQL50 Shades of SQL
50 Shades of SQL
DataWorks Summit
 
Hadoop and the Data Warehouse: When to Use Which
Hadoop and the Data Warehouse: When to Use Which Hadoop and the Data Warehouse: When to Use Which
Hadoop and the Data Warehouse: When to Use Which
DataWorks Summit
 
Bridging Oracle Database and Hadoop by Alex Gorbachev, Pythian from Oracle Op...
Bridging Oracle Database and Hadoop by Alex Gorbachev, Pythian from Oracle Op...Bridging Oracle Database and Hadoop by Alex Gorbachev, Pythian from Oracle Op...
Bridging Oracle Database and Hadoop by Alex Gorbachev, Pythian from Oracle Op...
Alex Gorbachev
 
Hadoop - Where did it come from and what's next? (Pasadena Sept 2014)
Hadoop - Where did it come from and what's next? (Pasadena Sept 2014)Hadoop - Where did it come from and what's next? (Pasadena Sept 2014)
Hadoop - Where did it come from and what's next? (Pasadena Sept 2014)
Eric Baldeschwieler
 
Technologies for Data Analytics Platform
Technologies for Data Analytics PlatformTechnologies for Data Analytics Platform
Technologies for Data Analytics Platform
N Masahiro
 
5 Things that Make Hadoop a Game Changer
5 Things that Make Hadoop a Game Changer5 Things that Make Hadoop a Game Changer
5 Things that Make Hadoop a Game Changer
Caserta
 
Data Pipelines in Hadoop - SAP Meetup in Tel Aviv
Data Pipelines in Hadoop - SAP Meetup in Tel Aviv Data Pipelines in Hadoop - SAP Meetup in Tel Aviv
Data Pipelines in Hadoop - SAP Meetup in Tel Aviv
larsgeorge
 
Big Data Everywhere Chicago: Leading a Healthcare Company to the Big Data Pro...
Big Data Everywhere Chicago: Leading a Healthcare Company to the Big Data Pro...Big Data Everywhere Chicago: Leading a Healthcare Company to the Big Data Pro...
Big Data Everywhere Chicago: Leading a Healthcare Company to the Big Data Pro...
BigDataEverywhere
 
Architecting Your First Big Data Implementation
Architecting Your First Big Data ImplementationArchitecting Your First Big Data Implementation
Architecting Your First Big Data Implementation
Adaryl "Bob" Wakefield, MBA
 
Twitter with hadoop for oow
Twitter with hadoop for oowTwitter with hadoop for oow
Twitter with hadoop for oow
Gwen (Chen) Shapira
 
Data Wrangling and Oracle Connectors for Hadoop
Data Wrangling and Oracle Connectors for HadoopData Wrangling and Oracle Connectors for Hadoop
Data Wrangling and Oracle Connectors for Hadoop
Gwen (Chen) Shapira
 
Hadoop and SQL: Delivery Analytics Across the Organization
Hadoop and SQL:  Delivery Analytics Across the OrganizationHadoop and SQL:  Delivery Analytics Across the Organization
Hadoop and SQL: Delivery Analytics Across the Organization
Seeling Cheung
 
Summer Shorts: Big Data Integration
Summer Shorts: Big Data IntegrationSummer Shorts: Big Data Integration
Summer Shorts: Big Data Integration
ibi
 
The Big Data Gusher: Big Data Analytics, the Internet of Things and the Oil B...
The Big Data Gusher: Big Data Analytics, the Internet of Things and the Oil B...The Big Data Gusher: Big Data Analytics, the Internet of Things and the Oil B...
The Big Data Gusher: Big Data Analytics, the Internet of Things and the Oil B...
Platfora
 
Meta scale kognitio hadoop webinar
Meta scale kognitio hadoop webinarMeta scale kognitio hadoop webinar
Meta scale kognitio hadoop webinar
Michael Hiskey
 
Piranha vs. mammoth predator appliances that chew up big data
Piranha vs. mammoth   predator appliances that chew up big dataPiranha vs. mammoth   predator appliances that chew up big data
Piranha vs. mammoth predator appliances that chew up big data
Jack (Yaakov) Bezalel
 
On the move with Big Data (Hadoop, Pig, Sqoop, SSIS...)
On the move with Big Data (Hadoop, Pig, Sqoop, SSIS...)On the move with Big Data (Hadoop, Pig, Sqoop, SSIS...)
On the move with Big Data (Hadoop, Pig, Sqoop, SSIS...)
Stéphane Fréchette
 
Impala use case @ edge
Impala use case @ edgeImpala use case @ edge
Impala use case @ edge
Ram Kedem
 
Hitachi Data Systems Hadoop Solution
Hitachi Data Systems Hadoop SolutionHitachi Data Systems Hadoop Solution
Hitachi Data Systems Hadoop Solution
Hitachi Vantara
 
SQL Server Konferenz 2014 - SSIS & HDInsight
SQL Server Konferenz 2014 - SSIS & HDInsightSQL Server Konferenz 2014 - SSIS & HDInsight
SQL Server Konferenz 2014 - SSIS & HDInsight
Tillmann Eitelberg
 
Hadoop and the Data Warehouse: When to Use Which
Hadoop and the Data Warehouse: When to Use Which Hadoop and the Data Warehouse: When to Use Which
Hadoop and the Data Warehouse: When to Use Which
DataWorks Summit
 
Bridging Oracle Database and Hadoop by Alex Gorbachev, Pythian from Oracle Op...
Bridging Oracle Database and Hadoop by Alex Gorbachev, Pythian from Oracle Op...Bridging Oracle Database and Hadoop by Alex Gorbachev, Pythian from Oracle Op...
Bridging Oracle Database and Hadoop by Alex Gorbachev, Pythian from Oracle Op...
Alex Gorbachev
 
Hadoop - Where did it come from and what's next? (Pasadena Sept 2014)
Hadoop - Where did it come from and what's next? (Pasadena Sept 2014)Hadoop - Where did it come from and what's next? (Pasadena Sept 2014)
Hadoop - Where did it come from and what's next? (Pasadena Sept 2014)
Eric Baldeschwieler
 
Technologies for Data Analytics Platform
Technologies for Data Analytics PlatformTechnologies for Data Analytics Platform
Technologies for Data Analytics Platform
N Masahiro
 
5 Things that Make Hadoop a Game Changer
5 Things that Make Hadoop a Game Changer5 Things that Make Hadoop a Game Changer
5 Things that Make Hadoop a Game Changer
Caserta
 
Data Pipelines in Hadoop - SAP Meetup in Tel Aviv
Data Pipelines in Hadoop - SAP Meetup in Tel Aviv Data Pipelines in Hadoop - SAP Meetup in Tel Aviv
Data Pipelines in Hadoop - SAP Meetup in Tel Aviv
larsgeorge
 
Big Data Everywhere Chicago: Leading a Healthcare Company to the Big Data Pro...
Big Data Everywhere Chicago: Leading a Healthcare Company to the Big Data Pro...Big Data Everywhere Chicago: Leading a Healthcare Company to the Big Data Pro...
Big Data Everywhere Chicago: Leading a Healthcare Company to the Big Data Pro...
BigDataEverywhere
 
Data Wrangling and Oracle Connectors for Hadoop
Data Wrangling and Oracle Connectors for HadoopData Wrangling and Oracle Connectors for Hadoop
Data Wrangling and Oracle Connectors for Hadoop
Gwen (Chen) Shapira
 
Hadoop and SQL: Delivery Analytics Across the Organization
Hadoop and SQL:  Delivery Analytics Across the OrganizationHadoop and SQL:  Delivery Analytics Across the Organization
Hadoop and SQL: Delivery Analytics Across the Organization
Seeling Cheung
 
Summer Shorts: Big Data Integration
Summer Shorts: Big Data IntegrationSummer Shorts: Big Data Integration
Summer Shorts: Big Data Integration
ibi
 
The Big Data Gusher: Big Data Analytics, the Internet of Things and the Oil B...
The Big Data Gusher: Big Data Analytics, the Internet of Things and the Oil B...The Big Data Gusher: Big Data Analytics, the Internet of Things and the Oil B...
The Big Data Gusher: Big Data Analytics, the Internet of Things and the Oil B...
Platfora
 
Meta scale kognitio hadoop webinar
Meta scale kognitio hadoop webinarMeta scale kognitio hadoop webinar
Meta scale kognitio hadoop webinar
Michael Hiskey
 
Piranha vs. mammoth predator appliances that chew up big data
Piranha vs. mammoth   predator appliances that chew up big dataPiranha vs. mammoth   predator appliances that chew up big data
Piranha vs. mammoth predator appliances that chew up big data
Jack (Yaakov) Bezalel
 
On the move with Big Data (Hadoop, Pig, Sqoop, SSIS...)
On the move with Big Data (Hadoop, Pig, Sqoop, SSIS...)On the move with Big Data (Hadoop, Pig, Sqoop, SSIS...)
On the move with Big Data (Hadoop, Pig, Sqoop, SSIS...)
Stéphane Fréchette
 
Impala use case @ edge
Impala use case @ edgeImpala use case @ edge
Impala use case @ edge
Ram Kedem
 

More from StampedeCon (17)

Why Should We Trust You-Interpretability of Deep Neural Networks - StampedeCo...
Why Should We Trust You-Interpretability of Deep Neural Networks - StampedeCo...Why Should We Trust You-Interpretability of Deep Neural Networks - StampedeCo...
Why Should We Trust You-Interpretability of Deep Neural Networks - StampedeCo...
StampedeCon
 
The Search for a New Visual Search Beyond Language - StampedeCon AI Summit 2017
The Search for a New Visual Search Beyond Language - StampedeCon AI Summit 2017The Search for a New Visual Search Beyond Language - StampedeCon AI Summit 2017
The Search for a New Visual Search Beyond Language - StampedeCon AI Summit 2017
StampedeCon
 
Predicting Outcomes When Your Outcomes are Graphs - StampedeCon AI Summit 2017
Predicting Outcomes When Your Outcomes are Graphs - StampedeCon AI Summit 2017Predicting Outcomes When Your Outcomes are Graphs - StampedeCon AI Summit 2017
Predicting Outcomes When Your Outcomes are Graphs - StampedeCon AI Summit 2017
StampedeCon
 
Novel Semi-supervised Probabilistic ML Approach to SNP Variant Calling - Stam...
Novel Semi-supervised Probabilistic ML Approach to SNP Variant Calling - Stam...Novel Semi-supervised Probabilistic ML Approach to SNP Variant Calling - Stam...
Novel Semi-supervised Probabilistic ML Approach to SNP Variant Calling - Stam...
StampedeCon
 
How to Talk about AI to Non-analaysts - Stampedecon AI Summit 2017
How to Talk about AI to Non-analaysts - Stampedecon AI Summit 2017How to Talk about AI to Non-analaysts - Stampedecon AI Summit 2017
How to Talk about AI to Non-analaysts - Stampedecon AI Summit 2017
StampedeCon
 
Getting Started with Keras and TensorFlow - StampedeCon AI Summit 2017
Getting Started with Keras and TensorFlow - StampedeCon AI Summit 2017Getting Started with Keras and TensorFlow - StampedeCon AI Summit 2017
Getting Started with Keras and TensorFlow - StampedeCon AI Summit 2017
StampedeCon
 
Foundations of Machine Learning - StampedeCon AI Summit 2017
Foundations of Machine Learning - StampedeCon AI Summit 2017Foundations of Machine Learning - StampedeCon AI Summit 2017
Foundations of Machine Learning - StampedeCon AI Summit 2017
StampedeCon
 
Don't Start from Scratch: Transfer Learning for Novel Computer Vision Problem...
Don't Start from Scratch: Transfer Learning for Novel Computer Vision Problem...Don't Start from Scratch: Transfer Learning for Novel Computer Vision Problem...
Don't Start from Scratch: Transfer Learning for Novel Computer Vision Problem...
StampedeCon
 
Bringing the Whole Elephant Into View Can Cognitive Systems Bring Real Soluti...
Bringing the Whole Elephant Into View Can Cognitive Systems Bring Real Soluti...Bringing the Whole Elephant Into View Can Cognitive Systems Bring Real Soluti...
Bringing the Whole Elephant Into View Can Cognitive Systems Bring Real Soluti...
StampedeCon
 
Automated AI The Next Frontier in Analytics - StampedeCon AI Summit 2017
Automated AI The Next Frontier in Analytics - StampedeCon AI Summit 2017Automated AI The Next Frontier in Analytics - StampedeCon AI Summit 2017
Automated AI The Next Frontier in Analytics - StampedeCon AI Summit 2017
StampedeCon
 
AI in the Enterprise: Past, Present & Future - StampedeCon AI Summit 2017
AI in the Enterprise: Past,  Present &  Future - StampedeCon AI Summit 2017AI in the Enterprise: Past,  Present &  Future - StampedeCon AI Summit 2017
AI in the Enterprise: Past, Present & Future - StampedeCon AI Summit 2017
StampedeCon
 
A Different Data Science Approach - StampedeCon AI Summit 2017
A Different Data Science Approach - StampedeCon AI Summit 2017A Different Data Science Approach - StampedeCon AI Summit 2017
A Different Data Science Approach - StampedeCon AI Summit 2017
StampedeCon
 
Graph in Customer 360 - StampedeCon Big Data Conference 2017
Graph in Customer 360 - StampedeCon Big Data Conference 2017Graph in Customer 360 - StampedeCon Big Data Conference 2017
Graph in Customer 360 - StampedeCon Big Data Conference 2017
StampedeCon
 
End-to-end Big Data Projects with Python - StampedeCon Big Data Conference 2017
End-to-end Big Data Projects with Python - StampedeCon Big Data Conference 2017End-to-end Big Data Projects with Python - StampedeCon Big Data Conference 2017
End-to-end Big Data Projects with Python - StampedeCon Big Data Conference 2017
StampedeCon
 
Doing Big Data Using Amazon's Analogs - StampedeCon Big Data Conference 2017
Doing Big Data Using Amazon's Analogs - StampedeCon Big Data Conference 2017Doing Big Data Using Amazon's Analogs - StampedeCon Big Data Conference 2017
Doing Big Data Using Amazon's Analogs - StampedeCon Big Data Conference 2017
StampedeCon
 
Enabling New Business Capabilities with Cloud-based Streaming Data Architectu...
Enabling New Business Capabilities with Cloud-based Streaming Data Architectu...Enabling New Business Capabilities with Cloud-based Streaming Data Architectu...
Enabling New Business Capabilities with Cloud-based Streaming Data Architectu...
StampedeCon
 
Best Practices For Building and Operating A Managed Data Lake - StampedeCon 2016
Best Practices For Building and Operating A Managed Data Lake - StampedeCon 2016Best Practices For Building and Operating A Managed Data Lake - StampedeCon 2016
Best Practices For Building and Operating A Managed Data Lake - StampedeCon 2016
StampedeCon
 
Why Should We Trust You-Interpretability of Deep Neural Networks - StampedeCo...
Why Should We Trust You-Interpretability of Deep Neural Networks - StampedeCo...Why Should We Trust You-Interpretability of Deep Neural Networks - StampedeCo...
Why Should We Trust You-Interpretability of Deep Neural Networks - StampedeCo...
StampedeCon
 
The Search for a New Visual Search Beyond Language - StampedeCon AI Summit 2017
The Search for a New Visual Search Beyond Language - StampedeCon AI Summit 2017The Search for a New Visual Search Beyond Language - StampedeCon AI Summit 2017
The Search for a New Visual Search Beyond Language - StampedeCon AI Summit 2017
StampedeCon
 
Predicting Outcomes When Your Outcomes are Graphs - StampedeCon AI Summit 2017
Predicting Outcomes When Your Outcomes are Graphs - StampedeCon AI Summit 2017Predicting Outcomes When Your Outcomes are Graphs - StampedeCon AI Summit 2017
Predicting Outcomes When Your Outcomes are Graphs - StampedeCon AI Summit 2017
StampedeCon
 
Novel Semi-supervised Probabilistic ML Approach to SNP Variant Calling - Stam...
Novel Semi-supervised Probabilistic ML Approach to SNP Variant Calling - Stam...Novel Semi-supervised Probabilistic ML Approach to SNP Variant Calling - Stam...
Novel Semi-supervised Probabilistic ML Approach to SNP Variant Calling - Stam...
StampedeCon
 
How to Talk about AI to Non-analaysts - Stampedecon AI Summit 2017
How to Talk about AI to Non-analaysts - Stampedecon AI Summit 2017How to Talk about AI to Non-analaysts - Stampedecon AI Summit 2017
How to Talk about AI to Non-analaysts - Stampedecon AI Summit 2017
StampedeCon
 
Getting Started with Keras and TensorFlow - StampedeCon AI Summit 2017
Getting Started with Keras and TensorFlow - StampedeCon AI Summit 2017Getting Started with Keras and TensorFlow - StampedeCon AI Summit 2017
Getting Started with Keras and TensorFlow - StampedeCon AI Summit 2017
StampedeCon
 
Foundations of Machine Learning - StampedeCon AI Summit 2017
Foundations of Machine Learning - StampedeCon AI Summit 2017Foundations of Machine Learning - StampedeCon AI Summit 2017
Foundations of Machine Learning - StampedeCon AI Summit 2017
StampedeCon
 
Don't Start from Scratch: Transfer Learning for Novel Computer Vision Problem...
Don't Start from Scratch: Transfer Learning for Novel Computer Vision Problem...Don't Start from Scratch: Transfer Learning for Novel Computer Vision Problem...
Don't Start from Scratch: Transfer Learning for Novel Computer Vision Problem...
StampedeCon
 
Bringing the Whole Elephant Into View Can Cognitive Systems Bring Real Soluti...
Bringing the Whole Elephant Into View Can Cognitive Systems Bring Real Soluti...Bringing the Whole Elephant Into View Can Cognitive Systems Bring Real Soluti...
Bringing the Whole Elephant Into View Can Cognitive Systems Bring Real Soluti...
StampedeCon
 
Automated AI The Next Frontier in Analytics - StampedeCon AI Summit 2017
Automated AI The Next Frontier in Analytics - StampedeCon AI Summit 2017Automated AI The Next Frontier in Analytics - StampedeCon AI Summit 2017
Automated AI The Next Frontier in Analytics - StampedeCon AI Summit 2017
StampedeCon
 
AI in the Enterprise: Past, Present & Future - StampedeCon AI Summit 2017
AI in the Enterprise: Past,  Present &  Future - StampedeCon AI Summit 2017AI in the Enterprise: Past,  Present &  Future - StampedeCon AI Summit 2017
AI in the Enterprise: Past, Present & Future - StampedeCon AI Summit 2017
StampedeCon
 
A Different Data Science Approach - StampedeCon AI Summit 2017
A Different Data Science Approach - StampedeCon AI Summit 2017A Different Data Science Approach - StampedeCon AI Summit 2017
A Different Data Science Approach - StampedeCon AI Summit 2017
StampedeCon
 
Graph in Customer 360 - StampedeCon Big Data Conference 2017
Graph in Customer 360 - StampedeCon Big Data Conference 2017Graph in Customer 360 - StampedeCon Big Data Conference 2017
Graph in Customer 360 - StampedeCon Big Data Conference 2017
StampedeCon
 
End-to-end Big Data Projects with Python - StampedeCon Big Data Conference 2017
End-to-end Big Data Projects with Python - StampedeCon Big Data Conference 2017End-to-end Big Data Projects with Python - StampedeCon Big Data Conference 2017
End-to-end Big Data Projects with Python - StampedeCon Big Data Conference 2017
StampedeCon
 
Doing Big Data Using Amazon's Analogs - StampedeCon Big Data Conference 2017
Doing Big Data Using Amazon's Analogs - StampedeCon Big Data Conference 2017Doing Big Data Using Amazon's Analogs - StampedeCon Big Data Conference 2017
Doing Big Data Using Amazon's Analogs - StampedeCon Big Data Conference 2017
StampedeCon
 
Enabling New Business Capabilities with Cloud-based Streaming Data Architectu...
Enabling New Business Capabilities with Cloud-based Streaming Data Architectu...Enabling New Business Capabilities with Cloud-based Streaming Data Architectu...
Enabling New Business Capabilities with Cloud-based Streaming Data Architectu...
StampedeCon
 
Best Practices For Building and Operating A Managed Data Lake - StampedeCon 2016
Best Practices For Building and Operating A Managed Data Lake - StampedeCon 2016Best Practices For Building and Operating A Managed Data Lake - StampedeCon 2016
Best Practices For Building and Operating A Managed Data Lake - StampedeCon 2016
StampedeCon
 

Recently uploaded (20)

The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 

How to get started in Big Data without Big Costs - StampedeCon 2016

  • 1. Dipping Your Toe Into Hadoop How to get started in Big Data without Big Costs Bobby Dewitt VP, Systems Architect Aisle411 StampedeCon 2016
  • 2. My Background • Oracle, MySQL, and PostgreSQL DBA with 15 years of experience • Led database, infrastructure, and business intelligence teams to deliver highly available data systems • Currently responsible for design, implementation, and operational availability of infrastructure and systems at Aisle411
  • 3. Aisle411 • Digitizing the indoor world • Indoor maps, positioning, and analytics • Asset and customer tracking within locations • Using augmented reality to make indoor solutions more interactive • Small company - big data
  • 4. RDBMS Versus Hadoop • Relational databases • Very structured data • Good for transactional and operational systems • Difficult to scale out • Hardware failures can be disastrous • Hadoop • Semistructured or unstructured data • Good for batch and bulk processing as well as analytic systems • Simple to scale out • Hardware failures are handled seamlessly
  • 5. Hadoop Adoption • Still not a reality for many companies • Major barriers include • Lack of skilled employees • Getting value out of the investment • Constant changes to the ecosystem
  • 6. Kick the Tires • Play around with it • A Hadoop cluster can reside on a single machine • Pre-loaded virtual machines • Install on EC2 or other cloud VM
  • 7. What Data Should I Use? • Stick with what you know • Choose a dataset that is not specific to your company • Try documented examples and use cases
  • 8. Example Datasets • Apache web server logs • Twitter feeds • Stock market prices • Census data • Sports statistics • Song data
  • 9. Apache Web Log Data • Many online resources • Potentially large data set • Real business value • Combine with other data sources
  • 10. From Batch to Streaming • Initial testing done with a batch load using HDFS tools • Setup streaming to provide near real-time updates • Used several Hadoop components • HDFS • Flume • Morphlines • Avro • Hive • Impala
  • 11. Quick Wins • Get data into HDFS • Get data into Hive or Impala • Stream live data • Combine with other data sources • Create pretty graphs and charts
  • 12. Costs • Start small with a data puddle • Use virtual machines, not the big appliance • Research and experimentation time may be biggest cost
  • 13. Where Am I? • Evaluate your initial trials • Is Hadoop everything you thought it would be? • Do you have a real business need to use it? • Can you migrate any existing data or processes?
  • 14. Training • Hortonworks University • MapR Academy • Cloudera quick start tutorials • Online classes through Coursera, edX, and others • Conferences like StampedeCon
  • 15. Hadoop Is Not For Everyone • Your “big data” may not be big enough • Still some work to be done with security and tools • Skills are being learned, but not quickly enough