Hybrid FPGA architectures containing a mixture of lookup tables (LUTs) and hardened multiplexers are evaluated to improve logic density and reduce chip area. Simulation results show that non-fracturable hybrid architectures naturally save up to 8% area after placement and routing without optimizing the technology mapper, and additional area is saved with architecture-aware mapping optimizations. Fracturable hybrid architectures only provide marginal area gains of up to 2% after placement and routing. For the most area-efficient hybrid architectures, timing performance is minimally impacted.