This document provides an outline and overview of Yoshua Bengio's 2012 tutorial on representation learning. The key points covered include:
1) The tutorial will cover motivations for representation learning, algorithms such as probabilistic models and auto-encoders, and analysis and practical issues.
2) Representation learning aims to automatically learn good representations of data rather than relying on handcrafted features. Learning representations can help address challenges like exploiting unlabeled data and the curse of dimensionality.
3) Deep learning algorithms attempt to learn multiple levels of increasingly complex representations, with the goal of developing more abstract, disentangled representations that generalize beyond local patterns in the data.