SlideShare a Scribd company logo
image classification using cnn
[no math version]
@debarko
Practo
whoami
Debarko De
Practo
Talk : twitter/debarko
Code : github/debarko
Practo : dd@practo.comwhat to expect
Why use CNN and not regular image processing
How to easily build one for your tasks
How you can implement
This is NOT a tutorial for any of the libraries involved
Where to study more?
Agenda
Features
Problem statement & Impact
Trainable Feature Extractors
What is a CNN
Transfer Learning
Libraries
Projects
Fanciness
References
Image classification using cnn
Image classification using cnn
Image classification using cnn
Image classification using cnn
Image classification using cnn
Image classification using cnn
Image classification using cnn
Problem Statement & Impact
Hand Crafted
Feature Extractor
Simple classifiers
Trainable Feature
Extractor
Trainable
Classifiers
CNN
if x input
then y output
x * W = y’
W is
kernel/filter
y != y’
E = f(Y,Y’)
CNN
Convolution Layer
(Dot Product)
1 0 1
0 1 0
1 0 1
Kernel
Pooling Layer
(Max, Mean, Avg)
Gradient
Descent
Why now?
2006 DeepNet paper [Link]
Computational power
Libraries
Lot of data → Imagenet
GPU Power
Image classification using cnn
Image classification using cnn
Image classification using cnn
# Create first network with Keras
from keras.models import Sequential
from keras.layers import Dense
import numpy
# Create first network with Keras
from keras.models import Sequential
from keras.layers import Dense
import numpy
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
# Create first network with Keras
from keras.models import Sequential
from keras.layers import Dense
import numpy
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
# load pima indians dataset
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# Create first network with Keras
from keras.models import Sequential
from keras.layers import Dense
import numpy
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
# load pima indians dataset
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]
# create model
model = Sequential()
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, init='uniform', activation='relu'))
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, init='uniform', activation='relu'))
model.add(Dense(8, init='uniform', activation='relu'))
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, init='uniform', activation='relu'))
model.add(Dense(8, init='uniform', activation='relu'))
model.add(Dense(1, init='uniform', activation='sigmoid'))
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, init='uniform', activation='relu'))
model.add(Dense(8, init='uniform', activation='relu'))
model.add(Dense(1, init='uniform', activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, init='uniform', activation='relu'))
model.add(Dense(8, init='uniform', activation='relu'))
model.add(Dense(1, init='uniform', activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Fit the model
model.fit(X, Y, nb_epoch=150, batch_size=10)
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, init='uniform', activation='relu'))
model.add(Dense(8, init='uniform', activation='relu'))
model.add(Dense(1, init='uniform', activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Fit the model
model.fit(X, Y, nb_epoch=150, batch_size=10)
# evaluate the model
scores = model.evaluate(X, Y)
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, init='uniform', activation='relu'))
model.add(Dense(8, init='uniform', activation='relu'))
model.add(Dense(1, init='uniform', activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Fit the model
model.fit(X, Y, nb_epoch=150, batch_size=10)
# evaluate the model
scores = model.evaluate(X, Y)
print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))
Entire Code
# Create first network with Keras
from keras.models import Sequential
from keras.layers import Dense
import numpy
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
# load pima indians dataset
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, init='uniform', activation='relu'))
model.add(Dense(8, init='uniform', activation='relu'))
model.add(Dense(1, init='uniform', activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Fit the model
model.fit(X, Y, nb_epoch=150, batch_size=10)
# evaluate the model
scores = model.evaluate(X, Y)
print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))
VGGNet
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Visual Geometry Group
ImageNet
Image classification using cnn
Few projects that you guys can easily work on
Review sentiment analysis on Practo / Zomato / Flipkart
Customer Conversion Analysis based on behavioural data
Inventory Stocking based on Search queries w.r.t location
Auto analysis and tagging of Support calls
Transcribe audio based on audio in phone calls and create tickets automatically
Any data understanding which can be spread out in a visual format or any time
series data
Image classification using cnn
Image classification using cnn
Image classification using cnn
Image classification using cnn
Image classification using cnn
Image classification using cnn
References
Basic Upto Speed Slideshow
Basic Lingo Catchup video for CNN
CS231n → Defacto & Best Online Course Work for CNNs
CS231n Assignments → http://cs231n.github.io/
Follow
@karpathy @drfeifei
Book
Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms 1st Edition by Nikhil Buduma
धन्यवा
द
twitter.com/debarko
Ad

More Related Content

What's hot (20)

CNN Tutorial
CNN TutorialCNN Tutorial
CNN Tutorial
Sungjoon Choi
 
CIFAR-10
CIFAR-10CIFAR-10
CIFAR-10
satyam_madala
 
CNN Machine learning DeepLearning
CNN Machine learning DeepLearningCNN Machine learning DeepLearning
CNN Machine learning DeepLearning
Abhishek Sharma
 
What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...
What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...
What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...
Simplilearn
 
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...
Simplilearn
 
Transformer in Vision
Transformer in VisionTransformer in Vision
Transformer in Vision
Sangmin Woo
 
Convolution Neural Network (CNN)
Convolution Neural Network (CNN)Convolution Neural Network (CNN)
Convolution Neural Network (CNN)
Basit Rafiq
 
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
Simplilearn
 
CNN Attention Networks
CNN Attention NetworksCNN Attention Networks
CNN Attention Networks
Taeoh Kim
 
Deep Learning - Overview of my work II
Deep Learning - Overview of my work IIDeep Learning - Overview of my work II
Deep Learning - Overview of my work II
Mohamed Loey
 
Deep Learning - Convolutional Neural Networks
Deep Learning - Convolutional Neural NetworksDeep Learning - Convolutional Neural Networks
Deep Learning - Convolutional Neural Networks
Christian Perone
 
Convolutional neural network
Convolutional neural networkConvolutional neural network
Convolutional neural network
MojammilHusain
 
Tensorflow presentation
Tensorflow presentationTensorflow presentation
Tensorflow presentation
Ahmed rebai
 
Introduction to object detection
Introduction to object detectionIntroduction to object detection
Introduction to object detection
Brodmann17
 
Object recognition of CIFAR - 10
Object recognition of CIFAR  - 10Object recognition of CIFAR  - 10
Object recognition of CIFAR - 10
Ratul Alahy
 
Image classification using CNN
Image classification using CNNImage classification using CNN
Image classification using CNN
Noura Hussein
 
Generative adversarial text to image synthesis
Generative adversarial text to image synthesisGenerative adversarial text to image synthesis
Generative adversarial text to image synthesis
Universitat Politècnica de Catalunya
 
Deep Learning Tutorial | Deep Learning TensorFlow | Deep Learning With Neural...
Deep Learning Tutorial | Deep Learning TensorFlow | Deep Learning With Neural...Deep Learning Tutorial | Deep Learning TensorFlow | Deep Learning With Neural...
Deep Learning Tutorial | Deep Learning TensorFlow | Deep Learning With Neural...
Simplilearn
 
Moving Object Detection And Tracking Using CNN
Moving Object Detection And Tracking Using CNNMoving Object Detection And Tracking Using CNN
Moving Object Detection And Tracking Using CNN
NITISHKUMAR1401
 
Transformers in Vision: From Zero to Hero
Transformers in Vision: From Zero to HeroTransformers in Vision: From Zero to Hero
Transformers in Vision: From Zero to Hero
Bill Liu
 
CNN Machine learning DeepLearning
CNN Machine learning DeepLearningCNN Machine learning DeepLearning
CNN Machine learning DeepLearning
Abhishek Sharma
 
What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...
What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...
What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...
Simplilearn
 
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...
Simplilearn
 
Transformer in Vision
Transformer in VisionTransformer in Vision
Transformer in Vision
Sangmin Woo
 
Convolution Neural Network (CNN)
Convolution Neural Network (CNN)Convolution Neural Network (CNN)
Convolution Neural Network (CNN)
Basit Rafiq
 
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
Simplilearn
 
CNN Attention Networks
CNN Attention NetworksCNN Attention Networks
CNN Attention Networks
Taeoh Kim
 
Deep Learning - Overview of my work II
Deep Learning - Overview of my work IIDeep Learning - Overview of my work II
Deep Learning - Overview of my work II
Mohamed Loey
 
Deep Learning - Convolutional Neural Networks
Deep Learning - Convolutional Neural NetworksDeep Learning - Convolutional Neural Networks
Deep Learning - Convolutional Neural Networks
Christian Perone
 
Convolutional neural network
Convolutional neural networkConvolutional neural network
Convolutional neural network
MojammilHusain
 
Tensorflow presentation
Tensorflow presentationTensorflow presentation
Tensorflow presentation
Ahmed rebai
 
Introduction to object detection
Introduction to object detectionIntroduction to object detection
Introduction to object detection
Brodmann17
 
Object recognition of CIFAR - 10
Object recognition of CIFAR  - 10Object recognition of CIFAR  - 10
Object recognition of CIFAR - 10
Ratul Alahy
 
Image classification using CNN
Image classification using CNNImage classification using CNN
Image classification using CNN
Noura Hussein
 
Deep Learning Tutorial | Deep Learning TensorFlow | Deep Learning With Neural...
Deep Learning Tutorial | Deep Learning TensorFlow | Deep Learning With Neural...Deep Learning Tutorial | Deep Learning TensorFlow | Deep Learning With Neural...
Deep Learning Tutorial | Deep Learning TensorFlow | Deep Learning With Neural...
Simplilearn
 
Moving Object Detection And Tracking Using CNN
Moving Object Detection And Tracking Using CNNMoving Object Detection And Tracking Using CNN
Moving Object Detection And Tracking Using CNN
NITISHKUMAR1401
 
Transformers in Vision: From Zero to Hero
Transformers in Vision: From Zero to HeroTransformers in Vision: From Zero to Hero
Transformers in Vision: From Zero to Hero
Bill Liu
 

Similar to Image classification using cnn (20)

LSTM Framework For Univariate Time series
LSTM Framework For Univariate Time seriesLSTM Framework For Univariate Time series
LSTM Framework For Univariate Time series
bilyamine1
 
Viktor Tsykunov: Azure Machine Learning Service
Viktor Tsykunov: Azure Machine Learning ServiceViktor Tsykunov: Azure Machine Learning Service
Viktor Tsykunov: Azure Machine Learning Service
Lviv Startup Club
 
Need an detailed analysis of what this code-model is doing- Thanks #St.pdf
Need an detailed analysis of what this code-model is doing- Thanks #St.pdfNeed an detailed analysis of what this code-model is doing- Thanks #St.pdf
Need an detailed analysis of what this code-model is doing- Thanks #St.pdf
actexerode
 
Power ai tensorflowworkloadtutorial-20171117
Power ai tensorflowworkloadtutorial-20171117Power ai tensorflowworkloadtutorial-20171117
Power ai tensorflowworkloadtutorial-20171117
Ganesan Narayanasamy
 
Learning Predictive Modeling with TSA and Kaggle
Learning Predictive Modeling with TSA and KaggleLearning Predictive Modeling with TSA and Kaggle
Learning Predictive Modeling with TSA and Kaggle
Yvonne K. Matos
 
Can someone please explain what the code below is doing and comment on.pdf
Can someone please explain what the code below is doing and comment on.pdfCan someone please explain what the code below is doing and comment on.pdf
Can someone please explain what the code below is doing and comment on.pdf
kuldeepkumarapgsi
 
Introduzione Deep Learning & TensorFlow
Introduzione Deep Learning & TensorFlowIntroduzione Deep Learning & TensorFlow
Introduzione Deep Learning & TensorFlow
MeetupDataScienceRoma
 
What is in that image
What is in that image What is in that image
What is in that image
Debarko De
 
Training course lect2
Training course lect2Training course lect2
Training course lect2
Noor Dhiya
 
Gradient Descent Code Implementation.pdf
Gradient Descent Code  Implementation.pdfGradient Descent Code  Implementation.pdf
Gradient Descent Code Implementation.pdf
MubashirHussain792093
 
Unsupervised Aspect Based Sentiment Analysis at Scale
Unsupervised Aspect Based Sentiment Analysis at ScaleUnsupervised Aspect Based Sentiment Analysis at Scale
Unsupervised Aspect Based Sentiment Analysis at Scale
Aaron (Ari) Bornstein
 
AIML4 CNN lab256 1hr (111-1).pdf
AIML4 CNN lab256 1hr (111-1).pdfAIML4 CNN lab256 1hr (111-1).pdf
AIML4 CNN lab256 1hr (111-1).pdf
ssuserb4d806
 
Diving into Deep Learning (Silicon Valley Code Camp 2017)
Diving into Deep Learning (Silicon Valley Code Camp 2017)Diving into Deep Learning (Silicon Valley Code Camp 2017)
Diving into Deep Learning (Silicon Valley Code Camp 2017)
Oswald Campesato
 
Android and Deep Learning
Android and Deep LearningAndroid and Deep Learning
Android and Deep Learning
Oswald Campesato
 
Need helping adding to the code below to plot the images from the firs.pdf
Need helping adding to the code below to plot the images from the firs.pdfNeed helping adding to the code below to plot the images from the firs.pdf
Need helping adding to the code below to plot the images from the firs.pdf
actexerode
 
29-kashyap-mask-detaction.pptx
29-kashyap-mask-detaction.pptx29-kashyap-mask-detaction.pptx
29-kashyap-mask-detaction.pptx
KASHYAPPATHAK7
 
maXbox starter65 machinelearning3
maXbox starter65 machinelearning3maXbox starter65 machinelearning3
maXbox starter65 machinelearning3
Max Kleiner
 
Assignment 6.1.pdf
Assignment 6.1.pdfAssignment 6.1.pdf
Assignment 6.1.pdf
dash41
 
Competition 1 (blog 1)
Competition 1 (blog 1)Competition 1 (blog 1)
Competition 1 (blog 1)
TarunPaparaju
 
Introduction to deep learning using python
Introduction to deep learning using pythonIntroduction to deep learning using python
Introduction to deep learning using python
Lino Coria
 
LSTM Framework For Univariate Time series
LSTM Framework For Univariate Time seriesLSTM Framework For Univariate Time series
LSTM Framework For Univariate Time series
bilyamine1
 
Viktor Tsykunov: Azure Machine Learning Service
Viktor Tsykunov: Azure Machine Learning ServiceViktor Tsykunov: Azure Machine Learning Service
Viktor Tsykunov: Azure Machine Learning Service
Lviv Startup Club
 
Need an detailed analysis of what this code-model is doing- Thanks #St.pdf
Need an detailed analysis of what this code-model is doing- Thanks #St.pdfNeed an detailed analysis of what this code-model is doing- Thanks #St.pdf
Need an detailed analysis of what this code-model is doing- Thanks #St.pdf
actexerode
 
Power ai tensorflowworkloadtutorial-20171117
Power ai tensorflowworkloadtutorial-20171117Power ai tensorflowworkloadtutorial-20171117
Power ai tensorflowworkloadtutorial-20171117
Ganesan Narayanasamy
 
Learning Predictive Modeling with TSA and Kaggle
Learning Predictive Modeling with TSA and KaggleLearning Predictive Modeling with TSA and Kaggle
Learning Predictive Modeling with TSA and Kaggle
Yvonne K. Matos
 
Can someone please explain what the code below is doing and comment on.pdf
Can someone please explain what the code below is doing and comment on.pdfCan someone please explain what the code below is doing and comment on.pdf
Can someone please explain what the code below is doing and comment on.pdf
kuldeepkumarapgsi
 
Introduzione Deep Learning & TensorFlow
Introduzione Deep Learning & TensorFlowIntroduzione Deep Learning & TensorFlow
Introduzione Deep Learning & TensorFlow
MeetupDataScienceRoma
 
What is in that image
What is in that image What is in that image
What is in that image
Debarko De
 
Training course lect2
Training course lect2Training course lect2
Training course lect2
Noor Dhiya
 
Gradient Descent Code Implementation.pdf
Gradient Descent Code  Implementation.pdfGradient Descent Code  Implementation.pdf
Gradient Descent Code Implementation.pdf
MubashirHussain792093
 
Unsupervised Aspect Based Sentiment Analysis at Scale
Unsupervised Aspect Based Sentiment Analysis at ScaleUnsupervised Aspect Based Sentiment Analysis at Scale
Unsupervised Aspect Based Sentiment Analysis at Scale
Aaron (Ari) Bornstein
 
AIML4 CNN lab256 1hr (111-1).pdf
AIML4 CNN lab256 1hr (111-1).pdfAIML4 CNN lab256 1hr (111-1).pdf
AIML4 CNN lab256 1hr (111-1).pdf
ssuserb4d806
 
Diving into Deep Learning (Silicon Valley Code Camp 2017)
Diving into Deep Learning (Silicon Valley Code Camp 2017)Diving into Deep Learning (Silicon Valley Code Camp 2017)
Diving into Deep Learning (Silicon Valley Code Camp 2017)
Oswald Campesato
 
Need helping adding to the code below to plot the images from the firs.pdf
Need helping adding to the code below to plot the images from the firs.pdfNeed helping adding to the code below to plot the images from the firs.pdf
Need helping adding to the code below to plot the images from the firs.pdf
actexerode
 
29-kashyap-mask-detaction.pptx
29-kashyap-mask-detaction.pptx29-kashyap-mask-detaction.pptx
29-kashyap-mask-detaction.pptx
KASHYAPPATHAK7
 
maXbox starter65 machinelearning3
maXbox starter65 machinelearning3maXbox starter65 machinelearning3
maXbox starter65 machinelearning3
Max Kleiner
 
Assignment 6.1.pdf
Assignment 6.1.pdfAssignment 6.1.pdf
Assignment 6.1.pdf
dash41
 
Competition 1 (blog 1)
Competition 1 (blog 1)Competition 1 (blog 1)
Competition 1 (blog 1)
TarunPaparaju
 
Introduction to deep learning using python
Introduction to deep learning using pythonIntroduction to deep learning using python
Introduction to deep learning using python
Lino Coria
 
Ad

Recently uploaded (20)

#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
Ad

Image classification using cnn

  • 1. image classification using cnn [no math version] @debarko Practo
  • 2. whoami Debarko De Practo Talk : twitter/debarko Code : github/debarko Practo : [email protected] to expect Why use CNN and not regular image processing How to easily build one for your tasks How you can implement This is NOT a tutorial for any of the libraries involved Where to study more?
  • 3. Agenda Features Problem statement & Impact Trainable Feature Extractors What is a CNN Transfer Learning Libraries Projects Fanciness References
  • 12. Hand Crafted Feature Extractor Simple classifiers Trainable Feature Extractor Trainable Classifiers
  • 13. CNN
  • 14. if x input then y output
  • 15. x * W = y’
  • 19. CNN
  • 20. Convolution Layer (Dot Product) 1 0 1 0 1 0 1 0 1 Kernel
  • 23. Why now? 2006 DeepNet paper [Link] Computational power Libraries Lot of data → Imagenet GPU Power
  • 27. # Create first network with Keras from keras.models import Sequential from keras.layers import Dense import numpy
  • 28. # Create first network with Keras from keras.models import Sequential from keras.layers import Dense import numpy # fix random seed for reproducibility seed = 7 numpy.random.seed(seed)
  • 29. # Create first network with Keras from keras.models import Sequential from keras.layers import Dense import numpy # fix random seed for reproducibility seed = 7 numpy.random.seed(seed) # load pima indians dataset dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
  • 30. # Create first network with Keras from keras.models import Sequential from keras.layers import Dense import numpy # fix random seed for reproducibility seed = 7 numpy.random.seed(seed) # load pima indians dataset dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",") # split into input (X) and output (Y) variables X = dataset[:,0:8] Y = dataset[:,8]
  • 31. # create model model = Sequential()
  • 32. # create model model = Sequential() model.add(Dense(12, input_dim=8, init='uniform', activation='relu'))
  • 33. # create model model = Sequential() model.add(Dense(12, input_dim=8, init='uniform', activation='relu')) model.add(Dense(8, init='uniform', activation='relu'))
  • 34. # create model model = Sequential() model.add(Dense(12, input_dim=8, init='uniform', activation='relu')) model.add(Dense(8, init='uniform', activation='relu')) model.add(Dense(1, init='uniform', activation='sigmoid'))
  • 35. # create model model = Sequential() model.add(Dense(12, input_dim=8, init='uniform', activation='relu')) model.add(Dense(8, init='uniform', activation='relu')) model.add(Dense(1, init='uniform', activation='sigmoid')) # Compile model model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
  • 36. # create model model = Sequential() model.add(Dense(12, input_dim=8, init='uniform', activation='relu')) model.add(Dense(8, init='uniform', activation='relu')) model.add(Dense(1, init='uniform', activation='sigmoid')) # Compile model model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # Fit the model model.fit(X, Y, nb_epoch=150, batch_size=10)
  • 37. # create model model = Sequential() model.add(Dense(12, input_dim=8, init='uniform', activation='relu')) model.add(Dense(8, init='uniform', activation='relu')) model.add(Dense(1, init='uniform', activation='sigmoid')) # Compile model model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # Fit the model model.fit(X, Y, nb_epoch=150, batch_size=10) # evaluate the model scores = model.evaluate(X, Y)
  • 38. # create model model = Sequential() model.add(Dense(12, input_dim=8, init='uniform', activation='relu')) model.add(Dense(8, init='uniform', activation='relu')) model.add(Dense(1, init='uniform', activation='sigmoid')) # Compile model model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # Fit the model model.fit(X, Y, nb_epoch=150, batch_size=10) # evaluate the model scores = model.evaluate(X, Y) print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))
  • 40. # Create first network with Keras from keras.models import Sequential from keras.layers import Dense import numpy # fix random seed for reproducibility seed = 7 numpy.random.seed(seed) # load pima indians dataset dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",") # split into input (X) and output (Y) variables X = dataset[:,0:8] Y = dataset[:,8] # create model model = Sequential() model.add(Dense(12, input_dim=8, init='uniform', activation='relu')) model.add(Dense(8, init='uniform', activation='relu')) model.add(Dense(1, init='uniform', activation='sigmoid')) # Compile model model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # Fit the model model.fit(X, Y, nb_epoch=150, batch_size=10) # evaluate the model scores = model.evaluate(X, Y) print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))
  • 42. Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Visual Geometry Group ImageNet
  • 44. Few projects that you guys can easily work on Review sentiment analysis on Practo / Zomato / Flipkart Customer Conversion Analysis based on behavioural data Inventory Stocking based on Search queries w.r.t location Auto analysis and tagging of Support calls Transcribe audio based on audio in phone calls and create tickets automatically Any data understanding which can be spread out in a visual format or any time series data
  • 51. References Basic Upto Speed Slideshow Basic Lingo Catchup video for CNN CS231n → Defacto & Best Online Course Work for CNNs CS231n Assignments → http://cs231n.github.io/ Follow @karpathy @drfeifei Book Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms 1st Edition by Nikhil Buduma

Editor's Notes

  • #27: Keras + tensorflow
  • #28: http://machinelearningmastery.com/tutorial-first-neural-network-python-keras/
  • #29: http://machinelearningmastery.com/tutorial-first-neural-network-python-keras/
  • #30: http://machinelearningmastery.com/tutorial-first-neural-network-python-keras/
  • #31: http://machinelearningmastery.com/tutorial-first-neural-network-python-keras/
  • #32: http://machinelearningmastery.com/tutorial-first-neural-network-python-keras/
  • #33: http://machinelearningmastery.com/tutorial-first-neural-network-python-keras/
  • #34: http://machinelearningmastery.com/tutorial-first-neural-network-python-keras/
  • #35: http://machinelearningmastery.com/tutorial-first-neural-network-python-keras/
  • #36: http://machinelearningmastery.com/tutorial-first-neural-network-python-keras/
  • #37: http://machinelearningmastery.com/tutorial-first-neural-network-python-keras/
  • #38: http://machinelearningmastery.com/tutorial-first-neural-network-python-keras/
  • #39: http://machinelearningmastery.com/tutorial-first-neural-network-python-keras/
  • #40: http://machinelearningmastery.com/tutorial-first-neural-network-python-keras/
  • #41: http://machinelearningmastery.com/tutorial-first-neural-network-python-keras/
  • #42: http://machinelearningmastery.com/tutorial-first-neural-network-python-keras/