SlideShare a Scribd company logo
PFIセミナー


  ツイートID生成と
ツイッターリアルタイム検索
   システムの話

     Eiichiro Iwata

    2012年 12月20日
自己紹介

l 岩田 英一郎 (@eiichiroi)
   l 元さいたまな人

l 経歴
   l 2009年6月∼ アルバイト

   l 2010年3月  埼玉大学 大学院理工学研究科 修了

   l 2010年8月∼ PFI入社

l 所属
   l 製品開発部

   l Sedueプロジェクト

l 仕事
   l Sedue(検索エンジン)の開発

     l   コア∼運用ツールを幅広く
     l   研究開発成果の取り込み
                         2
本日の内容

l   ツイートID生成システムSnowflakeの解説
     l ツイートIDの構造と生成方法



l   リアルタイム検索システムEarlybirdの解説
     l 5億ツイート/日(約6000ツイート/秒)で増え続けるツイートを即時

        に検索できるシステム
     l アーキテクチャの概要

     l インデックスの構成




                       3
突然ですが

  4
ツイッターIDの
 生成方法を
知っていますか?
   5
これ


6
本題


7
ツイートID生成システムSnowflakeとは

     l ユニークなIDを生成するネットワークサービス
        l ツイッターのツイートID(ステータスID)の割り当てに使われている

        l ツイッター社がOSSで公開中 (*)

     l 特徴
        l 64 bitのIDを生成

                 l   ざっくり時刻順
           l   速い
                 l   10000 ID/秒 のスピードでIDを生成できる(1プロセスあたり)
                 l   レスポンス 2 ms (+ネットワークのレイテンシ)
           l   スケールする
                 l   複数のマシン・プロセスで協調動作しない
                 l   並べただけスケールする(はず)

(*) https://github.com/twitter/snowflake   8
Snowflakeが開発されるまで

    l   ツイートの流速増加とツイッターのシステム移行
         l 5億ツイート/日(約6000ツイート/秒) (*1)

               l   2012年10月時点
         l   MySQLからCassandraやGizzard(Sharded MySQL)への移行
               l   CassandraがID生成をデフォルトで提供していない
    l ステータスIDの変遷 (*2, *3, *4)
       l 2006年5月∼: 符号付き32bit

       l 2009年6月∼: 符号無し32bit

       l 2009年9月∼: 64bit

       l 2010年11月∼: 64bit(現状のsnowflake)

    l 要求
       l スケールする(分散できる)
(*1) Report: Twitter hits half a billion tweets a day
(*2) Twitpocalypse - TwitterメッセージIDの64ビット科- いよいよ明日に実施
                                                      9
(*3) Status IDs are changing on 21st September
(*4) Announcing Snowflake
生成するIDの構造

                        41bit                  10bit     12bit

                         時刻                   マシンID      連番

l   64bitを3つのブロックに分割
      l 時刻(41bit、69年分)

           l   (おそらく)snowflakeの運用開始時刻からの経過時間(ミリ秒)
           l   2010年11月4日...(epoch: 1288834974657)が基点
     l   マシンID(10bit、1024台分)
           l   データセンターID(上位5bit)、ワーカーID(下位5bit)
           l   起動時にZookeeperか設定ファイルから取得
     l   連番(12bit、4096個)
           l   同時刻・同マシンでのID重複回避用、ワーカー別
l   参考: バルス砲 25088 ツイート/秒
                                   10
ツイートIDのデコード(デモ)




l   ツイートID = 279622981959970816
     l 時刻 = 1355502288700 (2012-12-15 01:24:48 +0900)

     l マシンID = 39

           l   データセンタID = 1
           l   ワーカーID = 7
     l   連番 = 0
                               11
生成するIDの特徴

l 64bit整数
l ユニーク
l 時間とともにIDの値が増加する
    l ステータスIDでざっくり時刻順にソートできる(k-sorted)

    l 目標精度は1秒

    l 1秒以内に投稿されたツイート間では順序を保証しない

     l   実際の時刻順と逆になることもある




                      12
生成するIDの特徴 - k-sorted

     l   系列α = (a1, ..., an) が k-sorted であるとは、
            l   全ての 1 ≦ i, j ≦ n に対して、 i < j-k ならば ai ≦ aj
                                                                              k
     l   概要
                                                              a1   ...   ai   ...   ai-k+1   ...   an
          l 0-sortedは普通のソートと等価

          l 距離 k 以内の要素間での順序は不問

                  l   例: (2, 1, 3)は1-sorted
     l   k-sortedの性質 (*1, *2)
           l 系列αとkが与えられたときに、k-soterdかどうかはO(n)で判定可能

           l 系列αが与えられたときに、最も小さいkの値をO(n)で計算可能

           l 2つのk-sorted系列が与えられたときに、それらをマージした1つの

              k-sorted系列をO(n)で計算可能
           l 系列αをk-sortedを満たすようにするには、O(n log k)で計算可能

(*1) Roughly Sorting: A Generalization of Sorting
                                                         13
(*2) Roughly Sorting: Sequential and Parallel Approach
生成するIDの特徴 - k-sortedのkの値

                                    41bit                      10bit   12bit

                                     時刻                       マシンID    連番

     l   複数のマシンで完全に同じ時刻を参照できたと仮定すると...
          l 222 -sorted: 22bit = 10bit(マシンID)+12bit(連番)

                 l   精度: 1ミリ秒
           l   232-sorted: 32bit = 約10bit(時刻)+10bit(マシンID)+12bit(連番)
                 l   精度: 1秒
           l   実際にはマシンID、連番が疎なので k はそこまで大きくないはず
                 l   3000 ツイート/秒なら、連番は3くらい
     l   NTPの精度はミリ秒単位 (*)
           l 現実的にはこちらの方が精度のネックになりそう

           l kの値自体にあまり意味はないはず
                                                        14
(*) http://www2.nict.go.jp/aeri/sts/tsp/PubNtp/qa.html#q2-2
その他

   l   マシンIDや連番の実際の値             (*)

        l データセンターIDは1

        l ワーカーIDは0∼4

        l 連番は0∼2



   l   モノトニックタイム
        l 設定で変更できない単調増加な時刻

             l   linuxではclock_gettime()などで取得可能
        l   時刻が巻き戻ると厄介
             l   IDの一意性を保証するのが面倒になる
        l   snowflakeでは巻き戻りが発生したときはエラー
             l   最後にIDを生成した時刻を記憶しておくだけ
(*) はてな匿名ダイアリー snowflakeの実際
                                        15
ツイートID生成システムSnowflakeとは(再掲)

     l ユニークなIDを生成するネットワークサービス
        l ツイッターのツイートID(ステータスID)の割り当てに使われている

        l ツイッター社がOSSで公開中 (*)

     l 特徴
        l 64 bitのIDを生成

                 l   ざっくり時刻順
           l   速い
                 l   10000 ID/秒 のスピードでIDを生成できる(1プロセスあたり)
                 l   レスポンス 2 ms (+ネットワークのレイテンシ)
           l   スケールする
                 l   複数のマシン・プロセスで協調動作しない
                 l   並べただけスケールする(はず)

(*) https://github.com/twitter/snowflake   16
リアルタイム検索システムEarlybirdの概要

l   ツイッターリアルタイム検索エンジン
     l Java製

     l オープンソースの全文検索ライブラリLuceneを魔改造

     l 転置インデックス

     l クエリ言語(Boolean query)

          l   AND/OR/NOT
          l   フレーズクエリ
          l   ワイルドカードクエリは未対応
     l   2010年10月にMySQLベースの検索システムから移行
l   出典
     l Earlybird: Real-Time Search at Twitter, ICDE 2012

          l   Michael Busch, Krishna Gade, Brian Larson, Patrick Lok,
               Samuel Luckenbill, and Jimmy Lin
                                       17
Earlybirdの性能の実績値

l   ツイートの登録速度
     l 3000 ツイート/秒 (2012年10月時点で6000 ツイート/秒)



l   ツイート登録後すぐに検索可能に
     l ∼10秒以内

     l ※検索対象は6∼9日以内のツイートのみ



l   検索性能
     l 低レイテンシ(平均50 ms)

     l 高スループット(20億件/日 ≒ 2300qps)




                          18
Earlybirdのアーキテクチャ                 •

                                          •
                                              ツイートのトークナイズ
                                              メタ情報(言語など)を付与



                                                   •   動的更新の通知
                                                       •   リツイート数の更新
                                                       •   お気に入りの更新
                                                       •   ...
•   登録先のツイート
    •   ハッシュでパーティション
    •   ハッシュの方式は不明




•   ツイートの検索
                                 •   クエリのパース
•   ランキング
                                 •   複数のEarlybirdへ問い合わせ
    •   リツイート数
                                      •   Userのローカルソーシャルグラフを渡す
    •   お気に入り数
                                 •   問い合わせ結果のマージ
    •   ...
    •   Userのローカルソーシャルグラフ   19
•   更新するインデックスを限定
Earlybirdの構成                          •   1億件/台
                                          •   12インデックス/台
                                      •   マシンスペック
                          Earlybird       •   クアッドコア2つ
                                          •   RAM 72GB
                                              • 64GBをJVMのヒープに割当




                    ...

     Optimized Index(11個)                     Active Index(1個)
      •   検索(読込)専用                            •   検索(読込)+文書登録(書込)
      •   224 ≒ 1600万件/インデックス                 •   更新が速いデータ構造
      •   圧縮(圧縮率55%程度)                        •   一杯になったら裏で最適化
          •   1600万件で3.7GB程度                  •   1600万件で6.7GB程度
                             20
辞書の構成(1/2)

l 辞書
   l 単語とPosting List(その単語を含む文書IDのリスト)を紐付ける

l 自作ハッシュテーブルで実装
   l オープンアドレス法をArrayで実装

   l Java標準のHashMapはGCと相性が悪い

        l   チェーンで繋いだオブジェクト達の寿命が長い
l   辞書に含める情報
     l (0) 単語ID

     l (1) その単語のPosting Listの長さ

     l (2) その単語のPosting Listの末尾へのポインタ

     l ※それぞれ別々の配列で管理(詳細は次スライド)

        l   単語IDを配列のインデックスとしてアクセスする
        l   速度とメモリ効率を上げるため(Java...)
                            21
辞書の構成(2/2)
                                       辞書
 自作ハッシュテーブル
                                                                   単語の数
  単語            単語ID
                                                  0     1                 ...
pfiseminar        0
                       (1) Posting Listの長さ        4     77                ...

なう               1
                       (2) 末尾へのポインタ                                       ...
            :
            :


                                転置インデックス
                                      4

 「pfiseminar」に対応するPosting List    ...        ...   ...   ...
                                                                    77

 「なう」に対応するPosting List                                   ...                    ...

                                                               :
                                                               :
                                       22
Active Index

l 要求
   l 文書登録(書込)処理が高速 (全サーバで6000ツイート/秒)

   l 検索(読込)処理も並列処理

   l 時刻降順に検索したい (とにかく最近の情報が重要)

l 特徴
   l (1) Posting Listは文書ID昇順

   l (2) Postingは32bit整数

   l (3) Posting Listのメモリはまとめて確保



l   削除の対応方法は不明
     l 削除フラグを持ってフィルタリングしているとか?




                    23
Active Index - (1) Posting Listは文書ID昇順

l   利点
     l 文書登録時には、Posting Listの末尾に追加するだけ
                                                                文書ID: 15


                              pfiseminar     2    7    11   15   pfiseminar
                                                                   なう
     l   検索時には、Posting Listの末尾から逆順に                 るだけ

                              pfiseminar     2    7    11   15   pfiseminar
l   欠点
     l Posting Listの差分圧縮と相性が悪い

          l   検索時にPosting Listを逆順に       れる差分圧縮は複雑
                ‒ ブロックベースのPForDelataとか
          l   文書登録のレイテンシが増加
          l   Active IndexでのPosting List圧縮は諦め

                                    24
Active Index - (2) Postingは32bit整数
                                     ※ビットレイアウトは違うかも
          8bit                   24bit

     単語位置                        文書ID

l 文書ID(24bit)
   l 1インデックス辺り224(≒ 1600万)件が上限

l 単語位置(8bit)
   l 140文字なので8bitで十分

   l 1件にある単語が複数回出現するときは、別のPostingとして扱う

l 利点
   l コンパクト

   l Posting Listが整数配列になり、メモリの事前割り当てが容易

           l   ブロック単位でまとめて割り当てちゃう
     l   キャッシュにも優しい
                            25
Active Index - (3) Posting Listのメモリはまとめて

pool 3

pool 2
pool 1
pool 0


    l   4種類のpool
          l 1poolあたり215 posting(必要に応じて拡張)、複数のsliceからなる

          l sliceのサイズが異なる(21, 24, 27, 211)

          l sliceを繋げて長いPosting Listを実現

            l   sliceのサイズが小さい方から、slice単位で順に割り当てて行く
            l   sliceの最初の要素は、前のsliceの末尾へのポインタ(32bit)
    l   文書集合中の単語の分布はジップの法則でモデル化している
         l 長いPosting Listが少数、短いPosting Listが多数

         l 工夫しないとメモリ効率が悪く速度が遅くなってしまう
                                 26
            l   この実装では、Posting Listの拡張時にメモリコピーが発生しない
Active Index - (3) Posting Listのメモリはまとめて
                                                ※ビットレイアウトは違うかも
                    11bit                       19bit       2bit

pool 3          offset in slice               slice index        11

                7bit                        23bit               2bit

pool 2 offset in slice                 slice index               10

           4bit                       26bit                     2bit

pool 1    offset                    slice index                  01

         1bit                       29bit                       2bit

pool 0    o                       slice index                    00
                                                            pool index
    l   sliceのポインタ
                                 27
          l 32bitでpostingと同じサイズ
Optimized Index

l   要求
     l 検索(読込)処理のみ

     l 文書登録(書込)処理は受け付けない



l   特徴
     l Active Indexが一杯(223件)になったら裏でOptimized Indexを構築

     l Optimized Index構築後、スワップ(古いインデックスは削除)

     l 短いPosting Listは時刻降順にソート

          l   検索時には先頭から順方向に         る
     l   長いPosting List(長さ1000以上)はブロック単位で圧縮
          l   PForDeltaやSimple9と似たような感じ
     l   Active Indexの55%くらいのメモリ使用量
          l   1600万件6.7GBが3.7GB程度に
                                28
Optimized Index - 長いPosting Listの圧縮
4byte 4byte                               248byte                     4byte 4byte

posting        header         (文書IDの差分, 単語位置)の組n個を圧縮したもの              posting   header   ...


                               256byte/block
  l 時刻降順のPosting Listを適当に区切ってブロック単位で圧縮
  l 固定長ブロック256byteを複数並べたもの
     l 先頭4byte: ブロックのスキップ用

                 l   ブロック先頭の生posting1つ
          l   次の4byte: ブロックのヘッダ(解凍時に必要)
                 l   圧縮されている文書数 n
                 l   圧縮のビット幅 b = ceil(max(gap)) + ceil(max(pos))
                        ‒ n * (ceil(max(gap)) + ceil(max(pos))) <= 1984(= 248*8)
          l   残り248byte: 圧縮
                 l   n個の(文書IDの差分, 単語位置)の組を圧縮したもの
                                                29
まとめ

l   ツイートID生成システムSnowflakeの解説
     l ツイートID構造と生成方法

       l   ざっくり時刻順、速い、スケール


l   リアルタイム検索システムEarlybirdの解説
     l 5億ツイート/日(約6000ツイート/秒)で増え続けるツイートを即時

        に検索できるシステム
     l アーキテクチャの概要

     l インデックスの構成

       l   Active Index
       l   Optimized Index


                              30
Copyright © 2006-2012
Preferred Infrastructure All Right Reserved.

More Related Content

What's hot (20)

PDF
DDDのモデリングとは何なのか、 そしてどうコードに落とすのか
Koichiro Matsuoka
 
PPTX
Docker Tokyo
cyberblack28 Ichikawa
 
PDF
推薦アルゴリズムの今までとこれから
cyberagent
 
PDF
DDD x CQRS 更新系と参照系で異なるORMを併用して上手くいった話
Koichiro Matsuoka
 
PDF
例外設計における大罪
Takuto Wada
 
PDF
ドメイン駆動設計 ( DDD ) をやってみよう
増田 亨
 
KEY
やはりお前らのMVCは間違っている
Koichi Tanaka
 
PDF
私にとってのテスト
Takuto Wada
 
PDF
Dockerfileを改善するためのBest Practice 2019年版
Masahito Zembutsu
 
PDF
SQLアンチパターン - 開発者を待ち受ける25の落とし穴 (拡大版)
Takuto Wada
 
PPTX
差分プライバシーとは何か? (定義 & 解釈編)
Kentaro Minami
 
PDF
ルールベースから機械学習への道 公開用
nishio
 
PDF
データベース設計徹底指南
Mikiya Okuno
 
PPT
ジェネリクスの基礎と クラス設計への応用
nagise
 
PDF
研究分野をサーベイする
Takayuki Itoh
 
PPTX
SPAセキュリティ入門~PHP Conference Japan 2021
Hiroshi Tokumaru
 
PDF
PlaySQLAlchemy: SQLAlchemy入門
泰 増田
 
PDF
なかったらINSERTしたいし、あるならロック取りたいやん?
ichirin2501
 
PDF
ドメイン駆動設計 モデリング_実装入門勉強会_2020.3.8
Koichiro Matsuoka
 
PDF
PostgreSQLアンチパターン
Soudai Sone
 
DDDのモデリングとは何なのか、 そしてどうコードに落とすのか
Koichiro Matsuoka
 
Docker Tokyo
cyberblack28 Ichikawa
 
推薦アルゴリズムの今までとこれから
cyberagent
 
DDD x CQRS 更新系と参照系で異なるORMを併用して上手くいった話
Koichiro Matsuoka
 
例外設計における大罪
Takuto Wada
 
ドメイン駆動設計 ( DDD ) をやってみよう
増田 亨
 
やはりお前らのMVCは間違っている
Koichi Tanaka
 
私にとってのテスト
Takuto Wada
 
Dockerfileを改善するためのBest Practice 2019年版
Masahito Zembutsu
 
SQLアンチパターン - 開発者を待ち受ける25の落とし穴 (拡大版)
Takuto Wada
 
差分プライバシーとは何か? (定義 & 解釈編)
Kentaro Minami
 
ルールベースから機械学習への道 公開用
nishio
 
データベース設計徹底指南
Mikiya Okuno
 
ジェネリクスの基礎と クラス設計への応用
nagise
 
研究分野をサーベイする
Takayuki Itoh
 
SPAセキュリティ入門~PHP Conference Japan 2021
Hiroshi Tokumaru
 
PlaySQLAlchemy: SQLAlchemy入門
泰 増田
 
なかったらINSERTしたいし、あるならロック取りたいやん?
ichirin2501
 
ドメイン駆動設計 モデリング_実装入門勉強会_2020.3.8
Koichiro Matsuoka
 
PostgreSQLアンチパターン
Soudai Sone
 

Viewers also liked (20)

PPTX
Generating unique id numbers in Azure
Takekazu Omi
 
PDF
ライブ中継サービスと機材について
Yoshiki Mizushima
 
PDF
Benchmarking data warehouse systems in the cloud: new requirements & new metrics
Rim Moussa
 
PDF
PFI Corporate Profile
Preferred Networks
 
PDF
Rubyで実はwritev(2) が使われているはなし
Masaki Matsushita
 
PDF
PFIセミナー 2013/09/19 「Linux開発環境の自動構築」
Preferred Networks
 
PDF
特許をとろう (15/09/17 pfiセミナー )
Preferred Networks
 
PPTX
Build a Big Data Warehouse on the Cloud in 30 Minutes
Caserta
 
PDF
Open Source Datawarehouse
عباس بني اسدي مقدم
 
PDF
イノベーションことはじめ
Preferred Networks
 
PDF
PFNインターン最終発表: 怪我をしても歩ける6足歩行ロボットの学習
Preferred Networks
 
PDF
systemdを始めよう
Preferred Networks
 
PDF
NTT Tech Conference #1 Opening Keynote
NTT Communications Technology Development
 
PDF
Chainerで流体計算
Preferred Networks
 
PPTX
PFIセミナーH271022 ~コマンドを叩いて遊ぶ コンテナ仮想、その裏側~
Preferred Networks
 
PDF
Jubatus: 分散協調をキーとした大規模リアルタイム機械学習プラットフォーム
Preferred Networks
 
PPTX
Amazon Picking Challenge 結果報告
Preferred Networks
 
PDF
先取り Go1.5
Preferred Networks
 
PPTX
Using SSRS Reports with SSAS Cubes
Code Mastery
 
PDF
対話における商品の営業
Preferred Networks
 
Generating unique id numbers in Azure
Takekazu Omi
 
ライブ中継サービスと機材について
Yoshiki Mizushima
 
Benchmarking data warehouse systems in the cloud: new requirements & new metrics
Rim Moussa
 
PFI Corporate Profile
Preferred Networks
 
Rubyで実はwritev(2) が使われているはなし
Masaki Matsushita
 
PFIセミナー 2013/09/19 「Linux開発環境の自動構築」
Preferred Networks
 
特許をとろう (15/09/17 pfiセミナー )
Preferred Networks
 
Build a Big Data Warehouse on the Cloud in 30 Minutes
Caserta
 
Open Source Datawarehouse
عباس بني اسدي مقدم
 
イノベーションことはじめ
Preferred Networks
 
PFNインターン最終発表: 怪我をしても歩ける6足歩行ロボットの学習
Preferred Networks
 
systemdを始めよう
Preferred Networks
 
NTT Tech Conference #1 Opening Keynote
NTT Communications Technology Development
 
Chainerで流体計算
Preferred Networks
 
PFIセミナーH271022 ~コマンドを叩いて遊ぶ コンテナ仮想、その裏側~
Preferred Networks
 
Jubatus: 分散協調をキーとした大規模リアルタイム機械学習プラットフォーム
Preferred Networks
 
Amazon Picking Challenge 結果報告
Preferred Networks
 
先取り Go1.5
Preferred Networks
 
Using SSRS Reports with SSAS Cubes
Code Mastery
 
対話における商品の営業
Preferred Networks
 
Ad

Similar to ツイートID生成とツイッターリアルタイム検索システムの話 (20)

PDF
Dalvik仮想マシンのアーキテクチャ 改訂版
Takuya Matsunaga
 
PPTX
C# 7.2 with .NET Core 2.1
信之 岩永
 
PPTX
ソーシャルゲームにレコメンドエンジンを導入した話
Tokoroten Nakayama
 
ODP
FOSS4G 2012 Osaka
Shimpei Matsuura
 
PDF
30日でできない!コンピューター自作入門 - カーネル/VM探検隊@つくば
Hirotaka Kawata
 
KEY
ソーシャルゲームログ解析基盤のMongoDB活用事例
知教 本間
 
PPTX
はじめてのElasticsearchクラスタ
Satoyuki Tsukano
 
PDF
AWS Casual 02: ふつうのRedshiftパフォーマンスチューニング
Minero Aoki
 
PDF
CLRの基礎 - プログラミング .NET Framework 第3版 読書会
Yoshihisa Ozaki
 
PDF
SSDとTokyoTyrantやMySQLの性能検証
勲 國府田
 
PPTX
Doom3 commentary
DADA246
 
PDF
SmartNews TechNight Vol5 : SmartNews AdServer 解体新書 / ポストモーテム
SmartNews, Inc.
 
KEY
関東GPGPU勉強会 LLVM meets GPU
Takuro Iizuka
 
PDF
Elasticsearch入門 pyfes 201207
Jun Ohtani
 
PDF
Exploring the x64
FFRI, Inc.
 
PDF
Hello Dark-Side C# (Part. 1)
Yuto Takei
 
PDF
20100930 sig startups
Ichiro Fukuda
 
PDF
20120611 SC研究会
Satoshi Yazawa
 
PDF
Dps143 ruo ando
Ruo Ando
 
PDF
ソーシャルゲームのためのデータベース設計
Yoshinori Matsunobu
 
Dalvik仮想マシンのアーキテクチャ 改訂版
Takuya Matsunaga
 
C# 7.2 with .NET Core 2.1
信之 岩永
 
ソーシャルゲームにレコメンドエンジンを導入した話
Tokoroten Nakayama
 
FOSS4G 2012 Osaka
Shimpei Matsuura
 
30日でできない!コンピューター自作入門 - カーネル/VM探検隊@つくば
Hirotaka Kawata
 
ソーシャルゲームログ解析基盤のMongoDB活用事例
知教 本間
 
はじめてのElasticsearchクラスタ
Satoyuki Tsukano
 
AWS Casual 02: ふつうのRedshiftパフォーマンスチューニング
Minero Aoki
 
CLRの基礎 - プログラミング .NET Framework 第3版 読書会
Yoshihisa Ozaki
 
SSDとTokyoTyrantやMySQLの性能検証
勲 國府田
 
Doom3 commentary
DADA246
 
SmartNews TechNight Vol5 : SmartNews AdServer 解体新書 / ポストモーテム
SmartNews, Inc.
 
関東GPGPU勉強会 LLVM meets GPU
Takuro Iizuka
 
Elasticsearch入門 pyfes 201207
Jun Ohtani
 
Exploring the x64
FFRI, Inc.
 
Hello Dark-Side C# (Part. 1)
Yuto Takei
 
20100930 sig startups
Ichiro Fukuda
 
20120611 SC研究会
Satoshi Yazawa
 
Dps143 ruo ando
Ruo Ando
 
ソーシャルゲームのためのデータベース設計
Yoshinori Matsunobu
 
Ad

More from Preferred Networks (20)

PDF
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
Preferred Networks
 
PDF
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Preferred Networks
 
PDF
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Preferred Networks
 
PDF
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
Preferred Networks
 
PDF
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Preferred Networks
 
PDF
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Preferred Networks
 
PDF
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
Preferred Networks
 
PDF
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Preferred Networks
 
PDF
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
Preferred Networks
 
PPTX
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Preferred Networks
 
PPTX
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
Preferred Networks
 
PDF
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
Preferred Networks
 
PDF
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Preferred Networks
 
PDF
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Preferred Networks
 
PDF
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
Preferred Networks
 
PDF
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
Preferred Networks
 
PDF
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Preferred Networks
 
PDF
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
Preferred Networks
 
PDF
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
Preferred Networks
 
PDF
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
Preferred Networks
 
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
Preferred Networks
 
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Preferred Networks
 
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Preferred Networks
 
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
Preferred Networks
 
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Preferred Networks
 
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Preferred Networks
 
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
Preferred Networks
 
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Preferred Networks
 
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
Preferred Networks
 
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Preferred Networks
 
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
Preferred Networks
 
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
Preferred Networks
 
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Preferred Networks
 
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Preferred Networks
 
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
Preferred Networks
 
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
Preferred Networks
 
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Preferred Networks
 
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
Preferred Networks
 
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
Preferred Networks
 
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
Preferred Networks
 

Recently uploaded (7)

PDF
[Hardening Designers Confernece 2025]ランサムウェアでの見えざるログ・見えるログ
kataware
 
PDF
20250711_日本IBM ミドルウエア・ユーザー研究会(JIMUC)総会_中村会長資料.pdf
ChikakoInami1
 
PDF
20250711JIMUC総会IBM Automation_Platform最新情報_Connpass公開版.pdf
ChikakoInami1
 
PDF
PostgreSQL18新機能紹介(db tech showcase 2025 発表資料)
NTT DATA Technology & Innovation
 
PDF
プライバシ保護のためのインターネットアーキテクチャの進化 (2025-07-11)
Jun Kurihara
 
PDF
20250710_Devinで切り拓くDB革命_〜価値創出に集中せよ〜.pdf
Masaki Yamakawa
 
PDF
20250717_Devin×GitHubCopilotで10人分の仕事は出来るのか?.pdf
Masaki Yamakawa
 
[Hardening Designers Confernece 2025]ランサムウェアでの見えざるログ・見えるログ
kataware
 
20250711_日本IBM ミドルウエア・ユーザー研究会(JIMUC)総会_中村会長資料.pdf
ChikakoInami1
 
20250711JIMUC総会IBM Automation_Platform最新情報_Connpass公開版.pdf
ChikakoInami1
 
PostgreSQL18新機能紹介(db tech showcase 2025 発表資料)
NTT DATA Technology & Innovation
 
プライバシ保護のためのインターネットアーキテクチャの進化 (2025-07-11)
Jun Kurihara
 
20250710_Devinで切り拓くDB革命_〜価値創出に集中せよ〜.pdf
Masaki Yamakawa
 
20250717_Devin×GitHubCopilotで10人分の仕事は出来るのか?.pdf
Masaki Yamakawa
 

ツイートID生成とツイッターリアルタイム検索システムの話

  • 1. PFIセミナー ツイートID生成と ツイッターリアルタイム検索 システムの話 Eiichiro Iwata 2012年 12月20日
  • 2. 自己紹介 l 岩田 英一郎 (@eiichiroi) l 元さいたまな人 l 経歴 l 2009年6月∼ アルバイト l 2010年3月  埼玉大学 大学院理工学研究科 修了 l 2010年8月∼ PFI入社 l 所属 l 製品開発部 l Sedueプロジェクト l 仕事 l Sedue(検索エンジン)の開発 l コア∼運用ツールを幅広く l 研究開発成果の取り込み 2
  • 3. 本日の内容 l ツイートID生成システムSnowflakeの解説 l ツイートIDの構造と生成方法 l リアルタイム検索システムEarlybirdの解説 l 5億ツイート/日(約6000ツイート/秒)で増え続けるツイートを即時 に検索できるシステム l アーキテクチャの概要 l インデックスの構成 3
  • 8. ツイートID生成システムSnowflakeとは l ユニークなIDを生成するネットワークサービス l ツイッターのツイートID(ステータスID)の割り当てに使われている l ツイッター社がOSSで公開中 (*) l 特徴 l 64 bitのIDを生成 l ざっくり時刻順 l 速い l 10000 ID/秒 のスピードでIDを生成できる(1プロセスあたり) l レスポンス 2 ms (+ネットワークのレイテンシ) l スケールする l 複数のマシン・プロセスで協調動作しない l 並べただけスケールする(はず) (*) https://github.com/twitter/snowflake 8
  • 9. Snowflakeが開発されるまで l ツイートの流速増加とツイッターのシステム移行 l 5億ツイート/日(約6000ツイート/秒) (*1) l 2012年10月時点 l MySQLからCassandraやGizzard(Sharded MySQL)への移行 l CassandraがID生成をデフォルトで提供していない l ステータスIDの変遷 (*2, *3, *4) l 2006年5月∼: 符号付き32bit l 2009年6月∼: 符号無し32bit l 2009年9月∼: 64bit l 2010年11月∼: 64bit(現状のsnowflake) l 要求 l スケールする(分散できる) (*1) Report: Twitter hits half a billion tweets a day (*2) Twitpocalypse - TwitterメッセージIDの64ビット科- いよいよ明日に実施 9 (*3) Status IDs are changing on 21st September (*4) Announcing Snowflake
  • 10. 生成するIDの構造 41bit 10bit 12bit 時刻 マシンID 連番 l 64bitを3つのブロックに分割 l 時刻(41bit、69年分) l (おそらく)snowflakeの運用開始時刻からの経過時間(ミリ秒) l 2010年11月4日...(epoch: 1288834974657)が基点 l マシンID(10bit、1024台分) l データセンターID(上位5bit)、ワーカーID(下位5bit) l 起動時にZookeeperか設定ファイルから取得 l 連番(12bit、4096個) l 同時刻・同マシンでのID重複回避用、ワーカー別 l 参考: バルス砲 25088 ツイート/秒 10
  • 11. ツイートIDのデコード(デモ) l ツイートID = 279622981959970816 l 時刻 = 1355502288700 (2012-12-15 01:24:48 +0900) l マシンID = 39 l データセンタID = 1 l ワーカーID = 7 l 連番 = 0 11
  • 12. 生成するIDの特徴 l 64bit整数 l ユニーク l 時間とともにIDの値が増加する l ステータスIDでざっくり時刻順にソートできる(k-sorted) l 目標精度は1秒 l 1秒以内に投稿されたツイート間では順序を保証しない l 実際の時刻順と逆になることもある 12
  • 13. 生成するIDの特徴 - k-sorted l 系列α = (a1, ..., an) が k-sorted であるとは、 l 全ての 1 ≦ i, j ≦ n に対して、 i < j-k ならば ai ≦ aj k l 概要 a1 ... ai ... ai-k+1 ... an l 0-sortedは普通のソートと等価 l 距離 k 以内の要素間での順序は不問 l 例: (2, 1, 3)は1-sorted l k-sortedの性質 (*1, *2) l 系列αとkが与えられたときに、k-soterdかどうかはO(n)で判定可能 l 系列αが与えられたときに、最も小さいkの値をO(n)で計算可能 l 2つのk-sorted系列が与えられたときに、それらをマージした1つの k-sorted系列をO(n)で計算可能 l 系列αをk-sortedを満たすようにするには、O(n log k)で計算可能 (*1) Roughly Sorting: A Generalization of Sorting 13 (*2) Roughly Sorting: Sequential and Parallel Approach
  • 14. 生成するIDの特徴 - k-sortedのkの値 41bit 10bit 12bit 時刻 マシンID 連番 l 複数のマシンで完全に同じ時刻を参照できたと仮定すると... l 222 -sorted: 22bit = 10bit(マシンID)+12bit(連番) l 精度: 1ミリ秒 l 232-sorted: 32bit = 約10bit(時刻)+10bit(マシンID)+12bit(連番) l 精度: 1秒 l 実際にはマシンID、連番が疎なので k はそこまで大きくないはず l 3000 ツイート/秒なら、連番は3くらい l NTPの精度はミリ秒単位 (*) l 現実的にはこちらの方が精度のネックになりそう l kの値自体にあまり意味はないはず 14 (*) http://www2.nict.go.jp/aeri/sts/tsp/PubNtp/qa.html#q2-2
  • 15. その他 l マシンIDや連番の実際の値 (*) l データセンターIDは1 l ワーカーIDは0∼4 l 連番は0∼2 l モノトニックタイム l 設定で変更できない単調増加な時刻 l linuxではclock_gettime()などで取得可能 l 時刻が巻き戻ると厄介 l IDの一意性を保証するのが面倒になる l snowflakeでは巻き戻りが発生したときはエラー l 最後にIDを生成した時刻を記憶しておくだけ (*) はてな匿名ダイアリー snowflakeの実際 15
  • 16. ツイートID生成システムSnowflakeとは(再掲) l ユニークなIDを生成するネットワークサービス l ツイッターのツイートID(ステータスID)の割り当てに使われている l ツイッター社がOSSで公開中 (*) l 特徴 l 64 bitのIDを生成 l ざっくり時刻順 l 速い l 10000 ID/秒 のスピードでIDを生成できる(1プロセスあたり) l レスポンス 2 ms (+ネットワークのレイテンシ) l スケールする l 複数のマシン・プロセスで協調動作しない l 並べただけスケールする(はず) (*) https://github.com/twitter/snowflake 16
  • 17. リアルタイム検索システムEarlybirdの概要 l ツイッターリアルタイム検索エンジン l Java製 l オープンソースの全文検索ライブラリLuceneを魔改造 l 転置インデックス l クエリ言語(Boolean query) l AND/OR/NOT l フレーズクエリ l ワイルドカードクエリは未対応 l 2010年10月にMySQLベースの検索システムから移行 l 出典 l Earlybird: Real-Time Search at Twitter, ICDE 2012 l Michael Busch, Krishna Gade, Brian Larson, Patrick Lok, Samuel Luckenbill, and Jimmy Lin 17
  • 18. Earlybirdの性能の実績値 l ツイートの登録速度 l 3000 ツイート/秒 (2012年10月時点で6000 ツイート/秒) l ツイート登録後すぐに検索可能に l ∼10秒以内 l ※検索対象は6∼9日以内のツイートのみ l 検索性能 l 低レイテンシ(平均50 ms) l 高スループット(20億件/日 ≒ 2300qps) 18
  • 19. Earlybirdのアーキテクチャ • • ツイートのトークナイズ メタ情報(言語など)を付与 • 動的更新の通知 • リツイート数の更新 • お気に入りの更新 • ... • 登録先のツイート • ハッシュでパーティション • ハッシュの方式は不明 • ツイートの検索 • クエリのパース • ランキング • 複数のEarlybirdへ問い合わせ • リツイート数 • Userのローカルソーシャルグラフを渡す • お気に入り数 • 問い合わせ結果のマージ • ... • Userのローカルソーシャルグラフ 19
  • 20. 更新するインデックスを限定 Earlybirdの構成 • 1億件/台 • 12インデックス/台 • マシンスペック Earlybird • クアッドコア2つ • RAM 72GB • 64GBをJVMのヒープに割当 ... Optimized Index(11個) Active Index(1個) • 検索(読込)専用 • 検索(読込)+文書登録(書込) • 224 ≒ 1600万件/インデックス • 更新が速いデータ構造 • 圧縮(圧縮率55%程度) • 一杯になったら裏で最適化 • 1600万件で3.7GB程度 • 1600万件で6.7GB程度 20
  • 21. 辞書の構成(1/2) l 辞書 l 単語とPosting List(その単語を含む文書IDのリスト)を紐付ける l 自作ハッシュテーブルで実装 l オープンアドレス法をArrayで実装 l Java標準のHashMapはGCと相性が悪い l チェーンで繋いだオブジェクト達の寿命が長い l 辞書に含める情報 l (0) 単語ID l (1) その単語のPosting Listの長さ l (2) その単語のPosting Listの末尾へのポインタ l ※それぞれ別々の配列で管理(詳細は次スライド) l 単語IDを配列のインデックスとしてアクセスする l 速度とメモリ効率を上げるため(Java...) 21
  • 22. 辞書の構成(2/2) 辞書 自作ハッシュテーブル 単語の数 単語 単語ID 0 1 ... pfiseminar 0 (1) Posting Listの長さ 4 77 ... なう 1 (2) 末尾へのポインタ ... : : 転置インデックス 4 「pfiseminar」に対応するPosting List ... ... ... ... 77 「なう」に対応するPosting List ... ... : : 22
  • 23. Active Index l 要求 l 文書登録(書込)処理が高速 (全サーバで6000ツイート/秒) l 検索(読込)処理も並列処理 l 時刻降順に検索したい (とにかく最近の情報が重要) l 特徴 l (1) Posting Listは文書ID昇順 l (2) Postingは32bit整数 l (3) Posting Listのメモリはまとめて確保 l 削除の対応方法は不明 l 削除フラグを持ってフィルタリングしているとか? 23
  • 24. Active Index - (1) Posting Listは文書ID昇順 l 利点 l 文書登録時には、Posting Listの末尾に追加するだけ 文書ID: 15 pfiseminar 2 7 11 15 pfiseminar なう l 検索時には、Posting Listの末尾から逆順に るだけ pfiseminar 2 7 11 15 pfiseminar l 欠点 l Posting Listの差分圧縮と相性が悪い l 検索時にPosting Listを逆順に れる差分圧縮は複雑 ‒ ブロックベースのPForDelataとか l 文書登録のレイテンシが増加 l Active IndexでのPosting List圧縮は諦め 24
  • 25. Active Index - (2) Postingは32bit整数 ※ビットレイアウトは違うかも 8bit 24bit 単語位置 文書ID l 文書ID(24bit) l 1インデックス辺り224(≒ 1600万)件が上限 l 単語位置(8bit) l 140文字なので8bitで十分 l 1件にある単語が複数回出現するときは、別のPostingとして扱う l 利点 l コンパクト l Posting Listが整数配列になり、メモリの事前割り当てが容易 l ブロック単位でまとめて割り当てちゃう l キャッシュにも優しい 25
  • 26. Active Index - (3) Posting Listのメモリはまとめて pool 3 pool 2 pool 1 pool 0 l 4種類のpool l 1poolあたり215 posting(必要に応じて拡張)、複数のsliceからなる l sliceのサイズが異なる(21, 24, 27, 211) l sliceを繋げて長いPosting Listを実現 l sliceのサイズが小さい方から、slice単位で順に割り当てて行く l sliceの最初の要素は、前のsliceの末尾へのポインタ(32bit) l 文書集合中の単語の分布はジップの法則でモデル化している l 長いPosting Listが少数、短いPosting Listが多数 l 工夫しないとメモリ効率が悪く速度が遅くなってしまう 26 l この実装では、Posting Listの拡張時にメモリコピーが発生しない
  • 27. Active Index - (3) Posting Listのメモリはまとめて ※ビットレイアウトは違うかも 11bit 19bit 2bit pool 3 offset in slice slice index 11 7bit 23bit 2bit pool 2 offset in slice slice index 10 4bit 26bit 2bit pool 1 offset slice index 01 1bit 29bit 2bit pool 0 o slice index 00 pool index l sliceのポインタ 27 l 32bitでpostingと同じサイズ
  • 28. Optimized Index l 要求 l 検索(読込)処理のみ l 文書登録(書込)処理は受け付けない l 特徴 l Active Indexが一杯(223件)になったら裏でOptimized Indexを構築 l Optimized Index構築後、スワップ(古いインデックスは削除) l 短いPosting Listは時刻降順にソート l 検索時には先頭から順方向に る l 長いPosting List(長さ1000以上)はブロック単位で圧縮 l PForDeltaやSimple9と似たような感じ l Active Indexの55%くらいのメモリ使用量 l 1600万件6.7GBが3.7GB程度に 28
  • 29. Optimized Index - 長いPosting Listの圧縮 4byte 4byte 248byte 4byte 4byte posting header (文書IDの差分, 単語位置)の組n個を圧縮したもの posting header ... 256byte/block l 時刻降順のPosting Listを適当に区切ってブロック単位で圧縮 l 固定長ブロック256byteを複数並べたもの l 先頭4byte: ブロックのスキップ用 l ブロック先頭の生posting1つ l 次の4byte: ブロックのヘッダ(解凍時に必要) l 圧縮されている文書数 n l 圧縮のビット幅 b = ceil(max(gap)) + ceil(max(pos)) ‒ n * (ceil(max(gap)) + ceil(max(pos))) <= 1984(= 248*8) l 残り248byte: 圧縮 l n個の(文書IDの差分, 単語位置)の組を圧縮したもの 29
  • 30. まとめ l ツイートID生成システムSnowflakeの解説 l ツイートID構造と生成方法 l ざっくり時刻順、速い、スケール l リアルタイム検索システムEarlybirdの解説 l 5億ツイート/日(約6000ツイート/秒)で増え続けるツイートを即時 に検索できるシステム l アーキテクチャの概要 l インデックスの構成 l Active Index l Optimized Index 30
  • 31. Copyright © 2006-2012 Preferred Infrastructure All Right Reserved.