SlideShare a Scribd company logo
Next Steps for Hadoop


      Doug Cutting
       Cloudera
Proviso
●   Linus Torvalds:
    ●   “Whatever they contribute.”
    ●   diverse set of contributors
    ●   central planning impossible
The Dream
●   faster, more reliable, available
    ●   of course
●   spreadsheet-like interfaces
    ●   provide non-programmers
    ●   with powerful, interactive tools
●   easier sharing
    ●   of data & hardware resources
Requirements
●   security
    ●   facilitate sharing of resources
●   stable cross-language APIs
    ●   facilitate diverse tools & apps
●   expressive, inter-operable data
    ●   facilitates sharing of datasets
    ●   facilitates dynamic analyses
Data Formats
●   today in Hadoop:
    ●   text
        –   pro: inter-operable
        –   con: not expressive, inefficient
    ●   - Java Writable
        –   pro: expressive, efficient
        –   con: platform-specific, fragile
Protocol Buffers & Thrift
●   expressive
●   efficient (small & fast)
●   but not very dynamic
    ●   cannot browse arbitrary data
    ●   no DESCRIBE or SHOW
    ●   viewing a new dataset
        –   requires code generation & load
    ●   writing a new dataset
        –   requires generating schema text
        –   plus code generation & load
Avro Data
●   as expressive
●   smaller and faster
●   dynamic
    ●   schema stored with data
        –   but factored out of instances
    ●   API permits reading & creating
        –   arbitrary datatypes
        –   without generating & loading code
Avro Data
●   includes a file format
●   includes a textual encoding
●   handles versioning
    ●   if schema changes
    ●   can still process data
●   Hadoop apps can
    ●   upgrade from text
    ●   and standardize on Avro for data
Avro RPC
●   leverage versioning support
    ●   to permit different versions of services to
        interoperate
●   for Hadoop services, will
    ●   provide cross-language access
    ●   let apps talk to clusters running different versions
Avro Status
●   1.1 release out
    ●   added JSON and comparators
●   1.2 soon
    ●   adds HTTP & UDP-based RPC
●   will first appear in Hadoop 0.21
    ●   as format for job history
    ●   in sequence files
Avro Near Future
●   full mapreduce support
●   used for RPC in Hadoop 0.22 (1.0)?
Thanks!




What are your next steps?

More Related Content

What's hot (20)

Understanding transactional writes in datasource v2
Understanding transactional writes in  datasource v2Understanding transactional writes in  datasource v2
Understanding transactional writes in datasource v2
datamantra
 
Automatic Scaling Iterative Computations
Automatic Scaling Iterative ComputationsAutomatic Scaling Iterative Computations
Automatic Scaling Iterative Computations
Guozhang Wang
 
Jack Gudenkauf sparkug_20151207_7
Jack Gudenkauf sparkug_20151207_7Jack Gudenkauf sparkug_20151207_7
Jack Gudenkauf sparkug_20151207_7
Jack Gudenkauf
 
Cassandra Summit 2015 - Building a multi-tenant API PaaS with DataStax Enterp...
Cassandra Summit 2015 - Building a multi-tenant API PaaS with DataStax Enterp...Cassandra Summit 2015 - Building a multi-tenant API PaaS with DataStax Enterp...
Cassandra Summit 2015 - Building a multi-tenant API PaaS with DataStax Enterp...
Restlet
 
Data Policies for the Kafka-API with WebAssembly | Alexander Gallego, Vectorized
Data Policies for the Kafka-API with WebAssembly | Alexander Gallego, VectorizedData Policies for the Kafka-API with WebAssembly | Alexander Gallego, Vectorized
Data Policies for the Kafka-API with WebAssembly | Alexander Gallego, Vectorized
HostedbyConfluent
 
Low-latency data applications with Kafka and Agg indexes | Tino Tereshko, Fir...
Low-latency data applications with Kafka and Agg indexes | Tino Tereshko, Fir...Low-latency data applications with Kafka and Agg indexes | Tino Tereshko, Fir...
Low-latency data applications with Kafka and Agg indexes | Tino Tereshko, Fir...
HostedbyConfluent
 
Exploratory Data Analysis in Spark
Exploratory Data Analysis in SparkExploratory Data Analysis in Spark
Exploratory Data Analysis in Spark
datamantra
 
Bootstrap SaaS startup using Open Source Tools
Bootstrap SaaS startup using Open Source ToolsBootstrap SaaS startup using Open Source Tools
Bootstrap SaaS startup using Open Source Tools
botsplash.com
 
It's Time To Stop Using Lambda Architecture | Yaroslav Tkachenko, Shopify
It's Time To Stop Using Lambda Architecture | Yaroslav Tkachenko, ShopifyIt's Time To Stop Using Lambda Architecture | Yaroslav Tkachenko, Shopify
It's Time To Stop Using Lambda Architecture | Yaroslav Tkachenko, Shopify
HostedbyConfluent
 
CDC to the Max!
CDC to the Max!CDC to the Max!
CDC to the Max!
Bronco Oostermeyer
 
Kafka Tiered Storage | Satish Duggana and Sriharsha Chintalapani, Uber
Kafka Tiered Storage | Satish Duggana and Sriharsha Chintalapani, UberKafka Tiered Storage | Satish Duggana and Sriharsha Chintalapani, Uber
Kafka Tiered Storage | Satish Duggana and Sriharsha Chintalapani, Uber
HostedbyConfluent
 
State management in Structured Streaming
State management in Structured StreamingState management in Structured Streaming
State management in Structured Streaming
datamantra
 
Introduction to Structured streaming
Introduction to Structured streamingIntroduction to Structured streaming
Introduction to Structured streaming
datamantra
 
Productionalizing a spark application
Productionalizing a spark applicationProductionalizing a spark application
Productionalizing a spark application
datamantra
 
Kafka Summit SF 2017 - Query the Application, Not a Database: “Interactive Qu...
Kafka Summit SF 2017 - Query the Application, Not a Database: “Interactive Qu...Kafka Summit SF 2017 - Query the Application, Not a Database: “Interactive Qu...
Kafka Summit SF 2017 - Query the Application, Not a Database: “Interactive Qu...
confluent
 
Log System As Backbone – How We Built the World’s Most Advanced Vector Databa...
Log System As Backbone – How We Built the World’s Most Advanced Vector Databa...Log System As Backbone – How We Built the World’s Most Advanced Vector Databa...
Log System As Backbone – How We Built the World’s Most Advanced Vector Databa...
StreamNative
 
Docker for mac & local developer environment optimization
Docker for mac & local developer environment optimizationDocker for mac & local developer environment optimization
Docker for mac & local developer environment optimization
Radek Baczynski
 
The Happy Marriage of Redis and Protobuf by Scott Haines of Twilio - Redis Da...
The Happy Marriage of Redis and Protobuf by Scott Haines of Twilio - Redis Da...The Happy Marriage of Redis and Protobuf by Scott Haines of Twilio - Redis Da...
The Happy Marriage of Redis and Protobuf by Scott Haines of Twilio - Redis Da...
Redis Labs
 
Case Study: Stream Processing on AWS using Kappa Architecture
Case Study: Stream Processing on AWS using Kappa ArchitectureCase Study: Stream Processing on AWS using Kappa Architecture
Case Study: Stream Processing on AWS using Kappa Architecture
Joey Bolduc-Gilbert
 
Prashant_Agrawal_CV
Prashant_Agrawal_CVPrashant_Agrawal_CV
Prashant_Agrawal_CV
Prashant Agrawal
 
Understanding transactional writes in datasource v2
Understanding transactional writes in  datasource v2Understanding transactional writes in  datasource v2
Understanding transactional writes in datasource v2
datamantra
 
Automatic Scaling Iterative Computations
Automatic Scaling Iterative ComputationsAutomatic Scaling Iterative Computations
Automatic Scaling Iterative Computations
Guozhang Wang
 
Jack Gudenkauf sparkug_20151207_7
Jack Gudenkauf sparkug_20151207_7Jack Gudenkauf sparkug_20151207_7
Jack Gudenkauf sparkug_20151207_7
Jack Gudenkauf
 
Cassandra Summit 2015 - Building a multi-tenant API PaaS with DataStax Enterp...
Cassandra Summit 2015 - Building a multi-tenant API PaaS with DataStax Enterp...Cassandra Summit 2015 - Building a multi-tenant API PaaS with DataStax Enterp...
Cassandra Summit 2015 - Building a multi-tenant API PaaS with DataStax Enterp...
Restlet
 
Data Policies for the Kafka-API with WebAssembly | Alexander Gallego, Vectorized
Data Policies for the Kafka-API with WebAssembly | Alexander Gallego, VectorizedData Policies for the Kafka-API with WebAssembly | Alexander Gallego, Vectorized
Data Policies for the Kafka-API with WebAssembly | Alexander Gallego, Vectorized
HostedbyConfluent
 
Low-latency data applications with Kafka and Agg indexes | Tino Tereshko, Fir...
Low-latency data applications with Kafka and Agg indexes | Tino Tereshko, Fir...Low-latency data applications with Kafka and Agg indexes | Tino Tereshko, Fir...
Low-latency data applications with Kafka and Agg indexes | Tino Tereshko, Fir...
HostedbyConfluent
 
Exploratory Data Analysis in Spark
Exploratory Data Analysis in SparkExploratory Data Analysis in Spark
Exploratory Data Analysis in Spark
datamantra
 
Bootstrap SaaS startup using Open Source Tools
Bootstrap SaaS startup using Open Source ToolsBootstrap SaaS startup using Open Source Tools
Bootstrap SaaS startup using Open Source Tools
botsplash.com
 
It's Time To Stop Using Lambda Architecture | Yaroslav Tkachenko, Shopify
It's Time To Stop Using Lambda Architecture | Yaroslav Tkachenko, ShopifyIt's Time To Stop Using Lambda Architecture | Yaroslav Tkachenko, Shopify
It's Time To Stop Using Lambda Architecture | Yaroslav Tkachenko, Shopify
HostedbyConfluent
 
Kafka Tiered Storage | Satish Duggana and Sriharsha Chintalapani, Uber
Kafka Tiered Storage | Satish Duggana and Sriharsha Chintalapani, UberKafka Tiered Storage | Satish Duggana and Sriharsha Chintalapani, Uber
Kafka Tiered Storage | Satish Duggana and Sriharsha Chintalapani, Uber
HostedbyConfluent
 
State management in Structured Streaming
State management in Structured StreamingState management in Structured Streaming
State management in Structured Streaming
datamantra
 
Introduction to Structured streaming
Introduction to Structured streamingIntroduction to Structured streaming
Introduction to Structured streaming
datamantra
 
Productionalizing a spark application
Productionalizing a spark applicationProductionalizing a spark application
Productionalizing a spark application
datamantra
 
Kafka Summit SF 2017 - Query the Application, Not a Database: “Interactive Qu...
Kafka Summit SF 2017 - Query the Application, Not a Database: “Interactive Qu...Kafka Summit SF 2017 - Query the Application, Not a Database: “Interactive Qu...
Kafka Summit SF 2017 - Query the Application, Not a Database: “Interactive Qu...
confluent
 
Log System As Backbone – How We Built the World’s Most Advanced Vector Databa...
Log System As Backbone – How We Built the World’s Most Advanced Vector Databa...Log System As Backbone – How We Built the World’s Most Advanced Vector Databa...
Log System As Backbone – How We Built the World’s Most Advanced Vector Databa...
StreamNative
 
Docker for mac & local developer environment optimization
Docker for mac & local developer environment optimizationDocker for mac & local developer environment optimization
Docker for mac & local developer environment optimization
Radek Baczynski
 
The Happy Marriage of Redis and Protobuf by Scott Haines of Twilio - Redis Da...
The Happy Marriage of Redis and Protobuf by Scott Haines of Twilio - Redis Da...The Happy Marriage of Redis and Protobuf by Scott Haines of Twilio - Redis Da...
The Happy Marriage of Redis and Protobuf by Scott Haines of Twilio - Redis Da...
Redis Labs
 
Case Study: Stream Processing on AWS using Kappa Architecture
Case Study: Stream Processing on AWS using Kappa ArchitectureCase Study: Stream Processing on AWS using Kappa Architecture
Case Study: Stream Processing on AWS using Kappa Architecture
Joey Bolduc-Gilbert
 

Viewers also liked (7)

Hw09 Counting And Clustering And Other Data Tricks
Hw09   Counting And Clustering And Other Data TricksHw09   Counting And Clustering And Other Data Tricks
Hw09 Counting And Clustering And Other Data Tricks
Cloudera, Inc.
 
Hw09 Map Reduce Over Tahoe A Least Authority Encrypted Distributed Filesy...
Hw09   Map Reduce Over Tahoe   A Least Authority Encrypted Distributed Filesy...Hw09   Map Reduce Over Tahoe   A Least Authority Encrypted Distributed Filesy...
Hw09 Map Reduce Over Tahoe A Least Authority Encrypted Distributed Filesy...
Cloudera, Inc.
 
Hw09 Protein Alignment
Hw09   Protein AlignmentHw09   Protein Alignment
Hw09 Protein Alignment
Cloudera, Inc.
 
Hadoop Summit 2012 | HDFS High Availability
Hadoop Summit 2012 | HDFS High AvailabilityHadoop Summit 2012 | HDFS High Availability
Hadoop Summit 2012 | HDFS High Availability
Cloudera, Inc.
 
Strata + Hadoop World 2012: Apache HBase Features for the Enterprise
Strata + Hadoop World 2012: Apache HBase Features for the EnterpriseStrata + Hadoop World 2012: Apache HBase Features for the Enterprise
Strata + Hadoop World 2012: Apache HBase Features for the Enterprise
Cloudera, Inc.
 
Hadoop Lecture for Harvard's CS 264 -- October 19, 2009
Hadoop Lecture for Harvard's CS 264 -- October 19, 2009Hadoop Lecture for Harvard's CS 264 -- October 19, 2009
Hadoop Lecture for Harvard's CS 264 -- October 19, 2009
Cloudera, Inc.
 
Hw09 Sqoop Database Import For Hadoop
Hw09   Sqoop Database Import For HadoopHw09   Sqoop Database Import For Hadoop
Hw09 Sqoop Database Import For Hadoop
Cloudera, Inc.
 
Hw09 Counting And Clustering And Other Data Tricks
Hw09   Counting And Clustering And Other Data TricksHw09   Counting And Clustering And Other Data Tricks
Hw09 Counting And Clustering And Other Data Tricks
Cloudera, Inc.
 
Hw09 Map Reduce Over Tahoe A Least Authority Encrypted Distributed Filesy...
Hw09   Map Reduce Over Tahoe   A Least Authority Encrypted Distributed Filesy...Hw09   Map Reduce Over Tahoe   A Least Authority Encrypted Distributed Filesy...
Hw09 Map Reduce Over Tahoe A Least Authority Encrypted Distributed Filesy...
Cloudera, Inc.
 
Hw09 Protein Alignment
Hw09   Protein AlignmentHw09   Protein Alignment
Hw09 Protein Alignment
Cloudera, Inc.
 
Hadoop Summit 2012 | HDFS High Availability
Hadoop Summit 2012 | HDFS High AvailabilityHadoop Summit 2012 | HDFS High Availability
Hadoop Summit 2012 | HDFS High Availability
Cloudera, Inc.
 
Strata + Hadoop World 2012: Apache HBase Features for the Enterprise
Strata + Hadoop World 2012: Apache HBase Features for the EnterpriseStrata + Hadoop World 2012: Apache HBase Features for the Enterprise
Strata + Hadoop World 2012: Apache HBase Features for the Enterprise
Cloudera, Inc.
 
Hadoop Lecture for Harvard's CS 264 -- October 19, 2009
Hadoop Lecture for Harvard's CS 264 -- October 19, 2009Hadoop Lecture for Harvard's CS 264 -- October 19, 2009
Hadoop Lecture for Harvard's CS 264 -- October 19, 2009
Cloudera, Inc.
 
Hw09 Sqoop Database Import For Hadoop
Hw09   Sqoop Database Import For HadoopHw09   Sqoop Database Import For Hadoop
Hw09 Sqoop Database Import For Hadoop
Cloudera, Inc.
 

Similar to Hw09 Next Steps For Hadoop (20)

ApacheCon09: Avro
ApacheCon09: AvroApacheCon09: Avro
ApacheCon09: Avro
Cloudera, Inc.
 
Chicago Data Summit: Keynote - Data Processing with Hadoop: Scalable and Cost...
Chicago Data Summit: Keynote - Data Processing with Hadoop: Scalable and Cost...Chicago Data Summit: Keynote - Data Processing with Hadoop: Scalable and Cost...
Chicago Data Summit: Keynote - Data Processing with Hadoop: Scalable and Cost...
Cloudera, Inc.
 
Introduction to Apache Spark
Introduction to Apache SparkIntroduction to Apache Spark
Introduction to Apache Spark
datamantra
 
Savanna - Elastic Hadoop on OpenStack
Savanna - Elastic Hadoop on OpenStackSavanna - Elastic Hadoop on OpenStack
Savanna - Elastic Hadoop on OpenStack
Sergey Lukjanov
 
Hadoop Introduction
Hadoop IntroductionHadoop Introduction
Hadoop Introduction
sheetal sharma
 
Intro to Apache Hadoop
Intro to Apache HadoopIntro to Apache Hadoop
Intro to Apache Hadoop
Sufi Nawaz
 
Plugging the Holes: Security and Compatability in Hadoop
Plugging the Holes: Security and Compatability in HadoopPlugging the Holes: Security and Compatability in Hadoop
Plugging the Holes: Security and Compatability in Hadoop
Owen O'Malley
 
Hw09 Security And Api Compatibility
Hw09   Security And Api CompatibilityHw09   Security And Api Compatibility
Hw09 Security And Api Compatibility
Cloudera, Inc.
 
What is Apache Hadoop and its ecosystem?
What is Apache Hadoop and its ecosystem?What is Apache Hadoop and its ecosystem?
What is Apache Hadoop and its ecosystem?
tommychauhan
 
Blackray @ SAPO CodeBits 2009
Blackray @ SAPO CodeBits 2009Blackray @ SAPO CodeBits 2009
Blackray @ SAPO CodeBits 2009
fschupp
 
Change data capture
Change data captureChange data capture
Change data capture
Ron Barabash
 
Present and future of unified, portable, and efficient data processing with A...
Present and future of unified, portable, and efficient data processing with A...Present and future of unified, portable, and efficient data processing with A...
Present and future of unified, portable, and efficient data processing with A...
DataWorks Summit
 
Getting started big data
Getting started big dataGetting started big data
Getting started big data
Kibrom Gebrehiwot
 
Streamsets and spark at SF Hadoop User Group
Streamsets and spark at SF Hadoop User GroupStreamsets and spark at SF Hadoop User Group
Streamsets and spark at SF Hadoop User Group
Hari Shreedharan
 
BIGDATA ppts
BIGDATA pptsBIGDATA ppts
BIGDATA ppts
Krisshhna Daasaarii
 
Go at uber
Go at uberGo at uber
Go at uber
Rob Skillington
 
Cloud Native API Design and Management
Cloud Native API Design and ManagementCloud Native API Design and Management
Cloud Native API Design and Management
AllBits BVBA (freelancer)
 
Big Data Hoopla Simplified - TDWI Memphis 2014
Big Data Hoopla Simplified - TDWI Memphis 2014Big Data Hoopla Simplified - TDWI Memphis 2014
Big Data Hoopla Simplified - TDWI Memphis 2014
Rajan Kanitkar
 
Apache frameworks for Big and Fast Data
Apache frameworks for Big and Fast DataApache frameworks for Big and Fast Data
Apache frameworks for Big and Fast Data
Naveen Korakoppa
 
Apache Tez -- A modern processing engine
Apache Tez -- A modern processing engineApache Tez -- A modern processing engine
Apache Tez -- A modern processing engine
bigdatagurus_meetup
 
Chicago Data Summit: Keynote - Data Processing with Hadoop: Scalable and Cost...
Chicago Data Summit: Keynote - Data Processing with Hadoop: Scalable and Cost...Chicago Data Summit: Keynote - Data Processing with Hadoop: Scalable and Cost...
Chicago Data Summit: Keynote - Data Processing with Hadoop: Scalable and Cost...
Cloudera, Inc.
 
Introduction to Apache Spark
Introduction to Apache SparkIntroduction to Apache Spark
Introduction to Apache Spark
datamantra
 
Savanna - Elastic Hadoop on OpenStack
Savanna - Elastic Hadoop on OpenStackSavanna - Elastic Hadoop on OpenStack
Savanna - Elastic Hadoop on OpenStack
Sergey Lukjanov
 
Intro to Apache Hadoop
Intro to Apache HadoopIntro to Apache Hadoop
Intro to Apache Hadoop
Sufi Nawaz
 
Plugging the Holes: Security and Compatability in Hadoop
Plugging the Holes: Security and Compatability in HadoopPlugging the Holes: Security and Compatability in Hadoop
Plugging the Holes: Security and Compatability in Hadoop
Owen O'Malley
 
Hw09 Security And Api Compatibility
Hw09   Security And Api CompatibilityHw09   Security And Api Compatibility
Hw09 Security And Api Compatibility
Cloudera, Inc.
 
What is Apache Hadoop and its ecosystem?
What is Apache Hadoop and its ecosystem?What is Apache Hadoop and its ecosystem?
What is Apache Hadoop and its ecosystem?
tommychauhan
 
Blackray @ SAPO CodeBits 2009
Blackray @ SAPO CodeBits 2009Blackray @ SAPO CodeBits 2009
Blackray @ SAPO CodeBits 2009
fschupp
 
Change data capture
Change data captureChange data capture
Change data capture
Ron Barabash
 
Present and future of unified, portable, and efficient data processing with A...
Present and future of unified, portable, and efficient data processing with A...Present and future of unified, portable, and efficient data processing with A...
Present and future of unified, portable, and efficient data processing with A...
DataWorks Summit
 
Streamsets and spark at SF Hadoop User Group
Streamsets and spark at SF Hadoop User GroupStreamsets and spark at SF Hadoop User Group
Streamsets and spark at SF Hadoop User Group
Hari Shreedharan
 
Big Data Hoopla Simplified - TDWI Memphis 2014
Big Data Hoopla Simplified - TDWI Memphis 2014Big Data Hoopla Simplified - TDWI Memphis 2014
Big Data Hoopla Simplified - TDWI Memphis 2014
Rajan Kanitkar
 
Apache frameworks for Big and Fast Data
Apache frameworks for Big and Fast DataApache frameworks for Big and Fast Data
Apache frameworks for Big and Fast Data
Naveen Korakoppa
 
Apache Tez -- A modern processing engine
Apache Tez -- A modern processing engineApache Tez -- A modern processing engine
Apache Tez -- A modern processing engine
bigdatagurus_meetup
 

More from Cloudera, Inc. (20)

Partner Briefing_January 25 (FINAL).pptx
Partner Briefing_January 25 (FINAL).pptxPartner Briefing_January 25 (FINAL).pptx
Partner Briefing_January 25 (FINAL).pptx
Cloudera, Inc.
 
Cloudera Data Impact Awards 2021 - Finalists
Cloudera Data Impact Awards 2021 - Finalists Cloudera Data Impact Awards 2021 - Finalists
Cloudera Data Impact Awards 2021 - Finalists
Cloudera, Inc.
 
2020 Cloudera Data Impact Awards Finalists
2020 Cloudera Data Impact Awards Finalists2020 Cloudera Data Impact Awards Finalists
2020 Cloudera Data Impact Awards Finalists
Cloudera, Inc.
 
Edc event vienna presentation 1 oct 2019
Edc event vienna presentation 1 oct 2019Edc event vienna presentation 1 oct 2019
Edc event vienna presentation 1 oct 2019
Cloudera, Inc.
 
Machine Learning with Limited Labeled Data 4/3/19
Machine Learning with Limited Labeled Data 4/3/19Machine Learning with Limited Labeled Data 4/3/19
Machine Learning with Limited Labeled Data 4/3/19
Cloudera, Inc.
 
Data Driven With the Cloudera Modern Data Warehouse 3.19.19
Data Driven With the Cloudera Modern Data Warehouse 3.19.19Data Driven With the Cloudera Modern Data Warehouse 3.19.19
Data Driven With the Cloudera Modern Data Warehouse 3.19.19
Cloudera, Inc.
 
Introducing Cloudera DataFlow (CDF) 2.13.19
Introducing Cloudera DataFlow (CDF) 2.13.19Introducing Cloudera DataFlow (CDF) 2.13.19
Introducing Cloudera DataFlow (CDF) 2.13.19
Cloudera, Inc.
 
Introducing Cloudera Data Science Workbench for HDP 2.12.19
Introducing Cloudera Data Science Workbench for HDP 2.12.19Introducing Cloudera Data Science Workbench for HDP 2.12.19
Introducing Cloudera Data Science Workbench for HDP 2.12.19
Cloudera, Inc.
 
Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19
Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19
Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19
Cloudera, Inc.
 
Leveraging the cloud for analytics and machine learning 1.29.19
Leveraging the cloud for analytics and machine learning 1.29.19Leveraging the cloud for analytics and machine learning 1.29.19
Leveraging the cloud for analytics and machine learning 1.29.19
Cloudera, Inc.
 
Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19
Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19
Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19
Cloudera, Inc.
 
Leveraging the Cloud for Big Data Analytics 12.11.18
Leveraging the Cloud for Big Data Analytics 12.11.18Leveraging the Cloud for Big Data Analytics 12.11.18
Leveraging the Cloud for Big Data Analytics 12.11.18
Cloudera, Inc.
 
Modern Data Warehouse Fundamentals Part 3
Modern Data Warehouse Fundamentals Part 3Modern Data Warehouse Fundamentals Part 3
Modern Data Warehouse Fundamentals Part 3
Cloudera, Inc.
 
Modern Data Warehouse Fundamentals Part 2
Modern Data Warehouse Fundamentals Part 2Modern Data Warehouse Fundamentals Part 2
Modern Data Warehouse Fundamentals Part 2
Cloudera, Inc.
 
Modern Data Warehouse Fundamentals Part 1
Modern Data Warehouse Fundamentals Part 1Modern Data Warehouse Fundamentals Part 1
Modern Data Warehouse Fundamentals Part 1
Cloudera, Inc.
 
Extending Cloudera SDX beyond the Platform
Extending Cloudera SDX beyond the PlatformExtending Cloudera SDX beyond the Platform
Extending Cloudera SDX beyond the Platform
Cloudera, Inc.
 
Federated Learning: ML with Privacy on the Edge 11.15.18
Federated Learning: ML with Privacy on the Edge 11.15.18Federated Learning: ML with Privacy on the Edge 11.15.18
Federated Learning: ML with Privacy on the Edge 11.15.18
Cloudera, Inc.
 
Analyst Webinar: Doing a 180 on Customer 360
Analyst Webinar: Doing a 180 on Customer 360Analyst Webinar: Doing a 180 on Customer 360
Analyst Webinar: Doing a 180 on Customer 360
Cloudera, Inc.
 
Build a modern platform for anti-money laundering 9.19.18
Build a modern platform for anti-money laundering 9.19.18Build a modern platform for anti-money laundering 9.19.18
Build a modern platform for anti-money laundering 9.19.18
Cloudera, Inc.
 
Introducing the data science sandbox as a service 8.30.18
Introducing the data science sandbox as a service 8.30.18Introducing the data science sandbox as a service 8.30.18
Introducing the data science sandbox as a service 8.30.18
Cloudera, Inc.
 
Partner Briefing_January 25 (FINAL).pptx
Partner Briefing_January 25 (FINAL).pptxPartner Briefing_January 25 (FINAL).pptx
Partner Briefing_January 25 (FINAL).pptx
Cloudera, Inc.
 
Cloudera Data Impact Awards 2021 - Finalists
Cloudera Data Impact Awards 2021 - Finalists Cloudera Data Impact Awards 2021 - Finalists
Cloudera Data Impact Awards 2021 - Finalists
Cloudera, Inc.
 
2020 Cloudera Data Impact Awards Finalists
2020 Cloudera Data Impact Awards Finalists2020 Cloudera Data Impact Awards Finalists
2020 Cloudera Data Impact Awards Finalists
Cloudera, Inc.
 
Edc event vienna presentation 1 oct 2019
Edc event vienna presentation 1 oct 2019Edc event vienna presentation 1 oct 2019
Edc event vienna presentation 1 oct 2019
Cloudera, Inc.
 
Machine Learning with Limited Labeled Data 4/3/19
Machine Learning with Limited Labeled Data 4/3/19Machine Learning with Limited Labeled Data 4/3/19
Machine Learning with Limited Labeled Data 4/3/19
Cloudera, Inc.
 
Data Driven With the Cloudera Modern Data Warehouse 3.19.19
Data Driven With the Cloudera Modern Data Warehouse 3.19.19Data Driven With the Cloudera Modern Data Warehouse 3.19.19
Data Driven With the Cloudera Modern Data Warehouse 3.19.19
Cloudera, Inc.
 
Introducing Cloudera DataFlow (CDF) 2.13.19
Introducing Cloudera DataFlow (CDF) 2.13.19Introducing Cloudera DataFlow (CDF) 2.13.19
Introducing Cloudera DataFlow (CDF) 2.13.19
Cloudera, Inc.
 
Introducing Cloudera Data Science Workbench for HDP 2.12.19
Introducing Cloudera Data Science Workbench for HDP 2.12.19Introducing Cloudera Data Science Workbench for HDP 2.12.19
Introducing Cloudera Data Science Workbench for HDP 2.12.19
Cloudera, Inc.
 
Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19
Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19
Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19
Cloudera, Inc.
 
Leveraging the cloud for analytics and machine learning 1.29.19
Leveraging the cloud for analytics and machine learning 1.29.19Leveraging the cloud for analytics and machine learning 1.29.19
Leveraging the cloud for analytics and machine learning 1.29.19
Cloudera, Inc.
 
Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19
Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19
Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19
Cloudera, Inc.
 
Leveraging the Cloud for Big Data Analytics 12.11.18
Leveraging the Cloud for Big Data Analytics 12.11.18Leveraging the Cloud for Big Data Analytics 12.11.18
Leveraging the Cloud for Big Data Analytics 12.11.18
Cloudera, Inc.
 
Modern Data Warehouse Fundamentals Part 3
Modern Data Warehouse Fundamentals Part 3Modern Data Warehouse Fundamentals Part 3
Modern Data Warehouse Fundamentals Part 3
Cloudera, Inc.
 
Modern Data Warehouse Fundamentals Part 2
Modern Data Warehouse Fundamentals Part 2Modern Data Warehouse Fundamentals Part 2
Modern Data Warehouse Fundamentals Part 2
Cloudera, Inc.
 
Modern Data Warehouse Fundamentals Part 1
Modern Data Warehouse Fundamentals Part 1Modern Data Warehouse Fundamentals Part 1
Modern Data Warehouse Fundamentals Part 1
Cloudera, Inc.
 
Extending Cloudera SDX beyond the Platform
Extending Cloudera SDX beyond the PlatformExtending Cloudera SDX beyond the Platform
Extending Cloudera SDX beyond the Platform
Cloudera, Inc.
 
Federated Learning: ML with Privacy on the Edge 11.15.18
Federated Learning: ML with Privacy on the Edge 11.15.18Federated Learning: ML with Privacy on the Edge 11.15.18
Federated Learning: ML with Privacy on the Edge 11.15.18
Cloudera, Inc.
 
Analyst Webinar: Doing a 180 on Customer 360
Analyst Webinar: Doing a 180 on Customer 360Analyst Webinar: Doing a 180 on Customer 360
Analyst Webinar: Doing a 180 on Customer 360
Cloudera, Inc.
 
Build a modern platform for anti-money laundering 9.19.18
Build a modern platform for anti-money laundering 9.19.18Build a modern platform for anti-money laundering 9.19.18
Build a modern platform for anti-money laundering 9.19.18
Cloudera, Inc.
 
Introducing the data science sandbox as a service 8.30.18
Introducing the data science sandbox as a service 8.30.18Introducing the data science sandbox as a service 8.30.18
Introducing the data science sandbox as a service 8.30.18
Cloudera, Inc.
 

Recently uploaded (20)

Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 

Hw09 Next Steps For Hadoop

  • 1. Next Steps for Hadoop Doug Cutting Cloudera
  • 2. Proviso ● Linus Torvalds: ● “Whatever they contribute.” ● diverse set of contributors ● central planning impossible
  • 3. The Dream ● faster, more reliable, available ● of course ● spreadsheet-like interfaces ● provide non-programmers ● with powerful, interactive tools ● easier sharing ● of data & hardware resources
  • 4. Requirements ● security ● facilitate sharing of resources ● stable cross-language APIs ● facilitate diverse tools & apps ● expressive, inter-operable data ● facilitates sharing of datasets ● facilitates dynamic analyses
  • 5. Data Formats ● today in Hadoop: ● text – pro: inter-operable – con: not expressive, inefficient ● - Java Writable – pro: expressive, efficient – con: platform-specific, fragile
  • 6. Protocol Buffers & Thrift ● expressive ● efficient (small & fast) ● but not very dynamic ● cannot browse arbitrary data ● no DESCRIBE or SHOW ● viewing a new dataset – requires code generation & load ● writing a new dataset – requires generating schema text – plus code generation & load
  • 7. Avro Data ● as expressive ● smaller and faster ● dynamic ● schema stored with data – but factored out of instances ● API permits reading & creating – arbitrary datatypes – without generating & loading code
  • 8. Avro Data ● includes a file format ● includes a textual encoding ● handles versioning ● if schema changes ● can still process data ● Hadoop apps can ● upgrade from text ● and standardize on Avro for data
  • 9. Avro RPC ● leverage versioning support ● to permit different versions of services to interoperate ● for Hadoop services, will ● provide cross-language access ● let apps talk to clusters running different versions
  • 10. Avro Status ● 1.1 release out ● added JSON and comparators ● 1.2 soon ● adds HTTP & UDP-based RPC ● will first appear in Hadoop 0.21 ● as format for job history ● in sequence files
  • 11. Avro Near Future ● full mapreduce support ● used for RPC in Hadoop 0.22 (1.0)?
  • 12. Thanks! What are your next steps?