SlideShare a Scribd company logo
Hybrid Atlas Model
                        of financial equity market


Tomoyuki Ichiba 1 Ioannis Karatzas 2,3 Adrian Banner 3
     Vassilios Papathanakos 3 Robert Fernholz 3

 1   University of California, Santa Barbara 2 Columbia University, New York
                                 3 INTECH, Princeton



                              November 2009




                                        1
Outline

   Introduction

   Hybrid Atlas model
      Martingale Problem
      Stability
      Effective dimension
      Rankings
      Long-term growth relations

   Portfolio analysis
      Stochastic Portfolio Theory
      Target portfolio
      Universal portfolio

   Conclusion
Flow of Capital




   Figure: Capital Distribution Curves (Percentage) for the S&P 500
   Index of 1997 (Solid Line) and 1999 (Broken Line).

                                    3
Log-Log Capital Distribution Curves




   Figure: Capital distribution curves for 1929 (shortest curve) - 1999
   (longest curve), every ten years. Source Fernholz(’02).


   What kind of models can describe this long-term stability?
                                      4
A Model of Rankings [Hybrid Atlas model]
       Capital process X := {(X1 (t), . . . , Xn (t)) , 0 ≤ t < ∞} .
       Order Statistics:
                    X(1) (t) ≥ · · · ≥ X(n) (t) ; 0 ≤ t < ∞ .
       Log capital Y := log X :
                   Y(1) (t) ≥ · · · ≥ Y(n) (t) ; 0 ≤ t < ∞ .
   Dynamics of log capital:

    d Y(k ) (t) = (γ + γi + gk ) d t + σk d Wi (t)   if Y(k ) (t) = Yi (t) ;
  for 1 ≤ i , k ≤ n , 0 ≤ t < ∞ , where W (·) is n−dim. B. M.

                              company name i          k th ranked company ∗
       Drift (“mean”)               γi                          gk
   Diffusion (“variance”)                                     σk > 0
  ∗ Banner, Fernholz & Karatzas (’05), Chatterjee & Pal (’07, ’09), Pal &
  Pitman (’08).
                                      5
A Model of Rankings [Hybrid Atlas model]
       Capital process X := {(X1 (t), . . . , Xn (t)) , 0 ≤ t < ∞} .
       Order Statistics:
                    X(1) (t) ≥ · · · ≥ X(n) (t) ; 0 ≤ t < ∞ .
       Log capital Y := log X :
                   Y(1) (t) ≥ · · · ≥ Y(n) (t) ; 0 ≤ t < ∞ .
   Dynamics of log capital:

    d Y(k ) (t) = (γ + γi + gk ) d t + σk d Wi (t)   if Y(k ) (t) = Yi (t) ;
  for 1 ≤ i , k ≤ n , 0 ≤ t < ∞ , where W (·) is n−dim. B. M.

                              company name i          k th ranked company ∗
       Drift (“mean”)               γi                          gk
   Diffusion (“variance”)                                     σk > 0
  ∗ Banner, Fernholz & Karatzas (’05), Chatterjee & Pal (’07, ’09), Pal &
  Pitman (’08).
                                      5
A Model of Rankings [Hybrid Atlas model]
       Capital process X := {(X1 (t), . . . , Xn (t)) , 0 ≤ t < ∞} .
       Order Statistics:
                    X(1) (t) ≥ · · · ≥ X(n) (t) ; 0 ≤ t < ∞ .
       Log capital Y := log X :
                   Y(1) (t) ≥ · · · ≥ Y(n) (t) ; 0 ≤ t < ∞ .
   Dynamics of log capital:

    d Y(k ) (t) = (γ + γi + gk ) d t + σk d Wi (t)   if Y(k ) (t) = Yi (t) ;
  for 1 ≤ i , k ≤ n , 0 ≤ t < ∞ , where W (·) is n−dim. B. M.

                              company name i          k th ranked company ∗
       Drift (“mean”)               γi                          gk
   Diffusion (“variance”)                                     σk > 0
  ∗ Banner, Fernholz & Karatzas (’05), Chatterjee & Pal (’07, ’09), Pal &
  Pitman (’08).
                                      5
Illustration (n = 3) of interactions through rank
     Time

      X3(t)>X1(t)>X2(t)



        X1(t)>X3(t)>X2(t)
                                                              x1 > x3 > x2

                                               x3 > x1 > x2                  x1 > x2 > x3
      X1(t)>X2(t)>X3(t)

                                               x3 > x2 > x1                  x2 > x1 > x3

                                                              x2 > x3 > x1
             X3           X2     X1


            Paths in R+ × Time .               A path in different wedges of Rn .

   Symmetric group Σn of permutations of {1, . . . , n} .
   For n = 3 ,
   {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)} .
                                          6
Illustration (n = 3) of interactions through rank
     Time

      X3(t)>X1(t)>X2(t)



        X1(t)>X3(t)>X2(t)
                                                              x1 > x3 > x2

                                               x3 > x1 > x2                  x1 > x2 > x3
      X1(t)>X2(t)>X3(t)

                                               x3 > x2 > x1                  x2 > x1 > x3

                                                              x2 > x3 > x1
             X3           X2     X1


            Paths in R+ × Time .               A path in different wedges of Rn .

   Symmetric group Σn of permutations of {1, . . . , n} .
   For n = 3 ,
   {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)} .
                                          6
Vector Representation
         d Y (t) = G(Y (t))d t + S(Y (t))dW (t) ;              0≤t <∞
        Σn : symmetric group of permutations of {1, 2, . . . , n}.

   For p ∈ Σn define wedges (chambers)

    Rp := {x ∈ Rn : xp(1) ≥ xp(2) ≥ · · · ≥ xp(n) },            Rn = ∪p∈Σn Rp ,

   (the inner points of Rp and Rp are disjoint for p = p ∈ Σn ),
            (i)
        Qk : = {x ∈ Rn : xi is ranked k th among (x1 , . . . , xn )}
                   = ∪{p : p(k )=i} Rp ;    1 ≤ i, k ≤ n ,

            (j)                    (i)                       (p(k ))
   ∪n Qk = Rn = ∪n=1 Q
    j=1                                  and Rp = ∩n =1 Qk
                                                   k                   .
  G(y ) =                     + γ1 + γ, . . . , gp−1 (n) + γn + γ) · 1Rp (y ) ,
                  p∈Σn (gp−1 (1)
  S(y ) =         p∈Σn diag(σp−1 (1) , . . . , σp−1 (n) ) ·1Rp (y ) ; y ∈ Rn .
                                     sp
Vector Representation
         d Y (t) = G(Y (t))d t + S(Y (t))dW (t) ;              0≤t <∞
        Σn : symmetric group of permutations of {1, 2, . . . , n}.

   For p ∈ Σn define wedges (chambers)

    Rp := {x ∈ Rn : xp(1) ≥ xp(2) ≥ · · · ≥ xp(n) },            Rn = ∪p∈Σn Rp ,

   (the inner points of Rp and Rp are disjoint for p = p ∈ Σn ),
            (i)
        Qk : = {x ∈ Rn : xi is ranked k th among (x1 , . . . , xn )}
                   = ∪{p : p(k )=i} Rp ;    1 ≤ i, k ≤ n ,

            (j)                    (i)                       (p(k ))
   ∪n Qk = Rn = ∪n=1 Q
    j=1                                  and Rp = ∩n =1 Qk
                                                   k                   .
  G(y ) =                     + γ1 + γ, . . . , gp−1 (n) + γn + γ) · 1Rp (y ) ,
                  p∈Σn (gp−1 (1)
  S(y ) =         p∈Σn diag(σp−1 (1) , . . . , σp−1 (n) ) ·1Rp (y ) ; y ∈ Rn .
                                     sp
Martingale Problem

   Theorem [Krylov(’71), Stroock & Varadhan(’79) , Bass & Pardoux(’87)] Suppose that the
   coefficients G(·) and a(·) := SS (·) are bounded and measur-
   able, and that a(·) is uniformly positive-definite and piece-wise
   constant in each wedge. For each y0 ∈ Rn there is a unique
   one probability measure P on (Ω = C([0, ∞), Rn ), F) such that
   P(Y0 = y0 ) = 1 and
                                          t
                f (Yt ) − f (Y0 ) −           L f (Ys ) d s ;   0≤t <∞
                                      0

   is a P local martingale for every f ∈ C 2 (Rn ) where
                  1    n                                n
      L f (x) =   2    i,j=1 aij (x)Dij f (x)      +    i=1 Gi (x)Di f (x) ;   x ∈ Rn .

  This implies that the hybrid Atlas model is well-defined.


                                               8
Model

  Market capitalization X follows Hybrid Atlas model: the log
  capitalization Yi = log Xi of company i has

                 drift γ + gk + γi and volatility σk ,
                                                       (i)
  when company i is k th ranked, i.e., Y ∈ Qk                for 1 ≤ k , i ≤ n .

                          n
        d Yi (t) = γ +          gk 1Q (i) (Y (t)) + γi d t
                                        k
                         k =1
                         n
                   +          σk 1Q (i) (Y (t))d Wi (t) ;     0 ≤ t < ∞.
                                    k
                       k =1




                                            9
Model assumptions
  Market capitalization X follows Hybrid Atlas model: the log
  capitalization Yi = log Xi of company i has

                         drift γ + gk + γi and volatility σk ,
                                                          (i)
  when company i is k th ranked, i.e., Y ∈ Qk for 1 ≤ k , i ≤ n .
  Assume σk > 0 , (gk , 1 ≤ k ≤ n) , (γi , 1 ≤ i ≤ n) and γ are
  real constants with stability conditions
   n            n                k
         gk +         γi = 0 ,        (g +γp( ) ) < 0 ,   k = 1, . . . , n−1, p ∈ Σn .
  k =1          i=1              =1


         γi = 0 , 1 ≤ i ≤ n, g1 = · · · = gn−1 = −g < 0,
         gn = (n − 1)g > 0 .
         γi = 1 − (2i)/(n + 1) , 1 ≤ i ≤ n ,
         gk = −1, k = 1, . . . , n − 1 , gn = n − 1 .
                                             10
Model assumptions
  Market capitalization X follows Hybrid Atlas model: the log
  capitalization Yi = log Xi of company i has

                         drift γ + gk + γi and volatility σk ,
                                                          (i)
  when company i is k th ranked, i.e., Y ∈ Qk for 1 ≤ k , i ≤ n .
  Assume σk > 0 , (gk , 1 ≤ k ≤ n) , (γi , 1 ≤ i ≤ n) and γ are
  real constants with stability conditions
   n            n                k
         gk +         γi = 0 ,        (g +γp( ) ) < 0 ,   k = 1, . . . , n−1, p ∈ Σn .
  k =1          i=1              =1


         γi = 0 , 1 ≤ i ≤ n, g1 = · · · = gn−1 = −g < 0,
         gn = (n − 1)g > 0 .
         γi = 1 − (2i)/(n + 1) , 1 ≤ i ≤ n ,
         gk = −1, k = 1, . . . , n − 1 , gn = n − 1 .
                                             10
Model assumptions
  Market capitalization X follows Hybrid Atlas model: the log
  capitalization Yi = log Xi of company i has

                         drift γ + gk + γi and volatility σk ,
                                                          (i)
  when company i is k th ranked, i.e., Y ∈ Qk for 1 ≤ k , i ≤ n .
  Assume σk > 0 , (gk , 1 ≤ k ≤ n) , (γi , 1 ≤ i ≤ n) and γ are
  real constants with stability conditions
   n            n                k
         gk +         γi = 0 ,        (g +γp( ) ) < 0 ,   k = 1, . . . , n−1, p ∈ Σn .
  k =1          i=1              =1


         γi = 0 , 1 ≤ i ≤ n, g1 = · · · = gn−1 = −g < 0,
         gn = (n − 1)g > 0 .
         γi = 1 − (2i)/(n + 1) , 1 ≤ i ≤ n ,
         gk = −1, k = 1, . . . , n − 1 , gn = n − 1 .
                                             10
Model Summary

  The log-capitalization Y = log X follows
                                   n
          d Yi (t) = γ +                 gk 1Q (i) (Y (t)) + γi d t
                                                  k
                                  k =1
                                  n
                            +           σk 1Q (i) (Y (t))d Wi (t) ;   0≤t <∞
                                              k
                                 k =1

  where σk > 0 , (gk , 1 ≤ k ≤ n) , (γi , 1 ≤ i ≤ n) and γ are real
  constants with stability conditions
   n            n                   k
         gk +         γi = 0 ,           (g +γp( ) ) < 0 ,      k = 1, . . . , n−1, p ∈ Σn .
  k =1          i=1                 =1
Stochastic stability
                                  n
   The average Y (·) :=           i=1 Yi (·) / n   of log-capitalization:
                                                   n
                                  1    n
           dY (t) = γ d t +       n    k =1 σk             1Q (i) (Y (t))d Wi (t)
                                                              k
                                                  i=1

                                                                  d Bk (t)

   is a Brownian motion with variance rate n =1 σk /n2 drift γ by
                                                      k
                                                           2

   the Dambis-Dubins-Schwartz Theorem.
     Proposition Under the assumptions the deviations Y (·) :=
     (Y1 (·) − Y (·), . . . , Yn (·) − Y (·)) from the average are stable in
     distribution, i.e., there is a unique invariant probability measure
     µ(·) such that for every bounded, measurable function f we
     have the Strong Law of Large Numbers
                            T
                   1
               lim              f (Y (t)) d t =            f (y )µ(d y ) ,   a.s.
              T →∞ T    0                              Π

    where Π := {y ∈ Rn : y1 + · · · + yn = 0} .
Stochastic stability
                                  n
   The average Y (·) :=           i=1 Yi (·) / n   of log-capitalization:
                                                   n
                                  1    n
           dY (t) = γ d t +       n    k =1 σk             1Q (i) (Y (t))d Wi (t)
                                                              k
                                                  i=1

                                                                  d Bk (t)

   is a Brownian motion with variance rate n =1 σk /n2 drift γ by
                                                      k
                                                           2

   the Dambis-Dubins-Schwartz Theorem.
     Proposition Under the assumptions the deviations Y (·) :=
     (Y1 (·) − Y (·), . . . , Yn (·) − Y (·)) from the average are stable in
     distribution, i.e., there is a unique invariant probability measure
     µ(·) such that for every bounded, measurable function f we
     have the Strong Law of Large Numbers
                            T
                   1
               lim              f (Y (t)) d t =            f (y )µ(d y ) ,   a.s.
              T →∞ T    0                              Π

    where Π := {y ∈ Rn : y1 + · · · + yn = 0} .
Average occupation times
  Especially taking f (·) = 1Rp (·) or 1Q (i) (·) , we define from µ
                                                          k
                                                                       (i)
  the average occupation time of X in Rp or Qk                               :
                                         T
                               1
     θp := µ(Rp ) = lim                      1Rp (X (t))d t
                          T →∞ T     0
                                             T
                    (i)          1
     θk ,i := µ(Qk ) = lim                       1Q (i) (X (t))d t ,     1 ≤ k, i ≤ n ,
                            T →∞ T       0            k



  since 1Rp (Y (·)) = 1Rp (X (·)) and 1Q (i) (X (·)) = 1Q (i) (Y (·)) . By
                                                          k                      k
  definition
       0 ≤ θk ,i =        {p∈Σn :p(k )=i} θp ≤ 1 for 1 ≤ k , i               ≤ n,
         n                 n
          =1 θ ,i   =      j=1 θk ,j = 1 for 1 ≤ k , i ≤ n .

                    What is the invariant distribution µ ?

                                                 13
Attainability


       One-dimensional Brownian motion attains the origin
       infinitely often.
       Two-dimensional Brownian motion does not attain the
       origin.
   Does the process X (·) attain the origin?

                               t                        t
         X (t) = X (0) +           b(X (s)) d s +           σ(X (s))d W (s)
                           0                        0

   where b and σ are bounded measurable functions.
       Friedman(’74), Bass & Pardoux(’87).




                                         14
Effective Dimension
  Let us define effective dimension ED(·) by

                        trace(A(x)) x        2
            ED(x) =                              ;   x ∈ Rn  {0} ,
                            x A(x)x

  where A(·) = σ(·)σ(·) .
   Proposition
   Suppose X (0) = 0 .
   If infx∈Rn {0} ED(x) ≥ 2 , then X (·) does not attain the origin.
   If supx∈Rn {0} ED(x) < 2 and if there is no drift, i.e., b(·) ≡ 0 ,
   then X (·) attains the origin.

      Exterior Dirichlet Problem by Meyers and Serrin(’60).
      Removal of drift by Girsanov’s theorem.
                                [trace(A(x))+x b(x)]· x   2
      If there is drift, take            x A(x)x              .

                                        15
Triple collision
   Now consider triple collision:

     Xi (t) = Xj (t) = Xk (t) for some t > 0 , 1 ≤ i < j < k ≤ n .

   What is the probability of triple collision?

   Fix i = 1 , j = 2 , k = 3 . Let us define the sum of squared
   distances:

   s2 (x) := (x1 − x2 )2 + (x2 − x3 )2 + (x3 − x1 )2 = x DD x ;          x ∈ Rn ,

   where (n × 3) matrix D is defined by D := (d1 , d2 , d3 ) with

          d1 := (1, −1, 0, . . . , 0) ,    d2 := (0, 1, −1, 0, . . . , 0) ,
          d3 := (−1, 0, 1, . . . , 0) .

   Z := {x ∈ Rn : s(x) = 0 }.

                                          16
Define the local effective dimension:
                  trace(D A(x)D) x DD x
        R(x) :=                         ;           x ∈ Rn  Z .
                      x DD A(x)DD x

 Proposition
 Suppose s(X (0)) = 0 . If infx∈Rn Z R(x) ≥ 2 , then

           P(X1 (t) = X2 (t) = X3 (t) for some t ≥ 0) = 0 .

 If supx∈Rn Z R(x) < 2 and if there is no drift, i.e., b(·) ≡ 0 ,
 then
          P(X1 (t) = X2 (t) = X3 (t) for some t ≥ 0) = 1 .


    R(·) ≡ 2 for n−dim. BM, i.e., A(·) ≡ I .
                              [trace(D A(x)D)+x DD b(x)]·x DD x
    If there is drift, take             x DD A(x)DD x             .
 Idea of Proof: a comparison with Bessel process with dimension
 two.
                                     17
Define the local effective dimension:
                  trace(D A(x)D) x DD x
        R(x) :=                         ;           x ∈ Rn  Z .
                      x DD A(x)DD x

 Proposition
 Suppose s(X (0)) = 0 . If infx∈Rn Z R(x) ≥ 2 , then

           P(X1 (t) = X2 (t) = X3 (t) for some t ≥ 0) = 0 .

 If supx∈Rn Z R(x) < 2 and if there is no drift, i.e., b(·) ≡ 0 ,
 then
          P(X1 (t) = X2 (t) = X3 (t) for some t ≥ 0) = 1 .


    R(·) ≡ 2 for n−dim. BM, i.e., A(·) ≡ I .
                              [trace(D A(x)D)+x DD b(x)]·x DD x
    If there is drift, take             x DD A(x)DD x             .
 Idea of Proof: a comparison with Bessel process with dimension
 two.
                                     17
Define the local effective dimension:
                  trace(D A(x)D) x DD x
        R(x) :=                         ;           x ∈ Rn  Z .
                      x DD A(x)DD x

 Proposition
 Suppose s(X (0)) = 0 . If infx∈Rn Z R(x) ≥ 2 , then

           P(X1 (t) = X2 (t) = X3 (t) for some t ≥ 0) = 0 .

 If supx∈Rn Z R(x) < 2 and if there is no drift, i.e., b(·) ≡ 0 ,
 then
          P(X1 (t) = X2 (t) = X3 (t) for some t ≥ 0) = 1 .


    R(·) ≡ 2 for n−dim. BM, i.e., A(·) ≡ I .
                              [trace(D A(x)D)+x DD b(x)]·x DD x
    If there is drift, take             x DD A(x)DD x             .
 Idea of Proof: a comparison with Bessel process with dimension
 two.
                                     17
Rankings

  Recall Y(1) (·) ≥ Y(2) (·) ≥ · · · ≥ Y(n) (·) . Let us denote by
  Λk ,j (t) the local time accumulated at the origin by the
  nonnegative semimartingale Y(k ) (·) − Y(j) (·) up to time t for
  1 ≤ k < j ≤ n.
   Theorem[Banner & Ghomrasni (’07)] For a general class of semimartingale
   Y (·) , the rankings satisfy
                       n
       d Y(k ) (t) =         1Q (i) (Y (t))d Yi (t)
                                k
                       i=1
                                                n                     k −1
                                      −1                 k,                       ,k
                        + (Nk (t))                  dΛ        (t) −          dΛ        (t)
                                            =k +1                      =1

   where Nk (t) is the cardinality |{i : Yi (t) = Y(k ) (t)}| .


                                           18
Rankings
  Recall Y(1) (·) ≥ Y(2) (·) ≥ · · · ≥ Y(n) (·) . Let us denote by
  Λk ,j (t) the local time accumulated at the origin by the
  nonnegative semimartingale Y(k ) (·) − Y(j) (·) up to time t for
  1 ≤ k < j ≤ n.
   Lemma Under the non-degeneracy condition σk > 0 for k =
   1, . . . , n ,
                                   n
        dY(k ) (t) = γ + gk +           γi 1Q (i) (Y (t)) d t + σk d Bk (t)
                                             k
                                  i=1
                         1
                     +     d Λk ,k +1 (t) − d Λk −1,k (t) .
                         2
   for k = 1, . . . , n , 0 ≤ t ≤ T .
   Idea of Proof: a comparison with a Bessel process with dimen-
   sion one to show Λk , (·) ≡ 0 , |k − | ≥ 2.

                                        19
Rankings
  Recall Y(1) (·) ≥ Y(2) (·) ≥ · · · ≥ Y(n) (·) . Let us denote by
  Λk ,j (t) the local time accumulated at the origin by the
  nonnegative semimartingale Y(k ) (·) − Y(j) (·) up to time t for
  1 ≤ k < j ≤ n.
   Lemma Under the non-degeneracy condition σk > 0 for k =
   1, . . . , n ,
                                   n
        dY(k ) (t) = γ + gk +           γi 1Q (i) (Y (t)) d t + σk d Bk (t)
                                             k
                                  i=1
                         1
                     +     d Λk ,k +1 (t) − d Λk −1,k (t) .
                         2
   for k = 1, . . . , n , 0 ≤ t ≤ T .
   Idea of Proof: a comparison with a Bessel process with dimen-
   sion one to show Λk , (·) ≡ 0 , |k − | ≥ 2.

                                        19
Long-term growth relations
   Proposition Under the assumptions we obtain the following
   long-term growth relations:

           Yi (T )       log Xi (T )
       lim         = lim             =γ
      T →∞   T      T →∞     T
                                                                 n
                                                          log    i=1 Xi (T )
                                             = lim                             a.s.
                                                   T →∞           T
   Thus the model is coherent:
                    1
                lim   log µi (T ) = 0           a.s.;      i = 1, . . . , n
               T →∞ T

   where µi (·) = Xi (·)/(X1 (·) + · · · + Xn (·)) . Moreover,
                       n
                             gk θk ,i + γi = 0 ;     i = 1, . . . , n .
                      k =1


                                           20
n
                          gk θk ,i + γi = 0 ;          i = 1, . . . , n .
                   k =1

The log-capitalization Y grows with rate γ and follows
                             n
       d Yi (t) = γ +              gk 1Q (i) (Y (t)) + γi d t
                                              k
                            k =1
                            n
                       +          σk 1Q (i) (Y (t))d Wi (t) ;        0≤t <∞
                                          k
                           k =1

for i = 1, . . . , n . The ranking (Y(1) (·), . . . , Y(n) (·)) follows
                                      n
     dY(k ) (t) = γ + gk +                    γi 1Q (i) (Y (t)) d t + σk d Bk (t)
                                                   k
                                     i=1
                        1
                   +      d Λk ,k +1 (t) − d Λk −1,k (t) .
                        2
for k = 1, . . . , n , 0 ≤ t < ∞ .
Semimartingale reflected Brownian motions


  The adjacent differences (gaps) Ξ(·) := (Ξ1 (·), . . . , Ξn (·))
  where Ξk (·) := Y(k ) (·) − Y(k +1) (·) for k = 1, . . . , n − 1 can be
  seen as a semimartingale reflected Brownian motion (SRBM):

                     Ξ(t) = Ξ(0) + ζ(t) + (In−1 − Q)Λ(t)

  where ζ(·) := (ζ1 (·), . . . , ζn (·)) , Λ(·) := (Λ1,2 (·), . . . , Λn−1,n (·)) ,
               n         ·                              n         ·
   ζk (·) :=                 1Q (i) (Y (s)) d Y (s) −                 1Q (i) (Y (s)) d Y (s)
                     0          k                             0         k +1
               i=1                                      i=1

  for k = 1, . . . , n − 1 , and Q is an (n − 1) × (n − 1) matrix with
  elements
                                     
                     0 1/2
                   1/2 0 1/2                    
                                                
                           ..            ..     
             Q := 
                       1/2    .            .    .
                                                 
                           ..                   
                              .           0 1/2 
                                          1/2 0
Thus the gaps Ξk := Y(k ) (·) − Y(k +1) (·) follow

             Ξ(t) = Ξ(0) +       ζ(t)         + (In − Q)Λ(t)
                             semimartingale      reflection part

In order to study the invariant measure µ , we apply the theory
of semimartingale reflected Brownian motions developed by
M. Harrison, M. Reiman, R. Williams and others.
In addition to the model assumptions, we assume linearly
growing variances:
                2    2    2    2            2    2
               σ2 − σ1 = σ3 − σ2 = · · · = σn − σn−1 .

                                 23
Invariant distribution of gaps and index
   Let us define the indicator map Rn x → px ∈ Σn such that
   xpx (1) ≥ xpx (2) ≥ · · · ≥ xp(n) , and the index process Pt := pY (t) .

   Proposition Under the stability and the linearly growing variance
   conditions the invariant distribution ν(·) of (Ξ(·), P· ) is
                             n−1
                                            −1
         ν(A × B) =                 λ−1
                                     q,k                    exp(− λp , z )d z
                        q∈Σn k =1                p∈Σn   A


   for every measurable set A × B where λp := (λp,1 , . . . , λp,n−1 )
   is the vector of components
                      k
               −4(     =1 g + γp( ) )
     λp,k :=          2 + σ2
                                           > 0;    p ∈ Σn , 1 ≤ k ≤ n − 1 .
                     σk    k +1


   Proof: an extension from M. Harrison and R. Williams (’87).
Average occupation time
  Corollary The average occupation times are
                    n−1                    n−1
                                      −1
   θp =                    λ−1
                            q,k                  λ−1
                                                  p,j           and           θk ,i =                      θp
            q∈Σn k =1                      j=1                                          {p∈Σn :p(k )=i}

  for p ∈ Σn and 1 ≤ k , i ≤ n .
                                                     (1,10)                                      (10,10)




                                                                                               0.
                                                                                                15
                         2          2
      If all γi = 0 and σ1 = · · · σn , then
              1
      θk ,i = n for 1 ≤ k , i ≤ n .
                                         2
      Heat map of θk ,i when n = 10 , σk = 1 + k ,        5
                                                        0.0                    (k,i)
      gk = −1 for k = 1, . . . , 9 , g10 = 9 , and
      γi = 1 − (2i)/(n + 1) for i = 1, . . . , n .              0.
                                                                   1

                                                                 0.15
                                                                                                0.05
                                                          0.2
                                                     (1,1)              0.1                       (10,1)


                                                     25
Market weights come from Pareto type

  Corollary The joint invariant distribution of market shares

          µ(i) (·) := X(i) (·)/(X1 (·) + · · · + Xn (·)) ;      i = 1, . . . , n

  has the density

   ℘(m1 , . . . , mn−1 )
                                             λp,1 · · · λp,n−1
    =          θp    λ +1         λp,2 −λp,1 +1         λp,n−1 −λp,n−2 +1 −λp,n−1 +1
                                                                                       ,
        p∈Πn        m1 p,1   ·   m2             · · · mn−1               mn
                             0 < mn ≤ mn−1 ≤ . . . ≤ m1 < 1,
                             mn = 1 − m1 − · · · − mn−1 .

  This is a distribution of ratios of Pareto type disribution.



                                              26
Expected capital distribution curves
                                                          E (Ξ )     log µ            −log µ                      ν
   From the expected slopes Eν [ log(k)+1)−log−1) ] = − log(1+kk−1 ) we
                                      (k     (k
                                                k
   obtain expected capital distribution curves.
   e−1                                                                e−1


                                                                                      iv


   e−5                                                                e−5
                                                                                                       v
          Weight




                                                                             Weight
                                                            iii
   e−10                                                               e−10
                                                       ii
                                                 i


                                 Rank                                                               Rank
    1                5   10      50 100     500 1000          5000     1                   5   10   50 100   500 1000   5000

                                                                                                              2
                   n = 5000 , gn = c∗ (2n − 1) , gk = 0 , 1 ≤ k ≤ n − 1 , γ1 = −c∗ , γi = −2c∗ , 2 ≤ i ≤ n , σk =
                   0.075 + 6k × 10−5 , 1 ≤ k ≤ n. (i) c∗ = 0.02 , (ii) c∗ = 0.03 , (iii) c∗ = 0.04 .
                   (iv) c∗ = 0.02 , g1 = −0.016 , gk = 0 , 2 ≤ k ≤ n − 1 , gn = (0.02)(2n − 1) + 0.016 ,
                   (v) g1 = · · · = g50 = −0.016 , gk = 0 , 51 ≤ k ≤ n − 1 , gn = (0.02)(2n − 1) + 0.8 .
Empirical data




                                                     0.7
                                                     0.6
                                     Variance Rate

                                                     0.5
                                                     0.4
                                                     0.3
                                                     0.2
   Historical capital distribution                         0   1000   2000

                                                                             Rank
                                                                                    3000   4000     5000



   curves. Data 1929-1999.
                                     Growing variances.                                           1990-
                                     1999.
   Source: Fernholz (’02)


                                     28
Capital Stocks and Portfolio Rules
      Market X = ((X1 (t), . . . , Xn (t)), t ≥ 0) of n companies
                                     T                    T    n
                 Xi (T )
             log         =               Gi (t)dt +                 Si,ν (t)dWν (t) ,
                 Xi (0)          0                    0       ν=1

      with initial capital Xi (0) = xi > 0, i = 1, . . . , n , 0 ≤ T < ∞ .
                                                                ·
      Define aij (·) = n Siν (·)Sjν (·) and Aij (·) = 0 aij (t)d t .
                           ν=1

      Long only Portfolio rule π and its wealth V π .
      Choose π ∈ ∆+ := {x ∈ Rn : xi = 1, xi ≥ 0 }
                      n

      invest πi V π of money to company i for i = 1, . . . , n, i.e.,
       πi V π /Xi share of company i :

                             n
                  π                  πi (t)V π (t)
              dV (t) =                             dXi (t) ,         0 ≤ t < ∞,
                                         Xi (t)
                          i=1
               V π (0) = w .

                                            29
Capital Stocks and Portfolio Rules
      Market X = ((X1 (t), . . . , Xn (t)), t ≥ 0) of n companies
                                     T                    T    n
                 Xi (T )
             log         =               Gi (t)dt +                 Si,ν (t)dWν (t) ,
                 Xi (0)          0                    0       ν=1

      with initial capital Xi (0) = xi > 0, i = 1, . . . , n , 0 ≤ T < ∞ .
                                                                ·
      Define aij (·) = n Siν (·)Sjν (·) and Aij (·) = 0 aij (t)d t .
                           ν=1

      Long only Portfolio rule π and its wealth V π .
      Choose π ∈ ∆+ := {x ∈ Rn : xi = 1, xi ≥ 0 }
                      n

      invest πi V π of money to company i for i = 1, . . . , n, i.e.,
       πi V π /Xi share of company i :

                             n
                  π                  πi (t)V π (t)
              dV (t) =                             dXi (t) ,         0 ≤ t < ∞,
                                         Xi (t)
                          i=1
               V π (0) = w .

                                            29
Capital Stocks and Portfolio Rules
      Market X = ((X1 (t), . . . , Xn (t)), t ≥ 0) of n companies
                                     T                    T    n
                 Xi (T )
             log         =               Gi (t)dt +                 Si,ν (t)dWν (t) ,
                 Xi (0)          0                    0       ν=1

      with initial capital Xi (0) = xi > 0, i = 1, . . . , n , 0 ≤ T < ∞ .
                                                                ·
      Define aij (·) = n Siν (·)Sjν (·) and Aij (·) = 0 aij (t)d t .
                           ν=1

      Long only Portfolio rule π and its wealth V π .
      Choose π ∈ ∆+ := {x ∈ Rn : xi = 1, xi ≥ 0 }
                      n

      invest πi V π of money to company i for i = 1, . . . , n, i.e.,
       πi V π /Xi share of company i :

                             n
                  π                  πi (t)V π (t)
              dV (t) =                             dXi (t) ,         0 ≤ t < ∞,
                                         Xi (t)
                          i=1
               V π (0) = w .

                                            29
Portfolios and Relative Arbitrage
       Market portfolio: Take
       π(t) = m(t) = (m1 (t), · · · , mn (t)) ∈ ∆n where
                                                 +

                         Xi (t)
          mi (t) =                     ,        i = 1, . . . , n ,   0 ≤ t < ∞.
                     X1 + · · · Xn (t)

       Diversity weighted portfolio: Given p ∈ [0, 1] , take
                  (m (t))p
       πi (t) = Pn i(m (t))p for i = 1, . . . , n , 0 ≤ t < ∞.
                 j=1    j

       Functionally generated portfolio (Fernholz (’02) & Karatzas
       (’08)).
       A portfolio π represents an arbitrage opportunity relative
       to another portfolio ρ on [0, T ] , if

           P(V π (T ) ≥ V ρ (T )) = 1,            P(V π (T ) > V ρ (T )) > 0.

   Can we find an arbitrage opportunity π relative to m ?
                                           30
Portfolios and Relative Arbitrage
       Market portfolio: Take
       π(t) = m(t) = (m1 (t), · · · , mn (t)) ∈ ∆n where
                                                 +

                         Xi (t)
          mi (t) =                     ,        i = 1, . . . , n ,   0 ≤ t < ∞.
                     X1 + · · · Xn (t)

       Diversity weighted portfolio: Given p ∈ [0, 1] , take
                  (m (t))p
       πi (t) = Pn i(m (t))p for i = 1, . . . , n , 0 ≤ t < ∞.
                 j=1    j

       Functionally generated portfolio (Fernholz (’02) & Karatzas
       (’08)).
       A portfolio π represents an arbitrage opportunity relative
       to another portfolio ρ on [0, T ] , if

           P(V π (T ) ≥ V ρ (T )) = 1,            P(V π (T ) > V ρ (T )) > 0.

   Can we find an arbitrage opportunity π relative to m ?
                                           30
Constant-portfolio

   For a constant-proportion π(·) ≡ π ,
                         n                                            n
                                      Aii (t)      Xi (t)        1
   V π (t) = w ·exp           πi ·            +log           −               πi Aij (t)πj
                                        2          Xi (0)        2
                        i=1                                          i,j=1

   for 0 ≤ t < ∞ .
                      ·                                n
   Here Aij (·) =     0 aij (t)d     t and aij (·) =   ν=1 Siν (·)Sjν (·) ,

         d Y (t) = G(Y (t))d t + S(Y (t))dW (t) ;              0 ≤ t < ∞,

   G(y ) =               + γ1 + γ, . . . , gp−1 (n) + γn + γ) · 1Rp (y ) ,
              p∈Σn (gp−1 (1)
   S(y ) =   p∈Σn diag(σp−1 (1) , . . . , σp−1 (n) ) ·1Rp (y ) ; y ∈ Rn .
                                        sp



                                             31
Target Portfolio(Cover(’91) & Jamshidian(’92))

                         n                                             n
                                    Aii (t)       Xi (·)          1
   V π (·) = w · exp           πi           + log             −               πi Aij (·)πj
                                      2           Xi (0)          2
                         i=1                                          i,j=1

   Target Portfolio Π∗ (t) maximizes the wealth V π (t) for t ≥ 0:

             V∗ (t) := max V π (t),
                         n
                                              Π∗ (t) := arg max V π (t) ,
                                                              n
                         π∈∆+                                π∈∆+

   where by Lagrange method we obtain
                          n                              n
                                 1       −1                     1         Xj (t)
   Π∗ (t)
    i       = 2Aii (t)                        2−n−2                   log
                               Ajj (t)                        Ajj (t)     Xj (0)
                         j=1                            j=1
                   1   1         Xi (t)
               +     +       log        ;             0 ≤ t < ∞.
                   2 Aii (t)     Xi (0)

                                              32
Asymptotic Target Portfolio
   Under the hybrid Atlas model with the assumptions
                                                         n                 n
                  1                    1
     v (π) := lim   log V π (T ) = γ +                         πi a ∞ −
                                                                    ii          π i a ∞ πj
                                                                                      ii
             T →∞ T                    2
                                                         i=1              i=1
                                                                     ∞
                                                                    γπ

   where (a∞ )1≤i≤n is the (i,i) element of
           ij
                               T
                      1
          a∞ := lim                (aij (t))1≤i,j≤n d t =               θp sp sp .
                 T →∞ T    0                                     p∈Σn
                                                            ∞
   Asymptotic target portfolio maximizes the excess growth γπ :
                                         n                n
               π := arg max
               ¯          n
                                              πi a ∞ −
                                                   ii          πi a ∞ πj .
                                                                    ii
                        π∈∆+
                                     i=1                 i=1
   We obtain
                          n
          1   n−2                   1        −1
     πi =
     ¯      1− ∞                                   = lim Π∗ (t) ;
                                                          i               i = 1, . . . , n .
          2    aii                 a∞
                                    jj               t→∞
                          j=1
                                              33
Asymptotic Target Portfolio
   Under the hybrid Atlas model with the assumptions
                                                         n                 n
                  1                    1
     v (π) := lim   log V π (T ) = γ +                         πi a ∞ −
                                                                    ii          π i a ∞ πj
                                                                                      ii
             T →∞ T                    2
                                                         i=1              i=1
                                                                     ∞
                                                                    γπ

   where (a∞ )1≤i≤n is the (i,i) element of
           ij
                               T
                      1
          a∞ := lim                (aij (t))1≤i,j≤n d t =               θp sp sp .
                 T →∞ T    0                                     p∈Σn
                                                            ∞
   Asymptotic target portfolio maximizes the excess growth γπ :
                                         n                n
               π := arg max
               ¯          n
                                              πi a ∞ −
                                                   ii          πi a ∞ πj .
                                                                    ii
                        π∈∆+
                                     i=1                 i=1
   We obtain
                          n
          1   n−2                   1        −1
     πi =
     ¯      1− ∞                                   = lim Π∗ (t) ;
                                                          i               i = 1, . . . , n .
          2    aii                 a∞
                                    jj               t→∞
                          j=1
                                              33
Universal Portfolio(Cover(’91) & Jamshidian(’92))


   Universal portfolio is defined as

                ∆n   πi V π (·)dπ                            ∆n   V π (·)dπ
                 +                                     Π      +
    Πi (·) :=                       , 1 ≤ i ≤ n,   V (·) =                    .
                                                       b

                ∆n    V π (·)dπ                                   ∆n   dπ
                 +                                                 +



   Proposition Under the hybrid Atlas model with the model
   assumptions,

            1    V Π (T )       1     V Π (T )
                         b                         b
        lim   log π       = lim   log          =0             P − a.s.
       T →∞ T    V ¯ (T ) T →∞ T      V∗ (T )




                                         34
Universal Portfolio(Cover(’91) & Jamshidian(’92))


   Universal portfolio is defined as

                ∆n   πi V π (·)dπ                            ∆n   V π (·)dπ
                 +                                     Π      +
    Πi (·) :=                       , 1 ≤ i ≤ n,   V (·) =                    .
                                                       b

                ∆n    V π (·)dπ                                   ∆n   dπ
                 +                                                 +



   Proposition Under the hybrid Atlas model with the model
   assumptions,

            1    V Π (T )       1     V Π (T )
                         b                         b
        lim   log π       = lim   log          =0             P − a.s.
       T →∞ T    V ¯ (T ) T →∞ T      V∗ (T )




                                         34
Conclusion


       Ergodic properties of Hybrid Atlas model
       Diversity weighted portfolio, Target portfolio, Universal
       portfolio.
       Further topics: short term arbitrage, generalized portfolio
       generating function, large market (n → ∞), numèraire
       portfolio, data implementation.

  References:
   1. arXiv: 0909.0065
   2. arXiv: 0810.2149 (to appear in Annals of Applied Probability)




                                            35

More Related Content

PDF
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
PDF
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
PDF
Stochastic Control and Information Theoretic Dualities (Complete Version)
PDF
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
optimal control principle slided
PDF
somenath_fixedpoint_dasguptaIMF17-20-2013
PDF
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Rao-Blackwellisation schemes for accelerating Metropolis-Hastings algorithms
Stochastic Control and Information Theoretic Dualities (Complete Version)
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
optimal control principle slided
somenath_fixedpoint_dasguptaIMF17-20-2013

What's hot (20)

PDF
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
PDF
SJK seminar 110606 v2
PDF
Jyokyo-kai-20120605
PDF
Prml
PDF
Andreas Eberle
PDF
On Clustering Financial Time Series - Beyond Correlation
PDF
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
PDF
Lesson 27: Integration by Substitution (slides)
PDF
Numerical smoothing and hierarchical approximations for efficient option pric...
PDF
Lesson 26: The Fundamental Theorem of Calculus (slides)
PDF
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
PDF
Random Matrix Theory and Machine Learning - Part 2
PDF
Geodesic Method in Computer Vision and Graphics
PDF
ABC in Venezia
PDF
MLP輪読スパース8章 トレースノルム正則化
PDF
2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
Chris Sherlock's slides
PDF
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
PDF
Unbiased Bayes for Big Data
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
SJK seminar 110606 v2
Jyokyo-kai-20120605
Prml
Andreas Eberle
On Clustering Financial Time Series - Beyond Correlation
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
Lesson 27: Integration by Substitution (slides)
Numerical smoothing and hierarchical approximations for efficient option pric...
Lesson 26: The Fundamental Theorem of Calculus (slides)
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
Random Matrix Theory and Machine Learning - Part 2
Geodesic Method in Computer Vision and Graphics
ABC in Venezia
MLP輪読スパース8章 トレースノルム正則化
2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Chris Sherlock's slides
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Unbiased Bayes for Big Data
Ad

Viewers also liked (20)

PDF
Business Voice September 2009
PPT
Eclipse Day India 2011 - Extending JDT
PDF
Business Voice April 2010
PDF
Business Voice January 2010
PPSX
Final presentation
PPTX
Advanced Data Protection for the Modern Data Center with Veeam & NetApp
DOCX
Public Hearing OTB NJ 1999
PDF
Christopher Sleeper - References
PDF
70 sir john rogersons quay - companies
PDF
CCCS_Accounting_LR
PDF
JDT embraces lambda expressions
PDF
2016 agosto g.o_40.969
PDF
Customer Presentation - FEP-Snipptec (April 2015)
DOC
Caso enron usa
DOC
Bibliografias - idoso
PPTX
Data Driven Cultures Final Presentation
PDF
Business Voice March 2010
PDF
Business Voice November 2009
PPT
Building and Builders in Hispanic California, 1769-1848 by Dr. Rubén G. Mendo...
PDF
Business Voice December 2009
Business Voice September 2009
Eclipse Day India 2011 - Extending JDT
Business Voice April 2010
Business Voice January 2010
Final presentation
Advanced Data Protection for the Modern Data Center with Veeam & NetApp
Public Hearing OTB NJ 1999
Christopher Sleeper - References
70 sir john rogersons quay - companies
CCCS_Accounting_LR
JDT embraces lambda expressions
2016 agosto g.o_40.969
Customer Presentation - FEP-Snipptec (April 2015)
Caso enron usa
Bibliografias - idoso
Data Driven Cultures Final Presentation
Business Voice March 2010
Business Voice November 2009
Building and Builders in Hispanic California, 1769-1848 by Dr. Rubén G. Mendo...
Business Voice December 2009
Ad

Similar to Hybrid Atlas Models of Financial Equity Market (20)

PDF
Métodos computacionales para el estudio de modelos epidemiológicos con incer...
PDF
A Note on TopicRNN
PDF
Cash Settled Interest Rate Swap Futures
PDF
Semiglobal state observers for nonlinear analytic discrete-time systems
PDF
SSA slides
PDF
Lesson 7: Vector-valued functions
PDF
A new Perron-Frobenius theorem for nonnegative tensors
PDF
On Twisted Paraproducts and some other Multilinear Singular Integrals
PDF
Empowering Fourier-based Pricing Methods for Efficient Valuation of High-Dime...
PDF
22nd BSS meeting poster
PDF
A Note on BPTT for LSTM LM
PDF
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
PDF
research paper publication
PDF
Fixed points of contractive and Geraghty contraction mappings under the influ...
PDF
Ijmet 10 01_046
PDF
Signals and Systems Formula Sheet
PDF
Stability of Iteration for Some General Operators in b-Metric
PDF
A Note on “   Geraghty contraction type mappings”
PDF
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
PDF
Fixed point theorem of discontinuity and weak compatibility in non complete n...
Métodos computacionales para el estudio de modelos epidemiológicos con incer...
A Note on TopicRNN
Cash Settled Interest Rate Swap Futures
Semiglobal state observers for nonlinear analytic discrete-time systems
SSA slides
Lesson 7: Vector-valued functions
A new Perron-Frobenius theorem for nonnegative tensors
On Twisted Paraproducts and some other Multilinear Singular Integrals
Empowering Fourier-based Pricing Methods for Efficient Valuation of High-Dime...
22nd BSS meeting poster
A Note on BPTT for LSTM LM
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
research paper publication
Fixed points of contractive and Geraghty contraction mappings under the influ...
Ijmet 10 01_046
Signals and Systems Formula Sheet
Stability of Iteration for Some General Operators in b-Metric
A Note on “   Geraghty contraction type mappings”
Asymptotic Behavior of Solutions of Nonlinear Neutral Delay Forced Impulsive ...
Fixed point theorem of discontinuity and weak compatibility in non complete n...

Hybrid Atlas Models of Financial Equity Market

  • 1. Hybrid Atlas Model of financial equity market Tomoyuki Ichiba 1 Ioannis Karatzas 2,3 Adrian Banner 3 Vassilios Papathanakos 3 Robert Fernholz 3 1 University of California, Santa Barbara 2 Columbia University, New York 3 INTECH, Princeton November 2009 1
  • 2. Outline Introduction Hybrid Atlas model Martingale Problem Stability Effective dimension Rankings Long-term growth relations Portfolio analysis Stochastic Portfolio Theory Target portfolio Universal portfolio Conclusion
  • 3. Flow of Capital Figure: Capital Distribution Curves (Percentage) for the S&P 500 Index of 1997 (Solid Line) and 1999 (Broken Line). 3
  • 4. Log-Log Capital Distribution Curves Figure: Capital distribution curves for 1929 (shortest curve) - 1999 (longest curve), every ten years. Source Fernholz(’02). What kind of models can describe this long-term stability? 4
  • 5. A Model of Rankings [Hybrid Atlas model] Capital process X := {(X1 (t), . . . , Xn (t)) , 0 ≤ t < ∞} . Order Statistics: X(1) (t) ≥ · · · ≥ X(n) (t) ; 0 ≤ t < ∞ . Log capital Y := log X : Y(1) (t) ≥ · · · ≥ Y(n) (t) ; 0 ≤ t < ∞ . Dynamics of log capital: d Y(k ) (t) = (γ + γi + gk ) d t + σk d Wi (t) if Y(k ) (t) = Yi (t) ; for 1 ≤ i , k ≤ n , 0 ≤ t < ∞ , where W (·) is n−dim. B. M. company name i k th ranked company ∗ Drift (“mean”) γi gk Diffusion (“variance”) σk > 0 ∗ Banner, Fernholz & Karatzas (’05), Chatterjee & Pal (’07, ’09), Pal & Pitman (’08). 5
  • 6. A Model of Rankings [Hybrid Atlas model] Capital process X := {(X1 (t), . . . , Xn (t)) , 0 ≤ t < ∞} . Order Statistics: X(1) (t) ≥ · · · ≥ X(n) (t) ; 0 ≤ t < ∞ . Log capital Y := log X : Y(1) (t) ≥ · · · ≥ Y(n) (t) ; 0 ≤ t < ∞ . Dynamics of log capital: d Y(k ) (t) = (γ + γi + gk ) d t + σk d Wi (t) if Y(k ) (t) = Yi (t) ; for 1 ≤ i , k ≤ n , 0 ≤ t < ∞ , where W (·) is n−dim. B. M. company name i k th ranked company ∗ Drift (“mean”) γi gk Diffusion (“variance”) σk > 0 ∗ Banner, Fernholz & Karatzas (’05), Chatterjee & Pal (’07, ’09), Pal & Pitman (’08). 5
  • 7. A Model of Rankings [Hybrid Atlas model] Capital process X := {(X1 (t), . . . , Xn (t)) , 0 ≤ t < ∞} . Order Statistics: X(1) (t) ≥ · · · ≥ X(n) (t) ; 0 ≤ t < ∞ . Log capital Y := log X : Y(1) (t) ≥ · · · ≥ Y(n) (t) ; 0 ≤ t < ∞ . Dynamics of log capital: d Y(k ) (t) = (γ + γi + gk ) d t + σk d Wi (t) if Y(k ) (t) = Yi (t) ; for 1 ≤ i , k ≤ n , 0 ≤ t < ∞ , where W (·) is n−dim. B. M. company name i k th ranked company ∗ Drift (“mean”) γi gk Diffusion (“variance”) σk > 0 ∗ Banner, Fernholz & Karatzas (’05), Chatterjee & Pal (’07, ’09), Pal & Pitman (’08). 5
  • 8. Illustration (n = 3) of interactions through rank Time X3(t)>X1(t)>X2(t) X1(t)>X3(t)>X2(t) x1 > x3 > x2 x3 > x1 > x2 x1 > x2 > x3 X1(t)>X2(t)>X3(t) x3 > x2 > x1 x2 > x1 > x3 x2 > x3 > x1 X3 X2 X1 Paths in R+ × Time . A path in different wedges of Rn . Symmetric group Σn of permutations of {1, . . . , n} . For n = 3 , {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)} . 6
  • 9. Illustration (n = 3) of interactions through rank Time X3(t)>X1(t)>X2(t) X1(t)>X3(t)>X2(t) x1 > x3 > x2 x3 > x1 > x2 x1 > x2 > x3 X1(t)>X2(t)>X3(t) x3 > x2 > x1 x2 > x1 > x3 x2 > x3 > x1 X3 X2 X1 Paths in R+ × Time . A path in different wedges of Rn . Symmetric group Σn of permutations of {1, . . . , n} . For n = 3 , {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)} . 6
  • 10. Vector Representation d Y (t) = G(Y (t))d t + S(Y (t))dW (t) ; 0≤t <∞ Σn : symmetric group of permutations of {1, 2, . . . , n}. For p ∈ Σn define wedges (chambers) Rp := {x ∈ Rn : xp(1) ≥ xp(2) ≥ · · · ≥ xp(n) }, Rn = ∪p∈Σn Rp , (the inner points of Rp and Rp are disjoint for p = p ∈ Σn ), (i) Qk : = {x ∈ Rn : xi is ranked k th among (x1 , . . . , xn )} = ∪{p : p(k )=i} Rp ; 1 ≤ i, k ≤ n , (j) (i) (p(k )) ∪n Qk = Rn = ∪n=1 Q j=1 and Rp = ∩n =1 Qk k . G(y ) = + γ1 + γ, . . . , gp−1 (n) + γn + γ) · 1Rp (y ) , p∈Σn (gp−1 (1) S(y ) = p∈Σn diag(σp−1 (1) , . . . , σp−1 (n) ) ·1Rp (y ) ; y ∈ Rn . sp
  • 11. Vector Representation d Y (t) = G(Y (t))d t + S(Y (t))dW (t) ; 0≤t <∞ Σn : symmetric group of permutations of {1, 2, . . . , n}. For p ∈ Σn define wedges (chambers) Rp := {x ∈ Rn : xp(1) ≥ xp(2) ≥ · · · ≥ xp(n) }, Rn = ∪p∈Σn Rp , (the inner points of Rp and Rp are disjoint for p = p ∈ Σn ), (i) Qk : = {x ∈ Rn : xi is ranked k th among (x1 , . . . , xn )} = ∪{p : p(k )=i} Rp ; 1 ≤ i, k ≤ n , (j) (i) (p(k )) ∪n Qk = Rn = ∪n=1 Q j=1 and Rp = ∩n =1 Qk k . G(y ) = + γ1 + γ, . . . , gp−1 (n) + γn + γ) · 1Rp (y ) , p∈Σn (gp−1 (1) S(y ) = p∈Σn diag(σp−1 (1) , . . . , σp−1 (n) ) ·1Rp (y ) ; y ∈ Rn . sp
  • 12. Martingale Problem Theorem [Krylov(’71), Stroock & Varadhan(’79) , Bass & Pardoux(’87)] Suppose that the coefficients G(·) and a(·) := SS (·) are bounded and measur- able, and that a(·) is uniformly positive-definite and piece-wise constant in each wedge. For each y0 ∈ Rn there is a unique one probability measure P on (Ω = C([0, ∞), Rn ), F) such that P(Y0 = y0 ) = 1 and t f (Yt ) − f (Y0 ) − L f (Ys ) d s ; 0≤t <∞ 0 is a P local martingale for every f ∈ C 2 (Rn ) where 1 n n L f (x) = 2 i,j=1 aij (x)Dij f (x) + i=1 Gi (x)Di f (x) ; x ∈ Rn . This implies that the hybrid Atlas model is well-defined. 8
  • 13. Model Market capitalization X follows Hybrid Atlas model: the log capitalization Yi = log Xi of company i has drift γ + gk + γi and volatility σk , (i) when company i is k th ranked, i.e., Y ∈ Qk for 1 ≤ k , i ≤ n . n d Yi (t) = γ + gk 1Q (i) (Y (t)) + γi d t k k =1 n + σk 1Q (i) (Y (t))d Wi (t) ; 0 ≤ t < ∞. k k =1 9
  • 14. Model assumptions Market capitalization X follows Hybrid Atlas model: the log capitalization Yi = log Xi of company i has drift γ + gk + γi and volatility σk , (i) when company i is k th ranked, i.e., Y ∈ Qk for 1 ≤ k , i ≤ n . Assume σk > 0 , (gk , 1 ≤ k ≤ n) , (γi , 1 ≤ i ≤ n) and γ are real constants with stability conditions n n k gk + γi = 0 , (g +γp( ) ) < 0 , k = 1, . . . , n−1, p ∈ Σn . k =1 i=1 =1 γi = 0 , 1 ≤ i ≤ n, g1 = · · · = gn−1 = −g < 0, gn = (n − 1)g > 0 . γi = 1 − (2i)/(n + 1) , 1 ≤ i ≤ n , gk = −1, k = 1, . . . , n − 1 , gn = n − 1 . 10
  • 15. Model assumptions Market capitalization X follows Hybrid Atlas model: the log capitalization Yi = log Xi of company i has drift γ + gk + γi and volatility σk , (i) when company i is k th ranked, i.e., Y ∈ Qk for 1 ≤ k , i ≤ n . Assume σk > 0 , (gk , 1 ≤ k ≤ n) , (γi , 1 ≤ i ≤ n) and γ are real constants with stability conditions n n k gk + γi = 0 , (g +γp( ) ) < 0 , k = 1, . . . , n−1, p ∈ Σn . k =1 i=1 =1 γi = 0 , 1 ≤ i ≤ n, g1 = · · · = gn−1 = −g < 0, gn = (n − 1)g > 0 . γi = 1 − (2i)/(n + 1) , 1 ≤ i ≤ n , gk = −1, k = 1, . . . , n − 1 , gn = n − 1 . 10
  • 16. Model assumptions Market capitalization X follows Hybrid Atlas model: the log capitalization Yi = log Xi of company i has drift γ + gk + γi and volatility σk , (i) when company i is k th ranked, i.e., Y ∈ Qk for 1 ≤ k , i ≤ n . Assume σk > 0 , (gk , 1 ≤ k ≤ n) , (γi , 1 ≤ i ≤ n) and γ are real constants with stability conditions n n k gk + γi = 0 , (g +γp( ) ) < 0 , k = 1, . . . , n−1, p ∈ Σn . k =1 i=1 =1 γi = 0 , 1 ≤ i ≤ n, g1 = · · · = gn−1 = −g < 0, gn = (n − 1)g > 0 . γi = 1 − (2i)/(n + 1) , 1 ≤ i ≤ n , gk = −1, k = 1, . . . , n − 1 , gn = n − 1 . 10
  • 17. Model Summary The log-capitalization Y = log X follows n d Yi (t) = γ + gk 1Q (i) (Y (t)) + γi d t k k =1 n + σk 1Q (i) (Y (t))d Wi (t) ; 0≤t <∞ k k =1 where σk > 0 , (gk , 1 ≤ k ≤ n) , (γi , 1 ≤ i ≤ n) and γ are real constants with stability conditions n n k gk + γi = 0 , (g +γp( ) ) < 0 , k = 1, . . . , n−1, p ∈ Σn . k =1 i=1 =1
  • 18. Stochastic stability n The average Y (·) := i=1 Yi (·) / n of log-capitalization: n 1 n dY (t) = γ d t + n k =1 σk 1Q (i) (Y (t))d Wi (t) k i=1 d Bk (t) is a Brownian motion with variance rate n =1 σk /n2 drift γ by k 2 the Dambis-Dubins-Schwartz Theorem. Proposition Under the assumptions the deviations Y (·) := (Y1 (·) − Y (·), . . . , Yn (·) − Y (·)) from the average are stable in distribution, i.e., there is a unique invariant probability measure µ(·) such that for every bounded, measurable function f we have the Strong Law of Large Numbers T 1 lim f (Y (t)) d t = f (y )µ(d y ) , a.s. T →∞ T 0 Π where Π := {y ∈ Rn : y1 + · · · + yn = 0} .
  • 19. Stochastic stability n The average Y (·) := i=1 Yi (·) / n of log-capitalization: n 1 n dY (t) = γ d t + n k =1 σk 1Q (i) (Y (t))d Wi (t) k i=1 d Bk (t) is a Brownian motion with variance rate n =1 σk /n2 drift γ by k 2 the Dambis-Dubins-Schwartz Theorem. Proposition Under the assumptions the deviations Y (·) := (Y1 (·) − Y (·), . . . , Yn (·) − Y (·)) from the average are stable in distribution, i.e., there is a unique invariant probability measure µ(·) such that for every bounded, measurable function f we have the Strong Law of Large Numbers T 1 lim f (Y (t)) d t = f (y )µ(d y ) , a.s. T →∞ T 0 Π where Π := {y ∈ Rn : y1 + · · · + yn = 0} .
  • 20. Average occupation times Especially taking f (·) = 1Rp (·) or 1Q (i) (·) , we define from µ k (i) the average occupation time of X in Rp or Qk : T 1 θp := µ(Rp ) = lim 1Rp (X (t))d t T →∞ T 0 T (i) 1 θk ,i := µ(Qk ) = lim 1Q (i) (X (t))d t , 1 ≤ k, i ≤ n , T →∞ T 0 k since 1Rp (Y (·)) = 1Rp (X (·)) and 1Q (i) (X (·)) = 1Q (i) (Y (·)) . By k k definition 0 ≤ θk ,i = {p∈Σn :p(k )=i} θp ≤ 1 for 1 ≤ k , i ≤ n, n n =1 θ ,i = j=1 θk ,j = 1 for 1 ≤ k , i ≤ n . What is the invariant distribution µ ? 13
  • 21. Attainability One-dimensional Brownian motion attains the origin infinitely often. Two-dimensional Brownian motion does not attain the origin. Does the process X (·) attain the origin? t t X (t) = X (0) + b(X (s)) d s + σ(X (s))d W (s) 0 0 where b and σ are bounded measurable functions. Friedman(’74), Bass & Pardoux(’87). 14
  • 22. Effective Dimension Let us define effective dimension ED(·) by trace(A(x)) x 2 ED(x) = ; x ∈ Rn {0} , x A(x)x where A(·) = σ(·)σ(·) . Proposition Suppose X (0) = 0 . If infx∈Rn {0} ED(x) ≥ 2 , then X (·) does not attain the origin. If supx∈Rn {0} ED(x) < 2 and if there is no drift, i.e., b(·) ≡ 0 , then X (·) attains the origin. Exterior Dirichlet Problem by Meyers and Serrin(’60). Removal of drift by Girsanov’s theorem. [trace(A(x))+x b(x)]· x 2 If there is drift, take x A(x)x . 15
  • 23. Triple collision Now consider triple collision: Xi (t) = Xj (t) = Xk (t) for some t > 0 , 1 ≤ i < j < k ≤ n . What is the probability of triple collision? Fix i = 1 , j = 2 , k = 3 . Let us define the sum of squared distances: s2 (x) := (x1 − x2 )2 + (x2 − x3 )2 + (x3 − x1 )2 = x DD x ; x ∈ Rn , where (n × 3) matrix D is defined by D := (d1 , d2 , d3 ) with d1 := (1, −1, 0, . . . , 0) , d2 := (0, 1, −1, 0, . . . , 0) , d3 := (−1, 0, 1, . . . , 0) . Z := {x ∈ Rn : s(x) = 0 }. 16
  • 24. Define the local effective dimension: trace(D A(x)D) x DD x R(x) := ; x ∈ Rn Z . x DD A(x)DD x Proposition Suppose s(X (0)) = 0 . If infx∈Rn Z R(x) ≥ 2 , then P(X1 (t) = X2 (t) = X3 (t) for some t ≥ 0) = 0 . If supx∈Rn Z R(x) < 2 and if there is no drift, i.e., b(·) ≡ 0 , then P(X1 (t) = X2 (t) = X3 (t) for some t ≥ 0) = 1 . R(·) ≡ 2 for n−dim. BM, i.e., A(·) ≡ I . [trace(D A(x)D)+x DD b(x)]·x DD x If there is drift, take x DD A(x)DD x . Idea of Proof: a comparison with Bessel process with dimension two. 17
  • 25. Define the local effective dimension: trace(D A(x)D) x DD x R(x) := ; x ∈ Rn Z . x DD A(x)DD x Proposition Suppose s(X (0)) = 0 . If infx∈Rn Z R(x) ≥ 2 , then P(X1 (t) = X2 (t) = X3 (t) for some t ≥ 0) = 0 . If supx∈Rn Z R(x) < 2 and if there is no drift, i.e., b(·) ≡ 0 , then P(X1 (t) = X2 (t) = X3 (t) for some t ≥ 0) = 1 . R(·) ≡ 2 for n−dim. BM, i.e., A(·) ≡ I . [trace(D A(x)D)+x DD b(x)]·x DD x If there is drift, take x DD A(x)DD x . Idea of Proof: a comparison with Bessel process with dimension two. 17
  • 26. Define the local effective dimension: trace(D A(x)D) x DD x R(x) := ; x ∈ Rn Z . x DD A(x)DD x Proposition Suppose s(X (0)) = 0 . If infx∈Rn Z R(x) ≥ 2 , then P(X1 (t) = X2 (t) = X3 (t) for some t ≥ 0) = 0 . If supx∈Rn Z R(x) < 2 and if there is no drift, i.e., b(·) ≡ 0 , then P(X1 (t) = X2 (t) = X3 (t) for some t ≥ 0) = 1 . R(·) ≡ 2 for n−dim. BM, i.e., A(·) ≡ I . [trace(D A(x)D)+x DD b(x)]·x DD x If there is drift, take x DD A(x)DD x . Idea of Proof: a comparison with Bessel process with dimension two. 17
  • 27. Rankings Recall Y(1) (·) ≥ Y(2) (·) ≥ · · · ≥ Y(n) (·) . Let us denote by Λk ,j (t) the local time accumulated at the origin by the nonnegative semimartingale Y(k ) (·) − Y(j) (·) up to time t for 1 ≤ k < j ≤ n. Theorem[Banner & Ghomrasni (’07)] For a general class of semimartingale Y (·) , the rankings satisfy n d Y(k ) (t) = 1Q (i) (Y (t))d Yi (t) k i=1 n k −1 −1 k, ,k + (Nk (t)) dΛ (t) − dΛ (t) =k +1 =1 where Nk (t) is the cardinality |{i : Yi (t) = Y(k ) (t)}| . 18
  • 28. Rankings Recall Y(1) (·) ≥ Y(2) (·) ≥ · · · ≥ Y(n) (·) . Let us denote by Λk ,j (t) the local time accumulated at the origin by the nonnegative semimartingale Y(k ) (·) − Y(j) (·) up to time t for 1 ≤ k < j ≤ n. Lemma Under the non-degeneracy condition σk > 0 for k = 1, . . . , n , n dY(k ) (t) = γ + gk + γi 1Q (i) (Y (t)) d t + σk d Bk (t) k i=1 1 + d Λk ,k +1 (t) − d Λk −1,k (t) . 2 for k = 1, . . . , n , 0 ≤ t ≤ T . Idea of Proof: a comparison with a Bessel process with dimen- sion one to show Λk , (·) ≡ 0 , |k − | ≥ 2. 19
  • 29. Rankings Recall Y(1) (·) ≥ Y(2) (·) ≥ · · · ≥ Y(n) (·) . Let us denote by Λk ,j (t) the local time accumulated at the origin by the nonnegative semimartingale Y(k ) (·) − Y(j) (·) up to time t for 1 ≤ k < j ≤ n. Lemma Under the non-degeneracy condition σk > 0 for k = 1, . . . , n , n dY(k ) (t) = γ + gk + γi 1Q (i) (Y (t)) d t + σk d Bk (t) k i=1 1 + d Λk ,k +1 (t) − d Λk −1,k (t) . 2 for k = 1, . . . , n , 0 ≤ t ≤ T . Idea of Proof: a comparison with a Bessel process with dimen- sion one to show Λk , (·) ≡ 0 , |k − | ≥ 2. 19
  • 30. Long-term growth relations Proposition Under the assumptions we obtain the following long-term growth relations: Yi (T ) log Xi (T ) lim = lim =γ T →∞ T T →∞ T n log i=1 Xi (T ) = lim a.s. T →∞ T Thus the model is coherent: 1 lim log µi (T ) = 0 a.s.; i = 1, . . . , n T →∞ T where µi (·) = Xi (·)/(X1 (·) + · · · + Xn (·)) . Moreover, n gk θk ,i + γi = 0 ; i = 1, . . . , n . k =1 20
  • 31. n gk θk ,i + γi = 0 ; i = 1, . . . , n . k =1 The log-capitalization Y grows with rate γ and follows n d Yi (t) = γ + gk 1Q (i) (Y (t)) + γi d t k k =1 n + σk 1Q (i) (Y (t))d Wi (t) ; 0≤t <∞ k k =1 for i = 1, . . . , n . The ranking (Y(1) (·), . . . , Y(n) (·)) follows n dY(k ) (t) = γ + gk + γi 1Q (i) (Y (t)) d t + σk d Bk (t) k i=1 1 + d Λk ,k +1 (t) − d Λk −1,k (t) . 2 for k = 1, . . . , n , 0 ≤ t < ∞ .
  • 32. Semimartingale reflected Brownian motions The adjacent differences (gaps) Ξ(·) := (Ξ1 (·), . . . , Ξn (·)) where Ξk (·) := Y(k ) (·) − Y(k +1) (·) for k = 1, . . . , n − 1 can be seen as a semimartingale reflected Brownian motion (SRBM): Ξ(t) = Ξ(0) + ζ(t) + (In−1 − Q)Λ(t) where ζ(·) := (ζ1 (·), . . . , ζn (·)) , Λ(·) := (Λ1,2 (·), . . . , Λn−1,n (·)) , n · n · ζk (·) := 1Q (i) (Y (s)) d Y (s) − 1Q (i) (Y (s)) d Y (s) 0 k 0 k +1 i=1 i=1 for k = 1, . . . , n − 1 , and Q is an (n − 1) × (n − 1) matrix with elements
  • 33.  0 1/2  1/2 0 1/2     .. ..  Q :=   1/2 . . .   ..   . 0 1/2  1/2 0 Thus the gaps Ξk := Y(k ) (·) − Y(k +1) (·) follow Ξ(t) = Ξ(0) + ζ(t) + (In − Q)Λ(t) semimartingale reflection part In order to study the invariant measure µ , we apply the theory of semimartingale reflected Brownian motions developed by M. Harrison, M. Reiman, R. Williams and others. In addition to the model assumptions, we assume linearly growing variances: 2 2 2 2 2 2 σ2 − σ1 = σ3 − σ2 = · · · = σn − σn−1 . 23
  • 34. Invariant distribution of gaps and index Let us define the indicator map Rn x → px ∈ Σn such that xpx (1) ≥ xpx (2) ≥ · · · ≥ xp(n) , and the index process Pt := pY (t) . Proposition Under the stability and the linearly growing variance conditions the invariant distribution ν(·) of (Ξ(·), P· ) is n−1 −1 ν(A × B) = λ−1 q,k exp(− λp , z )d z q∈Σn k =1 p∈Σn A for every measurable set A × B where λp := (λp,1 , . . . , λp,n−1 ) is the vector of components k −4( =1 g + γp( ) ) λp,k := 2 + σ2 > 0; p ∈ Σn , 1 ≤ k ≤ n − 1 . σk k +1 Proof: an extension from M. Harrison and R. Williams (’87).
  • 35. Average occupation time Corollary The average occupation times are n−1 n−1 −1 θp = λ−1 q,k λ−1 p,j and θk ,i = θp q∈Σn k =1 j=1 {p∈Σn :p(k )=i} for p ∈ Σn and 1 ≤ k , i ≤ n . (1,10) (10,10) 0. 15 2 2 If all γi = 0 and σ1 = · · · σn , then 1 θk ,i = n for 1 ≤ k , i ≤ n . 2 Heat map of θk ,i when n = 10 , σk = 1 + k , 5 0.0 (k,i) gk = −1 for k = 1, . . . , 9 , g10 = 9 , and γi = 1 − (2i)/(n + 1) for i = 1, . . . , n . 0. 1 0.15 0.05 0.2 (1,1) 0.1 (10,1) 25
  • 36. Market weights come from Pareto type Corollary The joint invariant distribution of market shares µ(i) (·) := X(i) (·)/(X1 (·) + · · · + Xn (·)) ; i = 1, . . . , n has the density ℘(m1 , . . . , mn−1 ) λp,1 · · · λp,n−1 = θp λ +1 λp,2 −λp,1 +1 λp,n−1 −λp,n−2 +1 −λp,n−1 +1 , p∈Πn m1 p,1 · m2 · · · mn−1 mn 0 < mn ≤ mn−1 ≤ . . . ≤ m1 < 1, mn = 1 − m1 − · · · − mn−1 . This is a distribution of ratios of Pareto type disribution. 26
  • 37. Expected capital distribution curves E (Ξ ) log µ −log µ ν From the expected slopes Eν [ log(k)+1)−log−1) ] = − log(1+kk−1 ) we (k (k k obtain expected capital distribution curves. e−1 e−1 iv e−5 e−5 v Weight Weight iii e−10 e−10 ii i Rank Rank 1 5 10 50 100 500 1000 5000 1 5 10 50 100 500 1000 5000 2 n = 5000 , gn = c∗ (2n − 1) , gk = 0 , 1 ≤ k ≤ n − 1 , γ1 = −c∗ , γi = −2c∗ , 2 ≤ i ≤ n , σk = 0.075 + 6k × 10−5 , 1 ≤ k ≤ n. (i) c∗ = 0.02 , (ii) c∗ = 0.03 , (iii) c∗ = 0.04 . (iv) c∗ = 0.02 , g1 = −0.016 , gk = 0 , 2 ≤ k ≤ n − 1 , gn = (0.02)(2n − 1) + 0.016 , (v) g1 = · · · = g50 = −0.016 , gk = 0 , 51 ≤ k ≤ n − 1 , gn = (0.02)(2n − 1) + 0.8 .
  • 38. Empirical data 0.7 0.6 Variance Rate 0.5 0.4 0.3 0.2 Historical capital distribution 0 1000 2000 Rank 3000 4000 5000 curves. Data 1929-1999. Growing variances. 1990- 1999. Source: Fernholz (’02) 28
  • 39. Capital Stocks and Portfolio Rules Market X = ((X1 (t), . . . , Xn (t)), t ≥ 0) of n companies T T n Xi (T ) log = Gi (t)dt + Si,ν (t)dWν (t) , Xi (0) 0 0 ν=1 with initial capital Xi (0) = xi > 0, i = 1, . . . , n , 0 ≤ T < ∞ . · Define aij (·) = n Siν (·)Sjν (·) and Aij (·) = 0 aij (t)d t . ν=1 Long only Portfolio rule π and its wealth V π . Choose π ∈ ∆+ := {x ∈ Rn : xi = 1, xi ≥ 0 } n invest πi V π of money to company i for i = 1, . . . , n, i.e., πi V π /Xi share of company i : n π πi (t)V π (t) dV (t) = dXi (t) , 0 ≤ t < ∞, Xi (t) i=1 V π (0) = w . 29
  • 40. Capital Stocks and Portfolio Rules Market X = ((X1 (t), . . . , Xn (t)), t ≥ 0) of n companies T T n Xi (T ) log = Gi (t)dt + Si,ν (t)dWν (t) , Xi (0) 0 0 ν=1 with initial capital Xi (0) = xi > 0, i = 1, . . . , n , 0 ≤ T < ∞ . · Define aij (·) = n Siν (·)Sjν (·) and Aij (·) = 0 aij (t)d t . ν=1 Long only Portfolio rule π and its wealth V π . Choose π ∈ ∆+ := {x ∈ Rn : xi = 1, xi ≥ 0 } n invest πi V π of money to company i for i = 1, . . . , n, i.e., πi V π /Xi share of company i : n π πi (t)V π (t) dV (t) = dXi (t) , 0 ≤ t < ∞, Xi (t) i=1 V π (0) = w . 29
  • 41. Capital Stocks and Portfolio Rules Market X = ((X1 (t), . . . , Xn (t)), t ≥ 0) of n companies T T n Xi (T ) log = Gi (t)dt + Si,ν (t)dWν (t) , Xi (0) 0 0 ν=1 with initial capital Xi (0) = xi > 0, i = 1, . . . , n , 0 ≤ T < ∞ . · Define aij (·) = n Siν (·)Sjν (·) and Aij (·) = 0 aij (t)d t . ν=1 Long only Portfolio rule π and its wealth V π . Choose π ∈ ∆+ := {x ∈ Rn : xi = 1, xi ≥ 0 } n invest πi V π of money to company i for i = 1, . . . , n, i.e., πi V π /Xi share of company i : n π πi (t)V π (t) dV (t) = dXi (t) , 0 ≤ t < ∞, Xi (t) i=1 V π (0) = w . 29
  • 42. Portfolios and Relative Arbitrage Market portfolio: Take π(t) = m(t) = (m1 (t), · · · , mn (t)) ∈ ∆n where + Xi (t) mi (t) = , i = 1, . . . , n , 0 ≤ t < ∞. X1 + · · · Xn (t) Diversity weighted portfolio: Given p ∈ [0, 1] , take (m (t))p πi (t) = Pn i(m (t))p for i = 1, . . . , n , 0 ≤ t < ∞. j=1 j Functionally generated portfolio (Fernholz (’02) & Karatzas (’08)). A portfolio π represents an arbitrage opportunity relative to another portfolio ρ on [0, T ] , if P(V π (T ) ≥ V ρ (T )) = 1, P(V π (T ) > V ρ (T )) > 0. Can we find an arbitrage opportunity π relative to m ? 30
  • 43. Portfolios and Relative Arbitrage Market portfolio: Take π(t) = m(t) = (m1 (t), · · · , mn (t)) ∈ ∆n where + Xi (t) mi (t) = , i = 1, . . . , n , 0 ≤ t < ∞. X1 + · · · Xn (t) Diversity weighted portfolio: Given p ∈ [0, 1] , take (m (t))p πi (t) = Pn i(m (t))p for i = 1, . . . , n , 0 ≤ t < ∞. j=1 j Functionally generated portfolio (Fernholz (’02) & Karatzas (’08)). A portfolio π represents an arbitrage opportunity relative to another portfolio ρ on [0, T ] , if P(V π (T ) ≥ V ρ (T )) = 1, P(V π (T ) > V ρ (T )) > 0. Can we find an arbitrage opportunity π relative to m ? 30
  • 44. Constant-portfolio For a constant-proportion π(·) ≡ π , n n Aii (t) Xi (t) 1 V π (t) = w ·exp πi · +log − πi Aij (t)πj 2 Xi (0) 2 i=1 i,j=1 for 0 ≤ t < ∞ . · n Here Aij (·) = 0 aij (t)d t and aij (·) = ν=1 Siν (·)Sjν (·) , d Y (t) = G(Y (t))d t + S(Y (t))dW (t) ; 0 ≤ t < ∞, G(y ) = + γ1 + γ, . . . , gp−1 (n) + γn + γ) · 1Rp (y ) , p∈Σn (gp−1 (1) S(y ) = p∈Σn diag(σp−1 (1) , . . . , σp−1 (n) ) ·1Rp (y ) ; y ∈ Rn . sp 31
  • 45. Target Portfolio(Cover(’91) & Jamshidian(’92)) n n Aii (t) Xi (·) 1 V π (·) = w · exp πi + log − πi Aij (·)πj 2 Xi (0) 2 i=1 i,j=1 Target Portfolio Π∗ (t) maximizes the wealth V π (t) for t ≥ 0: V∗ (t) := max V π (t), n Π∗ (t) := arg max V π (t) , n π∈∆+ π∈∆+ where by Lagrange method we obtain n n 1 −1 1 Xj (t) Π∗ (t) i = 2Aii (t) 2−n−2 log Ajj (t) Ajj (t) Xj (0) j=1 j=1 1 1 Xi (t) + + log ; 0 ≤ t < ∞. 2 Aii (t) Xi (0) 32
  • 46. Asymptotic Target Portfolio Under the hybrid Atlas model with the assumptions n n 1 1 v (π) := lim log V π (T ) = γ + πi a ∞ − ii π i a ∞ πj ii T →∞ T 2 i=1 i=1 ∞ γπ where (a∞ )1≤i≤n is the (i,i) element of ij T 1 a∞ := lim (aij (t))1≤i,j≤n d t = θp sp sp . T →∞ T 0 p∈Σn ∞ Asymptotic target portfolio maximizes the excess growth γπ : n n π := arg max ¯ n πi a ∞ − ii πi a ∞ πj . ii π∈∆+ i=1 i=1 We obtain n 1 n−2 1 −1 πi = ¯ 1− ∞ = lim Π∗ (t) ; i i = 1, . . . , n . 2 aii a∞ jj t→∞ j=1 33
  • 47. Asymptotic Target Portfolio Under the hybrid Atlas model with the assumptions n n 1 1 v (π) := lim log V π (T ) = γ + πi a ∞ − ii π i a ∞ πj ii T →∞ T 2 i=1 i=1 ∞ γπ where (a∞ )1≤i≤n is the (i,i) element of ij T 1 a∞ := lim (aij (t))1≤i,j≤n d t = θp sp sp . T →∞ T 0 p∈Σn ∞ Asymptotic target portfolio maximizes the excess growth γπ : n n π := arg max ¯ n πi a ∞ − ii πi a ∞ πj . ii π∈∆+ i=1 i=1 We obtain n 1 n−2 1 −1 πi = ¯ 1− ∞ = lim Π∗ (t) ; i i = 1, . . . , n . 2 aii a∞ jj t→∞ j=1 33
  • 48. Universal Portfolio(Cover(’91) & Jamshidian(’92)) Universal portfolio is defined as ∆n πi V π (·)dπ ∆n V π (·)dπ + Π + Πi (·) := , 1 ≤ i ≤ n, V (·) = . b ∆n V π (·)dπ ∆n dπ + + Proposition Under the hybrid Atlas model with the model assumptions, 1 V Π (T ) 1 V Π (T ) b b lim log π = lim log =0 P − a.s. T →∞ T V ¯ (T ) T →∞ T V∗ (T ) 34
  • 49. Universal Portfolio(Cover(’91) & Jamshidian(’92)) Universal portfolio is defined as ∆n πi V π (·)dπ ∆n V π (·)dπ + Π + Πi (·) := , 1 ≤ i ≤ n, V (·) = . b ∆n V π (·)dπ ∆n dπ + + Proposition Under the hybrid Atlas model with the model assumptions, 1 V Π (T ) 1 V Π (T ) b b lim log π = lim log =0 P − a.s. T →∞ T V ¯ (T ) T →∞ T V∗ (T ) 34
  • 50. Conclusion Ergodic properties of Hybrid Atlas model Diversity weighted portfolio, Target portfolio, Universal portfolio. Further topics: short term arbitrage, generalized portfolio generating function, large market (n → ∞), numèraire portfolio, data implementation. References: 1. arXiv: 0909.0065 2. arXiv: 0810.2149 (to appear in Annals of Applied Probability) 35