SlideShare a Scribd company logo
© Copyright 2014 Pivotal. All rights reserved.© Copyright 2014 Pivotal. All rights reserved.
A Stock Prediction System using
open-source software
Fred Melo
fmelo@pivotal.io
@fredmelo_br
1
William Markito
wmarkito@pivotal.io
@william_markito
IMCSummit 2015 - Day 2 Developer Track - Implementing a Highly Scalable In-Memory Stock Prediction System with Apache Geode, R and Spring XD
© Copyright 2014 Pivotal. All rights reserved.
It's all about DATA
Data Sources
Look for patterns
Prediction
© Copyright 2014 Pivotal. All rights reserved.
© Copyright 2014 Pivotal. All rights reserved. 5
Machine Learning is the answer
Neural Networks
Clustering Genetic Algorithms
© Copyright 2014 Pivotal. All rights reserved.
Train with historical dataset
Apply model to the new input
Applying Machine Learning
Hard to add new data sources
Why?
Hard to scale
Why so hard?
Hard to make it real-time
Traditional models are reactive and static
HDFS
Data Lake
Store Analytics
Hard to change
Labor intensive
Inefficient
No real-time information
ETL based
Data-source specific
Stream-based, real-time closed-loop analytics are needed
HDFSData Lake
Expert System /
Machine Learning
In-Memory Real-
Time Data
Continuous Learning
Continuous Improvement
Continuous Adapting
Data Stream Pipeline
Multiple Data Sources
Real-Time Processing
Store Everything
Info
Analysis
Look at past trends
(for similar input)
Evaluate current input
Score / Predict
Neural Network
How can it be addressed?
Info
Analysis
Filter
[ json ]
Neural Network
How can it be addressed?
Info
Analysis
Filter Enrich
Neural Network
How can it be addressed?
Info
Analysis
Neural Network
Filter Enrich Transform
How can it be addressed?
Info
Analysis
Filter Enrich Transform
Neural Network
How can it be addressed?
Info
Analysis
Filter Enrich Transform
Transform
Neural Network
How can it be addressed?
Neural Network
In-Memory Data Grid
Real-time
scoring
How can it be addressed?
Train
Neural Network
In-Memory Data Grid
Front-end
Update Push
How can it be addressed?
Ingest Transform Sink
SpringXD
Store / Analyze
Fast Data
Distributed Computing
Predict / Machine Learning
Other Sources and
Destinations
JMS
Streaming real-time analytics architecture
Transform Sink
SpringXD
Extensible
Open-Source
Fault-Tolerant
Horizontally Scalable
Cloud-Native
HTTP
Machine Learning
Fast Data
Filter
Predict Sink
HTTP
Split
Dashboard
Push
Demo Architecture
SpringXD
INGEST / SINK PROCESS ANALYZE
• Little or no coding required
• Dozens of built-in connectors
• Seamless integration with Kafka,
Sqoop
• Create new connectors easily
using Spring
• Call Spark, Reactor or RxJava
• Built-in configurable filtering,
splitting and transformation
• Out-of-box configurable jobs for
batch processing
• Import and invoke PMML jobs
easily
• Call Python, R, Madlib and other
tools
• Built-in configurable counters and
gauges
Data Stream Pipelining
SpringXD
XD NodesXD NodesXD NodesXD Nodes
Ingest
SpringXD
Split Filter Transform Sink
XD admin
XD Nodes
Ingest Split Filter Transform Sink
Stream
Deployment
Messaging
Scale-Out and HA Architecture
Transform Sink
SpringXD
Extensible
Open-Source
Fault-Tolerant
Horizontally Scalable
Cloud-Native
HTTP
Machine Learning
Fast Data
Filter
Predict Sink
HTTP
Split
Dashboard
Push
Demo Architecture
Geode client-server architecture
GemFire'Server'
Par,,oned'
Region'
GemFire'Server'
Par,,oned'
Region'
GemFire'
Locator'
!
GemFire'Client'
Local'
Cache'
Connec,on'pool'
Send!address!and!load!
informa.on!to!locator!
Send,!receive!
cache!data.!
Receive!server!
events!
Request!server!informa.on!from!
locator.!
Locator!responds!with!least!
loaded!server!address.!
Partitioned Regions
GemFire Server1 GemFire Server2
Primary'to'redundant'replica1on'
Primary
0 2 4 6
Redundant
1 3 5 7
Region A Region B Region A Region B
Primary
1 3 5 7
Redundant
0 2 4 6
Event handling
GemFire'Server'
Region'A'
'
''''''''''
subscrip4on
Region'A'
pool6name=ServerPool'
'
'''''''''
X
GemFire'Client'1'
pool'"ServerPool"'
(with'or'without''
subscrip4ons'enabled)
Region'A'
pool6name=ServerPool'
'
'''''''''
X
GemFire'Client'2'
pool'"ServerPool"'
(with'subscrip4ons'enabled,'
'interest'register'in'X,'receiveValues=true)
X
Distributed'System
Update'/'Create
1
2
3 3
4
X
The pool propagates the
event to the cache server,
where the region is updated.
The server distributes the event to
its peers and also places it into
the subscription queue for Client 2.
Transform Sink
SpringXD
Extensible
Open-Source
Fault-Tolerant
Horizontally Scalable
Cloud-Native
HTTP
Machine Learning
Fast Data
Filter
Predict Sink
HTTP
Split
Dashboard
Push
Demo Architecture
Neural Networks
Neural Networks
medium
avg (x+1)
relative
strength (x)
medium avg (x)
price(x)
Neural Network
Neural Network
Transform Sink
SpringXD
Extensible
Open-Source
Fault-Tolerant
Horizontally Scalable
Cloud-Native
HTTP
Machine Learning
Fast Data
Filter
Predict Sink
HTTP
Split
Dashboard
Push
Demo Architecture
IMCSummit 2015 - Day 2 Developer Track - Implementing a Highly Scalable In-Memory Stock Prediction System with Apache Geode, R and Spring XD
Demo Time
SpringXD
shell - R
Transformer
geode-json
client
geode-json
client
http-client
http-server
obj-to-json
splitter
splitter
Simulator
tap
SpringXD
http://projectgeode.org
http://projects.spring.io/spring-xd
https://registry.hub.docker.com/
http://www.r-project.org
IMCSummit 2015 - Day 2 Developer Track - Implementing a Highly Scalable In-Memory Stock Prediction System with Apache Geode, R and Spring XD
A NEW PLATFORM FOR A NEW ERA
Ad

More Related Content

What's hot (20)

Dynamic DDL: Adding structure to streaming IoT data on the fly
Dynamic DDL: Adding structure to streaming IoT data on the flyDynamic DDL: Adding structure to streaming IoT data on the fly
Dynamic DDL: Adding structure to streaming IoT data on the fly
DataWorks Summit
 
Jethro data meetup index base sql on hadoop - oct-2014
Jethro data meetup    index base sql on hadoop - oct-2014Jethro data meetup    index base sql on hadoop - oct-2014
Jethro data meetup index base sql on hadoop - oct-2014
Eli Singer
 
Accelerating SparkML Workloads on the Intel Xeon+FPGA Platform with Srivatsan...
Accelerating SparkML Workloads on the Intel Xeon+FPGA Platform with Srivatsan...Accelerating SparkML Workloads on the Intel Xeon+FPGA Platform with Srivatsan...
Accelerating SparkML Workloads on the Intel Xeon+FPGA Platform with Srivatsan...
Databricks
 
Getting Spark ready for real-time, operational analytics
Getting Spark ready for real-time, operational analyticsGetting Spark ready for real-time, operational analytics
Getting Spark ready for real-time, operational analytics
airisData
 
Cloudy with a chance of Hadoop - real world considerations
Cloudy with a chance of Hadoop - real world considerationsCloudy with a chance of Hadoop - real world considerations
Cloudy with a chance of Hadoop - real world considerations
DataWorks Summit
 
How to Use Apache Zeppelin with HWX HDB
How to Use Apache Zeppelin with HWX HDBHow to Use Apache Zeppelin with HWX HDB
How to Use Apache Zeppelin with HWX HDB
Hortonworks
 
The EDW Ecosystem
The EDW EcosystemThe EDW Ecosystem
The EDW Ecosystem
DataWorks Summit/Hadoop Summit
 
Spark SQL: Another 16x Faster After Tungsten: Spark Summit East talk by Brad ...
Spark SQL: Another 16x Faster After Tungsten: Spark Summit East talk by Brad ...Spark SQL: Another 16x Faster After Tungsten: Spark Summit East talk by Brad ...
Spark SQL: Another 16x Faster After Tungsten: Spark Summit East talk by Brad ...
Spark Summit
 
HPE Keynote Hadoop Summit San Jose 2016
HPE Keynote Hadoop Summit San Jose 2016HPE Keynote Hadoop Summit San Jose 2016
HPE Keynote Hadoop Summit San Jose 2016
DataWorks Summit/Hadoop Summit
 
Insights into Real-world Data Management Challenges
Insights into Real-world Data Management ChallengesInsights into Real-world Data Management Challenges
Insights into Real-world Data Management Challenges
DataWorks Summit
 
Accelerate Your Big Data Analytics Efforts with SAS and Hadoop
Accelerate Your Big Data Analytics Efforts with SAS and HadoopAccelerate Your Big Data Analytics Efforts with SAS and Hadoop
Accelerate Your Big Data Analytics Efforts with SAS and Hadoop
DataWorks Summit
 
Oracle database 12c_and_DevOps
Oracle database 12c_and_DevOpsOracle database 12c_and_DevOps
Oracle database 12c_and_DevOps
Maria Colgan
 
Getting involved with Open Source at the ASF
Getting involved with Open Source at the ASFGetting involved with Open Source at the ASF
Getting involved with Open Source at the ASF
Hortonworks
 
IBM Power Systems Announcement Update
IBM Power Systems Announcement UpdateIBM Power Systems Announcement Update
IBM Power Systems Announcement Update
David Spurway
 
Oracle Big data at work
Oracle Big data at workOracle Big data at work
Oracle Big data at work
solarisyougood
 
Apache Deep Learning 201
Apache Deep Learning 201Apache Deep Learning 201
Apache Deep Learning 201
DataWorks Summit
 
Accelerating Big Data Insights
Accelerating Big Data InsightsAccelerating Big Data Insights
Accelerating Big Data Insights
DataWorks Summit
 
Meetup Oracle Database MAD: 2.1 Data Management Trends: SQL, NoSQL y Big Data
Meetup Oracle Database MAD: 2.1 Data Management Trends: SQL, NoSQL y Big Data Meetup Oracle Database MAD: 2.1 Data Management Trends: SQL, NoSQL y Big Data
Meetup Oracle Database MAD: 2.1 Data Management Trends: SQL, NoSQL y Big Data
avanttic Consultoría Tecnológica
 
Apache Ignite vs Alluxio: Memory Speed Big Data Analytics
Apache Ignite vs Alluxio: Memory Speed Big Data AnalyticsApache Ignite vs Alluxio: Memory Speed Big Data Analytics
Apache Ignite vs Alluxio: Memory Speed Big Data Analytics
DataWorks Summit
 
Format Wars: from VHS and Beta to Avro and Parquet
Format Wars: from VHS and Beta to Avro and ParquetFormat Wars: from VHS and Beta to Avro and Parquet
Format Wars: from VHS and Beta to Avro and Parquet
DataWorks Summit
 
Dynamic DDL: Adding structure to streaming IoT data on the fly
Dynamic DDL: Adding structure to streaming IoT data on the flyDynamic DDL: Adding structure to streaming IoT data on the fly
Dynamic DDL: Adding structure to streaming IoT data on the fly
DataWorks Summit
 
Jethro data meetup index base sql on hadoop - oct-2014
Jethro data meetup    index base sql on hadoop - oct-2014Jethro data meetup    index base sql on hadoop - oct-2014
Jethro data meetup index base sql on hadoop - oct-2014
Eli Singer
 
Accelerating SparkML Workloads on the Intel Xeon+FPGA Platform with Srivatsan...
Accelerating SparkML Workloads on the Intel Xeon+FPGA Platform with Srivatsan...Accelerating SparkML Workloads on the Intel Xeon+FPGA Platform with Srivatsan...
Accelerating SparkML Workloads on the Intel Xeon+FPGA Platform with Srivatsan...
Databricks
 
Getting Spark ready for real-time, operational analytics
Getting Spark ready for real-time, operational analyticsGetting Spark ready for real-time, operational analytics
Getting Spark ready for real-time, operational analytics
airisData
 
Cloudy with a chance of Hadoop - real world considerations
Cloudy with a chance of Hadoop - real world considerationsCloudy with a chance of Hadoop - real world considerations
Cloudy with a chance of Hadoop - real world considerations
DataWorks Summit
 
How to Use Apache Zeppelin with HWX HDB
How to Use Apache Zeppelin with HWX HDBHow to Use Apache Zeppelin with HWX HDB
How to Use Apache Zeppelin with HWX HDB
Hortonworks
 
Spark SQL: Another 16x Faster After Tungsten: Spark Summit East talk by Brad ...
Spark SQL: Another 16x Faster After Tungsten: Spark Summit East talk by Brad ...Spark SQL: Another 16x Faster After Tungsten: Spark Summit East talk by Brad ...
Spark SQL: Another 16x Faster After Tungsten: Spark Summit East talk by Brad ...
Spark Summit
 
Insights into Real-world Data Management Challenges
Insights into Real-world Data Management ChallengesInsights into Real-world Data Management Challenges
Insights into Real-world Data Management Challenges
DataWorks Summit
 
Accelerate Your Big Data Analytics Efforts with SAS and Hadoop
Accelerate Your Big Data Analytics Efforts with SAS and HadoopAccelerate Your Big Data Analytics Efforts with SAS and Hadoop
Accelerate Your Big Data Analytics Efforts with SAS and Hadoop
DataWorks Summit
 
Oracle database 12c_and_DevOps
Oracle database 12c_and_DevOpsOracle database 12c_and_DevOps
Oracle database 12c_and_DevOps
Maria Colgan
 
Getting involved with Open Source at the ASF
Getting involved with Open Source at the ASFGetting involved with Open Source at the ASF
Getting involved with Open Source at the ASF
Hortonworks
 
IBM Power Systems Announcement Update
IBM Power Systems Announcement UpdateIBM Power Systems Announcement Update
IBM Power Systems Announcement Update
David Spurway
 
Oracle Big data at work
Oracle Big data at workOracle Big data at work
Oracle Big data at work
solarisyougood
 
Accelerating Big Data Insights
Accelerating Big Data InsightsAccelerating Big Data Insights
Accelerating Big Data Insights
DataWorks Summit
 
Meetup Oracle Database MAD: 2.1 Data Management Trends: SQL, NoSQL y Big Data
Meetup Oracle Database MAD: 2.1 Data Management Trends: SQL, NoSQL y Big Data Meetup Oracle Database MAD: 2.1 Data Management Trends: SQL, NoSQL y Big Data
Meetup Oracle Database MAD: 2.1 Data Management Trends: SQL, NoSQL y Big Data
avanttic Consultoría Tecnológica
 
Apache Ignite vs Alluxio: Memory Speed Big Data Analytics
Apache Ignite vs Alluxio: Memory Speed Big Data AnalyticsApache Ignite vs Alluxio: Memory Speed Big Data Analytics
Apache Ignite vs Alluxio: Memory Speed Big Data Analytics
DataWorks Summit
 
Format Wars: from VHS and Beta to Avro and Parquet
Format Wars: from VHS and Beta to Avro and ParquetFormat Wars: from VHS and Beta to Avro and Parquet
Format Wars: from VHS and Beta to Avro and Parquet
DataWorks Summit
 

Viewers also liked (20)

OSGeo와 Open Data
OSGeo와 Open DataOSGeo와 Open Data
OSGeo와 Open Data
r-kor
 
황성수 공공데이터 개방과 공공이슈 해결
황성수 공공데이터 개방과 공공이슈 해결황성수 공공데이터 개방과 공공이슈 해결
황성수 공공데이터 개방과 공공이슈 해결
r-kor
 
Deciphering voice of customer through speech analytics
Deciphering voice of customer through speech analyticsDeciphering voice of customer through speech analytics
Deciphering voice of customer through speech analytics
R Systems International
 
Distributed R: The Next Generation Platform for Predictive Analytics
Distributed R: The Next Generation Platform for Predictive AnalyticsDistributed R: The Next Generation Platform for Predictive Analytics
Distributed R: The Next Generation Platform for Predictive Analytics
Jorge Martinez de Salinas
 
Optimizing Facebook Campaigns with R
Optimizing Facebook Campaigns with ROptimizing Facebook Campaigns with R
Optimizing Facebook Campaigns with R
Domino Data Lab
 
R lecture oga
R lecture ogaR lecture oga
R lecture oga
Osamu Ogasawara
 
The Next List: R&D Breakthroughs that are Changing the World
The Next List: R&D Breakthroughs that are Changing the WorldThe Next List: R&D Breakthroughs that are Changing the World
The Next List: R&D Breakthroughs that are Changing the World
GE
 
Implementing a highly scalable stock prediction system with R, Geode, SpringX...
Implementing a highly scalable stock prediction system with R, Geode, SpringX...Implementing a highly scalable stock prediction system with R, Geode, SpringX...
Implementing a highly scalable stock prediction system with R, Geode, SpringX...
William Markito Oliveira
 
Cloud Conf 2015 - Develop and Deploy IOT Applications
Cloud Conf 2015 - Develop and Deploy IOT ApplicationsCloud Conf 2015 - Develop and Deploy IOT Applications
Cloud Conf 2015 - Develop and Deploy IOT Applications
Corley S.r.l.
 
오픈데이터와 오픈소스 소프트웨어를 이용한 의료이용정보의 시각화
오픈데이터와 오픈소스 소프트웨어를 이용한 의료이용정보의 시각화오픈데이터와 오픈소스 소프트웨어를 이용한 의료이용정보의 시각화
오픈데이터와 오픈소스 소프트웨어를 이용한 의료이용정보의 시각화
r-kor
 
구조화된 데이터: Schema.org와 Microdata, RDFa, JSON-LD
구조화된 데이터: Schema.org와 Microdata, RDFa, JSON-LD구조화된 데이터: Schema.org와 Microdata, RDFa, JSON-LD
구조화된 데이터: Schema.org와 Microdata, RDFa, JSON-LD
r-kor
 
Trading System Design
Trading System DesignTrading System Design
Trading System Design
Marketcalls
 
Trading sentimental analysis
Trading sentimental analysisTrading sentimental analysis
Trading sentimental analysis
Marketcalls
 
II-SDV 2016 Patrick Beaucamp - Data Science with R and Vanilla Air
II-SDV 2016 Patrick Beaucamp - Data Science with R and Vanilla AirII-SDV 2016 Patrick Beaucamp - Data Science with R and Vanilla Air
II-SDV 2016 Patrick Beaucamp - Data Science with R and Vanilla Air
Dr. Haxel Consult
 
Language R
Language RLanguage R
Language R
Girish Khanzode
 
Taking R Analytics to SQL and the Cloud
Taking R Analytics to SQL and the CloudTaking R Analytics to SQL and the Cloud
Taking R Analytics to SQL and the Cloud
Revolution Analytics
 
H2O World - Intro to R, Python, and Flow - Amy Wang
H2O World - Intro to R, Python, and Flow - Amy WangH2O World - Intro to R, Python, and Flow - Amy Wang
H2O World - Intro to R, Python, and Flow - Amy Wang
Sri Ambati
 
Big data analysis with R and Apache Tajo (in Korean)
Big data analysis with R and Apache Tajo (in Korean)Big data analysis with R and Apache Tajo (in Korean)
Big data analysis with R and Apache Tajo (in Korean)
Gruter
 
Introduction to R for Data Science :: Session 4
Introduction to R for Data Science :: Session 4Introduction to R for Data Science :: Session 4
Introduction to R for Data Science :: Session 4
Goran S. Milovanovic
 
3. 마이크로 서비스 아키텍쳐
3. 마이크로 서비스 아키텍쳐3. 마이크로 서비스 아키텍쳐
3. 마이크로 서비스 아키텍쳐
Terry Cho
 
OSGeo와 Open Data
OSGeo와 Open DataOSGeo와 Open Data
OSGeo와 Open Data
r-kor
 
황성수 공공데이터 개방과 공공이슈 해결
황성수 공공데이터 개방과 공공이슈 해결황성수 공공데이터 개방과 공공이슈 해결
황성수 공공데이터 개방과 공공이슈 해결
r-kor
 
Deciphering voice of customer through speech analytics
Deciphering voice of customer through speech analyticsDeciphering voice of customer through speech analytics
Deciphering voice of customer through speech analytics
R Systems International
 
Distributed R: The Next Generation Platform for Predictive Analytics
Distributed R: The Next Generation Platform for Predictive AnalyticsDistributed R: The Next Generation Platform for Predictive Analytics
Distributed R: The Next Generation Platform for Predictive Analytics
Jorge Martinez de Salinas
 
Optimizing Facebook Campaigns with R
Optimizing Facebook Campaigns with ROptimizing Facebook Campaigns with R
Optimizing Facebook Campaigns with R
Domino Data Lab
 
The Next List: R&D Breakthroughs that are Changing the World
The Next List: R&D Breakthroughs that are Changing the WorldThe Next List: R&D Breakthroughs that are Changing the World
The Next List: R&D Breakthroughs that are Changing the World
GE
 
Implementing a highly scalable stock prediction system with R, Geode, SpringX...
Implementing a highly scalable stock prediction system with R, Geode, SpringX...Implementing a highly scalable stock prediction system with R, Geode, SpringX...
Implementing a highly scalable stock prediction system with R, Geode, SpringX...
William Markito Oliveira
 
Cloud Conf 2015 - Develop and Deploy IOT Applications
Cloud Conf 2015 - Develop and Deploy IOT ApplicationsCloud Conf 2015 - Develop and Deploy IOT Applications
Cloud Conf 2015 - Develop and Deploy IOT Applications
Corley S.r.l.
 
오픈데이터와 오픈소스 소프트웨어를 이용한 의료이용정보의 시각화
오픈데이터와 오픈소스 소프트웨어를 이용한 의료이용정보의 시각화오픈데이터와 오픈소스 소프트웨어를 이용한 의료이용정보의 시각화
오픈데이터와 오픈소스 소프트웨어를 이용한 의료이용정보의 시각화
r-kor
 
구조화된 데이터: Schema.org와 Microdata, RDFa, JSON-LD
구조화된 데이터: Schema.org와 Microdata, RDFa, JSON-LD구조화된 데이터: Schema.org와 Microdata, RDFa, JSON-LD
구조화된 데이터: Schema.org와 Microdata, RDFa, JSON-LD
r-kor
 
Trading System Design
Trading System DesignTrading System Design
Trading System Design
Marketcalls
 
Trading sentimental analysis
Trading sentimental analysisTrading sentimental analysis
Trading sentimental analysis
Marketcalls
 
II-SDV 2016 Patrick Beaucamp - Data Science with R and Vanilla Air
II-SDV 2016 Patrick Beaucamp - Data Science with R and Vanilla AirII-SDV 2016 Patrick Beaucamp - Data Science with R and Vanilla Air
II-SDV 2016 Patrick Beaucamp - Data Science with R and Vanilla Air
Dr. Haxel Consult
 
Taking R Analytics to SQL and the Cloud
Taking R Analytics to SQL and the CloudTaking R Analytics to SQL and the Cloud
Taking R Analytics to SQL and the Cloud
Revolution Analytics
 
H2O World - Intro to R, Python, and Flow - Amy Wang
H2O World - Intro to R, Python, and Flow - Amy WangH2O World - Intro to R, Python, and Flow - Amy Wang
H2O World - Intro to R, Python, and Flow - Amy Wang
Sri Ambati
 
Big data analysis with R and Apache Tajo (in Korean)
Big data analysis with R and Apache Tajo (in Korean)Big data analysis with R and Apache Tajo (in Korean)
Big data analysis with R and Apache Tajo (in Korean)
Gruter
 
Introduction to R for Data Science :: Session 4
Introduction to R for Data Science :: Session 4Introduction to R for Data Science :: Session 4
Introduction to R for Data Science :: Session 4
Goran S. Milovanovic
 
3. 마이크로 서비스 아키텍쳐
3. 마이크로 서비스 아키텍쳐3. 마이크로 서비스 아키텍쳐
3. 마이크로 서비스 아키텍쳐
Terry Cho
 
Ad

Similar to IMCSummit 2015 - Day 2 Developer Track - Implementing a Highly Scalable In-Memory Stock Prediction System with Apache Geode, R and Spring XD (20)

A Stock Prediction System using Open-Source Software
A Stock Prediction System using Open-Source SoftwareA Stock Prediction System using Open-Source Software
A Stock Prediction System using Open-Source Software
Fred Melo
 
ApacheCon 2015 - A Stock Prediction System Using OSS
ApacheCon 2015 - A Stock Prediction System Using OSSApacheCon 2015 - A Stock Prediction System Using OSS
ApacheCon 2015 - A Stock Prediction System Using OSS
William Markito Oliveira
 
Bring Your SAP and Enterprise Data to Hadoop, Kafka, and the Cloud
Bring Your SAP and Enterprise Data to Hadoop, Kafka, and the CloudBring Your SAP and Enterprise Data to Hadoop, Kafka, and the Cloud
Bring Your SAP and Enterprise Data to Hadoop, Kafka, and the Cloud
DataWorks Summit
 
Engineering Machine Learning Data Pipelines Series: Streaming New Data as It ...
Engineering Machine Learning Data Pipelines Series: Streaming New Data as It ...Engineering Machine Learning Data Pipelines Series: Streaming New Data as It ...
Engineering Machine Learning Data Pipelines Series: Streaming New Data as It ...
Precisely
 
Alten calsoft labs analytics service offerings
Alten calsoft labs   analytics service offeringsAlten calsoft labs   analytics service offerings
Alten calsoft labs analytics service offerings
Sandeep Vyas
 
Intelligent Integration OOW2017 - Jeff Pollock
Intelligent Integration OOW2017 - Jeff PollockIntelligent Integration OOW2017 - Jeff Pollock
Intelligent Integration OOW2017 - Jeff Pollock
Jeffrey T. Pollock
 
SQL Engines for Hadoop - The case for Impala
SQL Engines for Hadoop - The case for ImpalaSQL Engines for Hadoop - The case for Impala
SQL Engines for Hadoop - The case for Impala
markgrover
 
Trafodion overview
Trafodion overviewTrafodion overview
Trafodion overview
Rohit Jain
 
Gimel and PayPal Notebooks @ TDWI Leadership Summit Orlando
Gimel and PayPal Notebooks @ TDWI Leadership Summit OrlandoGimel and PayPal Notebooks @ TDWI Leadership Summit Orlando
Gimel and PayPal Notebooks @ TDWI Leadership Summit Orlando
Romit Mehta
 
ETL as a Platform: Pandora Plays Nicely Everywhere with Real-Time Data Pipelines
ETL as a Platform: Pandora Plays Nicely Everywhere with Real-Time Data PipelinesETL as a Platform: Pandora Plays Nicely Everywhere with Real-Time Data Pipelines
ETL as a Platform: Pandora Plays Nicely Everywhere with Real-Time Data Pipelines
confluent
 
Querona Presentation 2018
Querona Presentation 2018Querona Presentation 2018
Querona Presentation 2018
Synergo!
 
Big Data Applications Made Easy: Fact Or Fiction?
Big Data Applications Made Easy: Fact Or Fiction?Big Data Applications Made Easy: Fact Or Fiction?
Big Data Applications Made Easy: Fact Or Fiction?
Glenn Renfro
 
SnappyData Toronto Meetup Nov 2017
SnappyData Toronto Meetup Nov 2017SnappyData Toronto Meetup Nov 2017
SnappyData Toronto Meetup Nov 2017
SnappyData
 
Building Scalable Big Data Infrastructure Using Open Source Software Presenta...
Building Scalable Big Data Infrastructure Using Open Source Software Presenta...Building Scalable Big Data Infrastructure Using Open Source Software Presenta...
Building Scalable Big Data Infrastructure Using Open Source Software Presenta...
ssuserd3a367
 
Sparkflows.io
Sparkflows.ioSparkflows.io
Sparkflows.io
sparkflows
 
Building Fast Applications for Streaming Data
Building Fast Applications for Streaming DataBuilding Fast Applications for Streaming Data
Building Fast Applications for Streaming Data
freshdatabos
 
Simplifying Real-Time Architectures for IoT with Apache Kudu
Simplifying Real-Time Architectures for IoT with Apache KuduSimplifying Real-Time Architectures for IoT with Apache Kudu
Simplifying Real-Time Architectures for IoT with Apache Kudu
Cloudera, Inc.
 
Pivotal deep dive_on_pivotal_hd_world_class_hdfs_platform
Pivotal deep dive_on_pivotal_hd_world_class_hdfs_platformPivotal deep dive_on_pivotal_hd_world_class_hdfs_platform
Pivotal deep dive_on_pivotal_hd_world_class_hdfs_platform
EMC
 
Cardinality-HL-Overview
Cardinality-HL-OverviewCardinality-HL-Overview
Cardinality-HL-Overview
Harry Frost
 
Horses for Courses: Database Roundtable
Horses for Courses: Database RoundtableHorses for Courses: Database Roundtable
Horses for Courses: Database Roundtable
Eric Kavanagh
 
A Stock Prediction System using Open-Source Software
A Stock Prediction System using Open-Source SoftwareA Stock Prediction System using Open-Source Software
A Stock Prediction System using Open-Source Software
Fred Melo
 
ApacheCon 2015 - A Stock Prediction System Using OSS
ApacheCon 2015 - A Stock Prediction System Using OSSApacheCon 2015 - A Stock Prediction System Using OSS
ApacheCon 2015 - A Stock Prediction System Using OSS
William Markito Oliveira
 
Bring Your SAP and Enterprise Data to Hadoop, Kafka, and the Cloud
Bring Your SAP and Enterprise Data to Hadoop, Kafka, and the CloudBring Your SAP and Enterprise Data to Hadoop, Kafka, and the Cloud
Bring Your SAP and Enterprise Data to Hadoop, Kafka, and the Cloud
DataWorks Summit
 
Engineering Machine Learning Data Pipelines Series: Streaming New Data as It ...
Engineering Machine Learning Data Pipelines Series: Streaming New Data as It ...Engineering Machine Learning Data Pipelines Series: Streaming New Data as It ...
Engineering Machine Learning Data Pipelines Series: Streaming New Data as It ...
Precisely
 
Alten calsoft labs analytics service offerings
Alten calsoft labs   analytics service offeringsAlten calsoft labs   analytics service offerings
Alten calsoft labs analytics service offerings
Sandeep Vyas
 
Intelligent Integration OOW2017 - Jeff Pollock
Intelligent Integration OOW2017 - Jeff PollockIntelligent Integration OOW2017 - Jeff Pollock
Intelligent Integration OOW2017 - Jeff Pollock
Jeffrey T. Pollock
 
SQL Engines for Hadoop - The case for Impala
SQL Engines for Hadoop - The case for ImpalaSQL Engines for Hadoop - The case for Impala
SQL Engines for Hadoop - The case for Impala
markgrover
 
Trafodion overview
Trafodion overviewTrafodion overview
Trafodion overview
Rohit Jain
 
Gimel and PayPal Notebooks @ TDWI Leadership Summit Orlando
Gimel and PayPal Notebooks @ TDWI Leadership Summit OrlandoGimel and PayPal Notebooks @ TDWI Leadership Summit Orlando
Gimel and PayPal Notebooks @ TDWI Leadership Summit Orlando
Romit Mehta
 
ETL as a Platform: Pandora Plays Nicely Everywhere with Real-Time Data Pipelines
ETL as a Platform: Pandora Plays Nicely Everywhere with Real-Time Data PipelinesETL as a Platform: Pandora Plays Nicely Everywhere with Real-Time Data Pipelines
ETL as a Platform: Pandora Plays Nicely Everywhere with Real-Time Data Pipelines
confluent
 
Querona Presentation 2018
Querona Presentation 2018Querona Presentation 2018
Querona Presentation 2018
Synergo!
 
Big Data Applications Made Easy: Fact Or Fiction?
Big Data Applications Made Easy: Fact Or Fiction?Big Data Applications Made Easy: Fact Or Fiction?
Big Data Applications Made Easy: Fact Or Fiction?
Glenn Renfro
 
SnappyData Toronto Meetup Nov 2017
SnappyData Toronto Meetup Nov 2017SnappyData Toronto Meetup Nov 2017
SnappyData Toronto Meetup Nov 2017
SnappyData
 
Building Scalable Big Data Infrastructure Using Open Source Software Presenta...
Building Scalable Big Data Infrastructure Using Open Source Software Presenta...Building Scalable Big Data Infrastructure Using Open Source Software Presenta...
Building Scalable Big Data Infrastructure Using Open Source Software Presenta...
ssuserd3a367
 
Building Fast Applications for Streaming Data
Building Fast Applications for Streaming DataBuilding Fast Applications for Streaming Data
Building Fast Applications for Streaming Data
freshdatabos
 
Simplifying Real-Time Architectures for IoT with Apache Kudu
Simplifying Real-Time Architectures for IoT with Apache KuduSimplifying Real-Time Architectures for IoT with Apache Kudu
Simplifying Real-Time Architectures for IoT with Apache Kudu
Cloudera, Inc.
 
Pivotal deep dive_on_pivotal_hd_world_class_hdfs_platform
Pivotal deep dive_on_pivotal_hd_world_class_hdfs_platformPivotal deep dive_on_pivotal_hd_world_class_hdfs_platform
Pivotal deep dive_on_pivotal_hd_world_class_hdfs_platform
EMC
 
Cardinality-HL-Overview
Cardinality-HL-OverviewCardinality-HL-Overview
Cardinality-HL-Overview
Harry Frost
 
Horses for Courses: Database Roundtable
Horses for Courses: Database RoundtableHorses for Courses: Database Roundtable
Horses for Courses: Database Roundtable
Eric Kavanagh
 
Ad

More from In-Memory Computing Summit (20)

IMC Summit 2016 Breakout - Per Minoborg - Work with Multiple Hot Terabytes in...
IMC Summit 2016 Breakout - Per Minoborg - Work with Multiple Hot Terabytes in...IMC Summit 2016 Breakout - Per Minoborg - Work with Multiple Hot Terabytes in...
IMC Summit 2016 Breakout - Per Minoborg - Work with Multiple Hot Terabytes in...
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Henning Andersen - Using Lock-free and Wait-free I...
IMC Summit 2016 Breakout - Henning Andersen - Using Lock-free and Wait-free I...IMC Summit 2016 Breakout - Henning Andersen - Using Lock-free and Wait-free I...
IMC Summit 2016 Breakout - Henning Andersen - Using Lock-free and Wait-free I...
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Roman Shtykh - Apache Ignite as a Data Processing Hub
IMC Summit 2016 Breakout - Roman Shtykh - Apache Ignite as a Data Processing HubIMC Summit 2016 Breakout - Roman Shtykh - Apache Ignite as a Data Processing Hub
IMC Summit 2016 Breakout - Roman Shtykh - Apache Ignite as a Data Processing Hub
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Nikita Shamgunov - Propelling IoT Innovation with ...
IMC Summit 2016 Breakout - Nikita Shamgunov - Propelling IoT Innovation with ...IMC Summit 2016 Breakout - Nikita Shamgunov - Propelling IoT Innovation with ...
IMC Summit 2016 Breakout - Nikita Shamgunov - Propelling IoT Innovation with ...
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Matt Coventon - Test Driving Streaming and CEP on ...
IMC Summit 2016 Breakout - Matt Coventon - Test Driving Streaming and CEP on ...IMC Summit 2016 Breakout - Matt Coventon - Test Driving Streaming and CEP on ...
IMC Summit 2016 Breakout - Matt Coventon - Test Driving Streaming and CEP on ...
In-Memory Computing Summit
 
IMC Summit 2016 Innovation - Derek Nelson - PipelineDB: The Streaming-SQL Dat...
IMC Summit 2016 Innovation - Derek Nelson - PipelineDB: The Streaming-SQL Dat...IMC Summit 2016 Innovation - Derek Nelson - PipelineDB: The Streaming-SQL Dat...
IMC Summit 2016 Innovation - Derek Nelson - PipelineDB: The Streaming-SQL Dat...
In-Memory Computing Summit
 
IMC Summit 2016 Innovation - Dennis Duckworth - Lambda-B-Gone: The In-memory ...
IMC Summit 2016 Innovation - Dennis Duckworth - Lambda-B-Gone: The In-memory ...IMC Summit 2016 Innovation - Dennis Duckworth - Lambda-B-Gone: The In-memory ...
IMC Summit 2016 Innovation - Dennis Duckworth - Lambda-B-Gone: The In-memory ...
In-Memory Computing Summit
 
IMC Summit 2016 Innovation - Steve Wilkes - Tap Into Your Enterprise – Why Da...
IMC Summit 2016 Innovation - Steve Wilkes - Tap Into Your Enterprise – Why Da...IMC Summit 2016 Innovation - Steve Wilkes - Tap Into Your Enterprise – Why Da...
IMC Summit 2016 Innovation - Steve Wilkes - Tap Into Your Enterprise – Why Da...
In-Memory Computing Summit
 
IMC Summit 2016 Innovation - Girish Mutreja - Unveiling the X Platform
IMC Summit 2016 Innovation - Girish Mutreja - Unveiling the X PlatformIMC Summit 2016 Innovation - Girish Mutreja - Unveiling the X Platform
IMC Summit 2016 Innovation - Girish Mutreja - Unveiling the X Platform
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Ken Gibson - The In-Place Working Storage Tier
IMC Summit 2016 Breakout - Ken Gibson - The In-Place Working Storage TierIMC Summit 2016 Breakout - Ken Gibson - The In-Place Working Storage Tier
IMC Summit 2016 Breakout - Ken Gibson - The In-Place Working Storage Tier
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Brian Bulkowski - NVMe, Storage Class Memory and O...
IMC Summit 2016 Breakout - Brian Bulkowski - NVMe, Storage Class Memory and O...IMC Summit 2016 Breakout - Brian Bulkowski - NVMe, Storage Class Memory and O...
IMC Summit 2016 Breakout - Brian Bulkowski - NVMe, Storage Class Memory and O...
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Yanping Wang - Non-volatile Generic Object Program...
IMC Summit 2016 Breakout - Yanping Wang - Non-volatile Generic Object Program...IMC Summit 2016 Breakout - Yanping Wang - Non-volatile Generic Object Program...
IMC Summit 2016 Breakout - Yanping Wang - Non-volatile Generic Object Program...
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Andy Pavlo - What Non-Volatile Memory Means for th...
IMC Summit 2016 Breakout - Andy Pavlo - What Non-Volatile Memory Means for th...IMC Summit 2016 Breakout - Andy Pavlo - What Non-Volatile Memory Means for th...
IMC Summit 2016 Breakout - Andy Pavlo - What Non-Volatile Memory Means for th...
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Gordon Patrick - Developments in Persistent Memory
IMC Summit 2016 Breakout - Gordon Patrick - Developments in Persistent MemoryIMC Summit 2016 Breakout - Gordon Patrick - Developments in Persistent Memory
IMC Summit 2016 Breakout - Gordon Patrick - Developments in Persistent Memory
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Girish Kathalagiri - Decision Making with MLLIB, S...
IMC Summit 2016 Breakout - Girish Kathalagiri - Decision Making with MLLIB, S...IMC Summit 2016 Breakout - Girish Kathalagiri - Decision Making with MLLIB, S...
IMC Summit 2016 Breakout - Girish Kathalagiri - Decision Making with MLLIB, S...
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Steve Wikes - Making IMC Enterprise Grade
IMC Summit 2016 Breakout - Steve Wikes - Making IMC Enterprise GradeIMC Summit 2016 Breakout - Steve Wikes - Making IMC Enterprise Grade
IMC Summit 2016 Breakout - Steve Wikes - Making IMC Enterprise Grade
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Noah Arliss - The Truth: How to Test Your Distribu...
IMC Summit 2016 Breakout - Noah Arliss - The Truth: How to Test Your Distribu...IMC Summit 2016 Breakout - Noah Arliss - The Truth: How to Test Your Distribu...
IMC Summit 2016 Breakout - Noah Arliss - The Truth: How to Test Your Distribu...
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Aleksandar Seovic - The Illusion of Statelessness
IMC Summit 2016 Breakout - Aleksandar Seovic - The Illusion of StatelessnessIMC Summit 2016 Breakout - Aleksandar Seovic - The Illusion of Statelessness
IMC Summit 2016 Breakout - Aleksandar Seovic - The Illusion of Statelessness
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Girish Mutreja - Extreme Transaction Processing in...
IMC Summit 2016 Breakout - Girish Mutreja - Extreme Transaction Processing in...IMC Summit 2016 Breakout - Girish Mutreja - Extreme Transaction Processing in...
IMC Summit 2016 Breakout - Girish Mutreja - Extreme Transaction Processing in...
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Greg Luck - How to Speed Up Your Application Using...
IMC Summit 2016 Breakout - Greg Luck - How to Speed Up Your Application Using...IMC Summit 2016 Breakout - Greg Luck - How to Speed Up Your Application Using...
IMC Summit 2016 Breakout - Greg Luck - How to Speed Up Your Application Using...
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Per Minoborg - Work with Multiple Hot Terabytes in...
IMC Summit 2016 Breakout - Per Minoborg - Work with Multiple Hot Terabytes in...IMC Summit 2016 Breakout - Per Minoborg - Work with Multiple Hot Terabytes in...
IMC Summit 2016 Breakout - Per Minoborg - Work with Multiple Hot Terabytes in...
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Henning Andersen - Using Lock-free and Wait-free I...
IMC Summit 2016 Breakout - Henning Andersen - Using Lock-free and Wait-free I...IMC Summit 2016 Breakout - Henning Andersen - Using Lock-free and Wait-free I...
IMC Summit 2016 Breakout - Henning Andersen - Using Lock-free and Wait-free I...
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Roman Shtykh - Apache Ignite as a Data Processing Hub
IMC Summit 2016 Breakout - Roman Shtykh - Apache Ignite as a Data Processing HubIMC Summit 2016 Breakout - Roman Shtykh - Apache Ignite as a Data Processing Hub
IMC Summit 2016 Breakout - Roman Shtykh - Apache Ignite as a Data Processing Hub
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Nikita Shamgunov - Propelling IoT Innovation with ...
IMC Summit 2016 Breakout - Nikita Shamgunov - Propelling IoT Innovation with ...IMC Summit 2016 Breakout - Nikita Shamgunov - Propelling IoT Innovation with ...
IMC Summit 2016 Breakout - Nikita Shamgunov - Propelling IoT Innovation with ...
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Matt Coventon - Test Driving Streaming and CEP on ...
IMC Summit 2016 Breakout - Matt Coventon - Test Driving Streaming and CEP on ...IMC Summit 2016 Breakout - Matt Coventon - Test Driving Streaming and CEP on ...
IMC Summit 2016 Breakout - Matt Coventon - Test Driving Streaming and CEP on ...
In-Memory Computing Summit
 
IMC Summit 2016 Innovation - Derek Nelson - PipelineDB: The Streaming-SQL Dat...
IMC Summit 2016 Innovation - Derek Nelson - PipelineDB: The Streaming-SQL Dat...IMC Summit 2016 Innovation - Derek Nelson - PipelineDB: The Streaming-SQL Dat...
IMC Summit 2016 Innovation - Derek Nelson - PipelineDB: The Streaming-SQL Dat...
In-Memory Computing Summit
 
IMC Summit 2016 Innovation - Dennis Duckworth - Lambda-B-Gone: The In-memory ...
IMC Summit 2016 Innovation - Dennis Duckworth - Lambda-B-Gone: The In-memory ...IMC Summit 2016 Innovation - Dennis Duckworth - Lambda-B-Gone: The In-memory ...
IMC Summit 2016 Innovation - Dennis Duckworth - Lambda-B-Gone: The In-memory ...
In-Memory Computing Summit
 
IMC Summit 2016 Innovation - Steve Wilkes - Tap Into Your Enterprise – Why Da...
IMC Summit 2016 Innovation - Steve Wilkes - Tap Into Your Enterprise – Why Da...IMC Summit 2016 Innovation - Steve Wilkes - Tap Into Your Enterprise – Why Da...
IMC Summit 2016 Innovation - Steve Wilkes - Tap Into Your Enterprise – Why Da...
In-Memory Computing Summit
 
IMC Summit 2016 Innovation - Girish Mutreja - Unveiling the X Platform
IMC Summit 2016 Innovation - Girish Mutreja - Unveiling the X PlatformIMC Summit 2016 Innovation - Girish Mutreja - Unveiling the X Platform
IMC Summit 2016 Innovation - Girish Mutreja - Unveiling the X Platform
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Ken Gibson - The In-Place Working Storage Tier
IMC Summit 2016 Breakout - Ken Gibson - The In-Place Working Storage TierIMC Summit 2016 Breakout - Ken Gibson - The In-Place Working Storage Tier
IMC Summit 2016 Breakout - Ken Gibson - The In-Place Working Storage Tier
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Brian Bulkowski - NVMe, Storage Class Memory and O...
IMC Summit 2016 Breakout - Brian Bulkowski - NVMe, Storage Class Memory and O...IMC Summit 2016 Breakout - Brian Bulkowski - NVMe, Storage Class Memory and O...
IMC Summit 2016 Breakout - Brian Bulkowski - NVMe, Storage Class Memory and O...
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Yanping Wang - Non-volatile Generic Object Program...
IMC Summit 2016 Breakout - Yanping Wang - Non-volatile Generic Object Program...IMC Summit 2016 Breakout - Yanping Wang - Non-volatile Generic Object Program...
IMC Summit 2016 Breakout - Yanping Wang - Non-volatile Generic Object Program...
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Andy Pavlo - What Non-Volatile Memory Means for th...
IMC Summit 2016 Breakout - Andy Pavlo - What Non-Volatile Memory Means for th...IMC Summit 2016 Breakout - Andy Pavlo - What Non-Volatile Memory Means for th...
IMC Summit 2016 Breakout - Andy Pavlo - What Non-Volatile Memory Means for th...
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Gordon Patrick - Developments in Persistent Memory
IMC Summit 2016 Breakout - Gordon Patrick - Developments in Persistent MemoryIMC Summit 2016 Breakout - Gordon Patrick - Developments in Persistent Memory
IMC Summit 2016 Breakout - Gordon Patrick - Developments in Persistent Memory
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Girish Kathalagiri - Decision Making with MLLIB, S...
IMC Summit 2016 Breakout - Girish Kathalagiri - Decision Making with MLLIB, S...IMC Summit 2016 Breakout - Girish Kathalagiri - Decision Making with MLLIB, S...
IMC Summit 2016 Breakout - Girish Kathalagiri - Decision Making with MLLIB, S...
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Steve Wikes - Making IMC Enterprise Grade
IMC Summit 2016 Breakout - Steve Wikes - Making IMC Enterprise GradeIMC Summit 2016 Breakout - Steve Wikes - Making IMC Enterprise Grade
IMC Summit 2016 Breakout - Steve Wikes - Making IMC Enterprise Grade
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Noah Arliss - The Truth: How to Test Your Distribu...
IMC Summit 2016 Breakout - Noah Arliss - The Truth: How to Test Your Distribu...IMC Summit 2016 Breakout - Noah Arliss - The Truth: How to Test Your Distribu...
IMC Summit 2016 Breakout - Noah Arliss - The Truth: How to Test Your Distribu...
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Aleksandar Seovic - The Illusion of Statelessness
IMC Summit 2016 Breakout - Aleksandar Seovic - The Illusion of StatelessnessIMC Summit 2016 Breakout - Aleksandar Seovic - The Illusion of Statelessness
IMC Summit 2016 Breakout - Aleksandar Seovic - The Illusion of Statelessness
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Girish Mutreja - Extreme Transaction Processing in...
IMC Summit 2016 Breakout - Girish Mutreja - Extreme Transaction Processing in...IMC Summit 2016 Breakout - Girish Mutreja - Extreme Transaction Processing in...
IMC Summit 2016 Breakout - Girish Mutreja - Extreme Transaction Processing in...
In-Memory Computing Summit
 
IMC Summit 2016 Breakout - Greg Luck - How to Speed Up Your Application Using...
IMC Summit 2016 Breakout - Greg Luck - How to Speed Up Your Application Using...IMC Summit 2016 Breakout - Greg Luck - How to Speed Up Your Application Using...
IMC Summit 2016 Breakout - Greg Luck - How to Speed Up Your Application Using...
In-Memory Computing Summit
 

Recently uploaded (20)

UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Are Cloud PBX Providers in India Reliable for Small Businesses (1).pdf
Are Cloud PBX Providers in India Reliable for Small Businesses (1).pdfAre Cloud PBX Providers in India Reliable for Small Businesses (1).pdf
Are Cloud PBX Providers in India Reliable for Small Businesses (1).pdf
Telecoms Supermarket
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
Mastering Advance Window Functions in SQL.pdf
Mastering Advance Window Functions in SQL.pdfMastering Advance Window Functions in SQL.pdf
Mastering Advance Window Functions in SQL.pdf
Spiral Mantra
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
Build 3D Animated Safety Induction - Tech EHS
Build 3D Animated Safety Induction - Tech EHSBuild 3D Animated Safety Induction - Tech EHS
Build 3D Animated Safety Induction - Tech EHS
TECH EHS Solution
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
MINDCTI revenue release Quarter 1 2025 PR
MINDCTI revenue release Quarter 1 2025 PRMINDCTI revenue release Quarter 1 2025 PR
MINDCTI revenue release Quarter 1 2025 PR
MIND CTI
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Are Cloud PBX Providers in India Reliable for Small Businesses (1).pdf
Are Cloud PBX Providers in India Reliable for Small Businesses (1).pdfAre Cloud PBX Providers in India Reliable for Small Businesses (1).pdf
Are Cloud PBX Providers in India Reliable for Small Businesses (1).pdf
Telecoms Supermarket
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
Mastering Advance Window Functions in SQL.pdf
Mastering Advance Window Functions in SQL.pdfMastering Advance Window Functions in SQL.pdf
Mastering Advance Window Functions in SQL.pdf
Spiral Mantra
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
Build 3D Animated Safety Induction - Tech EHS
Build 3D Animated Safety Induction - Tech EHSBuild 3D Animated Safety Induction - Tech EHS
Build 3D Animated Safety Induction - Tech EHS
TECH EHS Solution
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
MINDCTI revenue release Quarter 1 2025 PR
MINDCTI revenue release Quarter 1 2025 PRMINDCTI revenue release Quarter 1 2025 PR
MINDCTI revenue release Quarter 1 2025 PR
MIND CTI
 

IMCSummit 2015 - Day 2 Developer Track - Implementing a Highly Scalable In-Memory Stock Prediction System with Apache Geode, R and Spring XD