SlideShare a Scribd company logo
1
Speakers
Alberto Pan
Chief Technology
Officer
Juan González
Consultor Senior
Líder Técnico
Marcelo Méndez
Gerente
General
Enabling Agile Analytics
and Data Governance with
Data Virtualization
Free your Data
Alberto Pan
CTO
March 2021
Agenda
1. Current Challenges in Data Management
2. Data Virtualization and the Logical Data Warehouse
3. Data Virtualization: What Analysts Say
4. Case Studies
5. Q&A
Current Challenges in Data Management
1. Faster & more complex demands for decision making
▪ Provide useful information for decision making at all organization levels
▪ New users with advanced analytical skills and needs: e.g. data scientists
▪ Solution? Self Service Initiatives lead by business users, etc. → Either too complex (direct
access) or too costly (specific data marts) , Governance and consistency problems
2. Regulations, enterprise-wide governance & data security
▪ Tens of new regulations worldwide: tax, finance, privacy, HR, environmental, etc.
▪ Ensure consistency in semantics of delivered data and data quality
▪ Enforce security policies
▪ Solution? Data Governance tools. Separate, static system for documentation→ get out of sync
easily, don’t enforce policies & don’t deliver data to users
3. Complexity of DM infrastructure: IT cost reduction
▪ Huge data growth, operation costs → IT is looking for cheaper and more flexible solutions
▪ Solution? Cloud, Data Lakes → Increase integration complexity in the short term. E.g. Gartner
says “83% of Data Lakes projects have failed”
6
What is the Problem ?
Lack of Agility:
• No unified infrastructure (multiple data sources and
analysis / visualization tools)
• Integrating, transforming and combining data is slow with
traditional methods
Agility vs Governance:
• Inconsistent reports / Single Source of Truth
• Compliance with company glossaries and policies
• How to enforce consistent security, data quality and
governance policies across multiple systems
• Too much replicated data
7
Do Data Governance Tools Solve the Problem ?
DG Tools allow:
• Informing about data assets and their level of quality
• Defining unified glossaries and terminology
• Defining data quality and data governance policies, and
managing/tracking changes
Disconnected from the data delivery process
• Do not ensure delivered data conforms to glossaries
• Do not enforce security, data quality and governance
policies in the data delivery process
• The problem of how to enforce these policies across multiple
data sources and consumption tools remain
8
Gartner – The Evolution of Analytical Environments
This is a Second Major Cycle of Analytical Consolidation
Operational Application
Operational Application
Operational Application
IoT Data
Other NewData
Operational
Application
Operational
Application
Cube
Operational
Application
Cube
? Operational Application
Operational Application
Operational Application
IoT Data
Other NewData
1980s
Pre EDW
1990s
EDW
2010s
2000s
Post EDW
Time
LDW
Operational
Application
Operational
Application
Operational
Application
Data
Warehouse
Data
Warehouse
Data
Lake
?
Logical Data Warehouse
Data Warehouse
Data Lake
Marts
ODS
Staging/Ingest
Unified analysis
› Consolidated data
› "Collect the data"
› Single server, multiple nodes
› More analysis than any
one server can provide
©2018 Gartner, Inc.
Unified analysis
› Logically consolidated view of all data
› "Connect and collect"
› Multiple servers, of multiple nodes
› More analysis than any one system can provide
ID: 342254
Fragmented/
nonexistent analysis
› Multiple sources
› Multiple structured sources
Fragmented analysis
› "Collect the data" (Into
› different repositories)
› New data types,
› processing, requirements
› Uncoordinated views
“Adopt the Logical Data Warehouse Architecture to Meet Your Modern Analytical Needs”. Henry Cook, Gartner April 2018
9
Denodo proprietary and confidential. DO NOT DISTRIBUTE
Gartner: Unified Data Integration, Delivery and Governance
Denodo
10
Denodo’s Logical Data Fabric Links: Business Interface to Data
1. Single Access Point to all Data
at any location
2. Semantic Layer – Expose Data
in Business-Friendly form,
adapted to the needs of each
consumer
3. Up to 80% reduction in
integration costs, in terms of
resources and technology data
4. Consume data with any tool
and access technology (SQL,
REST, GraphQL, OData,…)
5. Single entry point to apply
security and governance
policies
6. Abstraction: change vendor /
location / processing engine
without affecting data
consumers
11
Data Virtualization: Logical Data Delivery for the Business
Development
Lifecycle
Monitoring & Audit
Governance
Security
Development Tools
/ SDK
Scheduler
Cache
Optimiser
JDBC/ODBC/ADO.Net REST / GraphQL / OData
U
LoB
View
Mart
View
J
Application
Layer
Business
Layer
Unified View Unified View
Unified View
Unified View
A
J
J
Derived View Derived View
J
J
S
Transformation
& Cleansing
Data
Source
Layer
Base
View
Base
View
Base
View
Base
View
Base
View
Base
View
Base
View
Abstraction
12
Data Virtualization for Data Governance
Single Entry Point
for Enforcing
Security and
Governance
Policies
Data on-premises
and off, combined
through the same
governed virtual
layer
Single Source of
Truth / Canonical
Views
Who is Doing /
Accessing What,
When and How
Fewer copies of
personal data.
Lineage of copies
is available.
Query Execution and Performance
Source
Abstraction
Virtual
Modelling
Business
Delivery
Query Optimizer
Security & Governance
Query Engine
Delegate processing to data sources
▪ Transparently switch workloads according to cost or performance
Most advanced execution engine for distributed scenarios
▪ Unique techniques automatically rewrite user queries to maximize
pushdown
▪ Leverage MPP capabilities to deal with large data volumes
Advancing Caching / Acceleration Mechanisms
▪ Selectively materialize subsets of the data for protecting data
sources and query acceleration
▪ Machine Learning for automatically proposing selective data
materializations for query acceleration
14
Source: Gartner 2018 Data Virtualization Market Guide
In 2020, organizations utilizing data virtualization will spend 45% less
on building and managing data integration processes.”
Through 2022, 60% of enterprises will implement some form of data
virtualization as one enterprise production option for data integration.
Source: Gartner 2018 Data Virtualization Market Guide
15
16
Gartner Gives DV its Highest Maturity Rating
“Data Virtualization
can be deployed
with low risk and
effort to achieve
maximum value.”
17
Source: Gartner Magic Quadrant for Data Integration, August 2018
Denodo continues to expand its leadership and mind share in data
virtualization, reaching almost 95% of Gartner client inquiries on the subject.”
Denodo grew at an impressive rate in 2018 and 2019... its leadership in
the Data Virtualization market is enabling its growth
Source: Gartner Market Share Analysis: Data Integration Worldwide, 2018 (published August 2019)
and 2019 (published April 2020)
18
Customer Satisfaction
Why Customers Choose Denodo
▪ Gartner Peer Insights Customer’s Choice
Award (January 2021)
▪ Both in 2019 and 2020, the only vendor
where 100% of reviewers would
recommend Denodo
▪ 125+ verified reviews with overall score of
4.7 out of 5
19
Spectrum Health (Michigan)
Regional Healthcare System (Hospitals,
Physicians and Plans)
• 170 service sites, including hospitals, urgent care
centers, primary care physician offices, community
clinics, rehabilitation, outpatient facilities and elderly
care.
• Revenue $6.9 billion with 39,000 employees and
volunteers
• Health plan with 1 million members
Primary Challenges
• Integrating multiple analytical data sources quickly
• Reconciling provider data from multiple sources
accurately (business impact)
20
Spectrum Health 1st Project – COVID-19 Dashboard
COMPONENTS:
Tableau, Denodo, Oracle and SQL Server,
10+ other sources
TEAM:
1 Tableau developer, 2 Denodo
developers, 1 Denodo admin
DEVELOPMENT TIME:
• 2 days - Prototype
• 2 weeks – Production*server available
CHALLENGES:
• Very short timeframe
• No formal Data Fabric training
• Understanding performance
optimization (queries from hours to
less than a minute)
“Overall, I felt the team did an amazing job
and the platform did help us deliver value
much quicker than we would have been able
to going the traditional ETL route. It would
have take us at least 6 weeks.”
- Senior Information Architect
21
Data Platform and Regulatory Compliance
22
Speeding Up M&A Integration
23
Speeding Up M&A Integration
About BHP
We are a leading global resources company
▪ Our purpose is to bring people and resources together
to build a better world.
▪ Our strategy is to have the best capabilities, best
commodities and best assets, to create long-term value
and high returns.
▪ At BHP, we have a unique perspective on the
extraordinary potential of natural resources to provide
the essential building blocks of progress.
▪ We are among the world’s top producers of major
commodities, including iron ore, metallurgical coal and
copper. We also have substantial interests in oil and gas.
▪ We have a global presence with operations and offices
across Australia, Asia, the UK, Canada, the USA and
Central and South America.
24
Data Virtualization Platform - September 2020
Multi-Location Hybrid Data Fabric
25
Problems:
• Repeated engineering effort
• Long lead-times
• Project-centric repositories: duplicate
data everywhere
Brisbane
Perth
Santiago
Houston
Cloud
Tenancy
Data
Lake
Data
Mart
Data
Mart
Analytics
Analytics
Analytics
Data Virtualization Platform - September 2020
Reference architecture
26
Data Source
✓ Application data stores
✓ SaaS / Cloud Applications
✓ Application interfaces
✓ Manual data sources
Data Fabric Consumers
✓ Enterprise &
Regional Data
Stores
Self Service Data Catalogue
Query
Optimisation
Query
Development
Data
Federation
Data
Discovery
Abstraction / Semantic Layer
Security Layer
Kerberos Delegation + Encryption in Transit + Extensive Auditing
Secure
Faster
Connect to data stores or direct to source Get access to the right data, fast.
Self service
Flexible protocols
✓ Analytics
✓ Self Service
✓ Business Intelligence
✓ Transactional Applications
✓ Bring your own tool
BHP Data Fabric - September 2020
Multi-Location Hybrid Data Fabric
27
Problems:
• Repeated engineering effort
• Long lead-times
• Project-centric repositories: duplicate
data everywhere
Brisbane
Perth
Santiago
Houston
Cloud
Tenancy
Data
Lake
Data
Mart
Data
Mart
Analytics
Analytics
Analytics
Data Virtualization Platform - September 2020
Enabling Agile Analytics
and Data Governance with
Data Virtualization
Demostración de producto
Juan González
Líder Técnico
March 2021
Revisión del modelo conceptual
29
Data Virtualization Platform - September 2020
Revisión del modelo conceptual
30
Data Virtualization Platform - September 2020
31
Data Virtualization Platform - September 2020
32
Data Virtualization Platform - September 2020
33
Data Virtualization Platform - September 2020
34
Data Virtualization Platform - September 2020
35
Data Virtualization Platform - September 2020
36
Data Virtualization Platform - September 2020
Revisión del modelo conceptual
37
Data Virtualization Platform - September 2020
38
Data Virtualization Platform - September 2020
39
Data Virtualization Platform - September 2020
40
Data Virtualization Platform - September 2020
41
Data Virtualization Platform - September 2020
42
Data Virtualization Platform - September 2020
43
Data Virtualization Platform - September 2020
44
Data Virtualization Platform - September 2020
45
Data Virtualization Platform - September 2020
46
Data Virtualization Platform - September 2020
47
Data Virtualization Platform - September 2020
48
Data Virtualization Platform - September 2020
49
Data Virtualization Platform - September 2020
50
Data Virtualization Platform - September 2020
51
Data Virtualization Platform - September 2020
52
Data Virtualization Platform - September 2020
Revisión del modelo conceptual
53
Data Virtualization Platform - September 2020
54
Data Virtualization Platform - September 2020
55
Data Virtualization Platform - September 2020
56
Data Virtualization Platform - September 2020
57
Data Virtualization Platform - September 2020
58
Data Virtualization Platform - September 2020
59
Data Virtualization Platform - September 2020
60
Data Virtualization Platform - September 2020
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Revisión del modelo conceptual
89
Data Virtualization Platform - September 2020
Data Virtualization Platform
90
Data Virtualization Platform
91
Data Virtualization Platform
92
Data Virtualization Platform
93
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)
Q&A
Q&A
¡Gracias!
www.denodo.com
info.la@denodo.com
(+34) 912 77 58 55
www.auctus.cl
auctus@auctus.cl
(+56 2) 32 13 99 53
(+56 2) 22 45 72 84

More Related Content

PDF
Quicker Insights and Sustainable Business Agility Powered By Data Virtualizat...
PDF
Accelerate Digital Transformation with Data Virtualization in Banking, Financ...
PDF
Data Virtualization: An Introduction
PDF
Introduction to Modern Data Virtualization 2021 (APAC)
PDF
A Successful Data Strategy for Insurers in Volatile Times (ASEAN)
PDF
The Proof is in the Pudding
PDF
Logical Data Fabric: Maturing Implementation from Small to Big (APAC)
PDF
The Role of the Logical Data Fabric in a Unified Platform for Modern Analytics
Quicker Insights and Sustainable Business Agility Powered By Data Virtualizat...
Accelerate Digital Transformation with Data Virtualization in Banking, Financ...
Data Virtualization: An Introduction
Introduction to Modern Data Virtualization 2021 (APAC)
A Successful Data Strategy for Insurers in Volatile Times (ASEAN)
The Proof is in the Pudding
Logical Data Fabric: Maturing Implementation from Small to Big (APAC)
The Role of the Logical Data Fabric in a Unified Platform for Modern Analytics

What's hot (20)

PDF
CIO priorities and Data Virtualization: Balancing the Yin and Yang of the IT
PDF
Multi-Cloud Integration with Data Virtualization (ASEAN)
PDF
Secure your data with Virtual Data Fabric (Middle East)
PDF
KASHTECH AND DENODO: ROI and Economic Value of Data Virtualization
PDF
Analyst Webinar: Best Practices In Enabling Data-Driven Decision Making
PDF
Cloud Migration headache? Ease the pain with Data Virtualization! (EMEA)
PDF
Data Virtualization for Data Architects (Australia)
PDF
Creating a Healthcare Data Fabric, and Providing a Single, Unified, and Curat...
PDF
Data Virtualization for Compliance – Creating a Controlled Data Environment
PDF
Analyst Keynote: Forrester: Data Fabric Strategy is Vital for Business Innova...
PDF
Why Data Virtualization Matters in Your Portfolio
PDF
Customer Keynote: Data Service and Security at an Enterprise Scale with Logic...
PDF
Advanced Analytics and Machine Learning with Data Virtualization (India)
PDF
A Key to Real-time Insights in a Post-COVID World (ASEAN)
PDF
Three Dimensions of Data as a Service
PDF
How Data Virtualization Puts Machine Learning into Production (APAC)
PDF
Enabling a Bimodal IT Framework for Advanced Analytics with Data Virtualization
PPTX
Why Data Virtualization? By Rick van der Lans
PDF
Big Data Fabric: A Recipe for Big Data Initiatives
PDF
Introduction to Modern Data Virtualization (US)
CIO priorities and Data Virtualization: Balancing the Yin and Yang of the IT
Multi-Cloud Integration with Data Virtualization (ASEAN)
Secure your data with Virtual Data Fabric (Middle East)
KASHTECH AND DENODO: ROI and Economic Value of Data Virtualization
Analyst Webinar: Best Practices In Enabling Data-Driven Decision Making
Cloud Migration headache? Ease the pain with Data Virtualization! (EMEA)
Data Virtualization for Data Architects (Australia)
Creating a Healthcare Data Fabric, and Providing a Single, Unified, and Curat...
Data Virtualization for Compliance – Creating a Controlled Data Environment
Analyst Keynote: Forrester: Data Fabric Strategy is Vital for Business Innova...
Why Data Virtualization Matters in Your Portfolio
Customer Keynote: Data Service and Security at an Enterprise Scale with Logic...
Advanced Analytics and Machine Learning with Data Virtualization (India)
A Key to Real-time Insights in a Post-COVID World (ASEAN)
Three Dimensions of Data as a Service
How Data Virtualization Puts Machine Learning into Production (APAC)
Enabling a Bimodal IT Framework for Advanced Analytics with Data Virtualization
Why Data Virtualization? By Rick van der Lans
Big Data Fabric: A Recipe for Big Data Initiatives
Introduction to Modern Data Virtualization (US)
Ad

Similar to Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM) (20)

PDF
¿En qué se parece el Gobierno del Dato a un parque de atracciones?
PDF
Belgium & Luxembourg dedicated online Data Virtualization discovery workshop
PDF
Data Virtualization: An Introduction
PDF
Big Data LDN 2018: CONNECTING SILOS IN REAL-TIME WITH DATA VIRTUALIZATION
PDF
Connecting Silos in Real Time with Data Virtualization
PDF
Building Resiliency and Agility with Data Virtualization for the New Normal
PDF
What is the future of data strategy?
PDF
Future of Data Strategy (ASEAN)
PDF
Your Data is Waiting. What are the Top 5 Trends for Data in 2022? (ASEAN)
PDF
DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization
PDF
Bridging the Last Mile: Getting Data to the People Who Need It
PDF
Virtualisation de données : Enjeux, Usages & Bénéfices
PDF
Denodo Partner Connect: A Review of the Top 5 Differentiated Use Cases for th...
PDF
Cloud Migration Strategies that Ensure Greater Value for the Business
PDF
Powering Real-Time Analytics with Data Virtualization on AWS (ASEAN & ANZ)
PDF
THE INDUSTRY'S FIRST VIRTUAL EVENT IN ROMANIA - Why Data Virtualization is a ...
PDF
Modern Data Management for Federal Modernization
PDF
Data Virtualization. An Introduction (ASEAN)
PDF
Rethink Your 2021 Data Management Strategy with Data Virtualization (ASEAN)
PDF
Big Data Fabric: A Necessity For Any Successful Big Data Initiative
¿En qué se parece el Gobierno del Dato a un parque de atracciones?
Belgium & Luxembourg dedicated online Data Virtualization discovery workshop
Data Virtualization: An Introduction
Big Data LDN 2018: CONNECTING SILOS IN REAL-TIME WITH DATA VIRTUALIZATION
Connecting Silos in Real Time with Data Virtualization
Building Resiliency and Agility with Data Virtualization for the New Normal
What is the future of data strategy?
Future of Data Strategy (ASEAN)
Your Data is Waiting. What are the Top 5 Trends for Data in 2022? (ASEAN)
DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization
Bridging the Last Mile: Getting Data to the People Who Need It
Virtualisation de données : Enjeux, Usages & Bénéfices
Denodo Partner Connect: A Review of the Top 5 Differentiated Use Cases for th...
Cloud Migration Strategies that Ensure Greater Value for the Business
Powering Real-Time Analytics with Data Virtualization on AWS (ASEAN & ANZ)
THE INDUSTRY'S FIRST VIRTUAL EVENT IN ROMANIA - Why Data Virtualization is a ...
Modern Data Management for Federal Modernization
Data Virtualization. An Introduction (ASEAN)
Rethink Your 2021 Data Management Strategy with Data Virtualization (ASEAN)
Big Data Fabric: A Necessity For Any Successful Big Data Initiative
Ad

More from Denodo (20)

PDF
Enterprise Monitoring and Auditing in Denodo
PDF
Lunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps Approach
PDF
Achieving Self-Service Analytics with a Governed Data Services Layer
PDF
What you need to know about Generative AI and Data Management?
PDF
Mastering Data Compliance in a Dynamic Business Landscape
PDF
Denodo Partner Connect: Business Value Demo with Denodo Demo Lite
PDF
Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...
PDF
Drive Data Privacy Regulatory Compliance
PDF
Знакомство с виртуализацией данных для профессионалов в области данных
PDF
Data Democratization: A Secret Sauce to Say Goodbye to Data Fragmentation
PDF
Denodo Partner Connect - Technical Webinar - Ask Me Anything
PDF
Lunch and Learn ANZ: Key Takeaways for 2023!
PDF
It’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way Forward
PDF
Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...
PDF
Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...
PDF
How to Build Your Data Marketplace with Data Virtualization?
PDF
Webinar #2 - Transforming Challenges into Opportunities for Credit Unions
PDF
Enabling Data Catalog users with advanced usability
PDF
Denodo Partner Connect: Technical Webinar - Architect Associate Certification...
PDF
GenAI y el futuro de la gestión de datos: mitos y realidades
Enterprise Monitoring and Auditing in Denodo
Lunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps Approach
Achieving Self-Service Analytics with a Governed Data Services Layer
What you need to know about Generative AI and Data Management?
Mastering Data Compliance in a Dynamic Business Landscape
Denodo Partner Connect: Business Value Demo with Denodo Demo Lite
Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...
Drive Data Privacy Regulatory Compliance
Знакомство с виртуализацией данных для профессионалов в области данных
Data Democratization: A Secret Sauce to Say Goodbye to Data Fragmentation
Denodo Partner Connect - Technical Webinar - Ask Me Anything
Lunch and Learn ANZ: Key Takeaways for 2023!
It’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way Forward
Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...
Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...
How to Build Your Data Marketplace with Data Virtualization?
Webinar #2 - Transforming Challenges into Opportunities for Credit Unions
Enabling Data Catalog users with advanced usability
Denodo Partner Connect: Technical Webinar - Architect Associate Certification...
GenAI y el futuro de la gestión de datos: mitos y realidades

Recently uploaded (20)

PPT
Quality review (1)_presentation of this 21
PPTX
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
PDF
Clinical guidelines as a resource for EBP(1).pdf
PPT
Chapter 3 METAL JOINING.pptnnnnnnnnnnnnn
PPTX
Data_Analytics_and_PowerBI_Presentation.pptx
PDF
Launch Your Data Science Career in Kochi – 2025
PPTX
Business Ppt On Nestle.pptx huunnnhhgfvu
PPT
Chapter 2 METAL FORMINGhhhhhhhjjjjmmmmmmmmm
PPTX
Introduction to Knowledge Engineering Part 1
PPTX
Introduction-to-Cloud-ComputingFinal.pptx
PDF
Taxes Foundatisdcsdcsdon Certificate.pdf
PPTX
Logistic Regression ml machine learning.pptx
PDF
Fluorescence-microscope_Botany_detailed content
PPTX
Business Acumen Training GuidePresentation.pptx
PPTX
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
PPTX
oil_refinery_comprehensive_20250804084928 (1).pptx
PPTX
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
PPTX
climate analysis of Dhaka ,Banglades.pptx
PDF
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
Quality review (1)_presentation of this 21
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
Clinical guidelines as a resource for EBP(1).pdf
Chapter 3 METAL JOINING.pptnnnnnnnnnnnnn
Data_Analytics_and_PowerBI_Presentation.pptx
Launch Your Data Science Career in Kochi – 2025
Business Ppt On Nestle.pptx huunnnhhgfvu
Chapter 2 METAL FORMINGhhhhhhhjjjjmmmmmmmmm
Introduction to Knowledge Engineering Part 1
Introduction-to-Cloud-ComputingFinal.pptx
Taxes Foundatisdcsdcsdon Certificate.pdf
Logistic Regression ml machine learning.pptx
Fluorescence-microscope_Botany_detailed content
Business Acumen Training GuidePresentation.pptx
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
oil_refinery_comprehensive_20250804084928 (1).pptx
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
climate analysis of Dhaka ,Banglades.pptx
Recruitment and Placement PPT.pdfbjfibjdfbjfobj

Implementar una estrategia eficiente de gobierno y seguridad del dato con la virtualización (LATAM)

  • 1. 1
  • 2. Speakers Alberto Pan Chief Technology Officer Juan González Consultor Senior Líder Técnico Marcelo Méndez Gerente General
  • 3. Enabling Agile Analytics and Data Governance with Data Virtualization Free your Data Alberto Pan CTO March 2021
  • 4. Agenda 1. Current Challenges in Data Management 2. Data Virtualization and the Logical Data Warehouse 3. Data Virtualization: What Analysts Say 4. Case Studies 5. Q&A
  • 5. Current Challenges in Data Management 1. Faster & more complex demands for decision making ▪ Provide useful information for decision making at all organization levels ▪ New users with advanced analytical skills and needs: e.g. data scientists ▪ Solution? Self Service Initiatives lead by business users, etc. → Either too complex (direct access) or too costly (specific data marts) , Governance and consistency problems 2. Regulations, enterprise-wide governance & data security ▪ Tens of new regulations worldwide: tax, finance, privacy, HR, environmental, etc. ▪ Ensure consistency in semantics of delivered data and data quality ▪ Enforce security policies ▪ Solution? Data Governance tools. Separate, static system for documentation→ get out of sync easily, don’t enforce policies & don’t deliver data to users 3. Complexity of DM infrastructure: IT cost reduction ▪ Huge data growth, operation costs → IT is looking for cheaper and more flexible solutions ▪ Solution? Cloud, Data Lakes → Increase integration complexity in the short term. E.g. Gartner says “83% of Data Lakes projects have failed”
  • 6. 6 What is the Problem ? Lack of Agility: • No unified infrastructure (multiple data sources and analysis / visualization tools) • Integrating, transforming and combining data is slow with traditional methods Agility vs Governance: • Inconsistent reports / Single Source of Truth • Compliance with company glossaries and policies • How to enforce consistent security, data quality and governance policies across multiple systems • Too much replicated data
  • 7. 7 Do Data Governance Tools Solve the Problem ? DG Tools allow: • Informing about data assets and their level of quality • Defining unified glossaries and terminology • Defining data quality and data governance policies, and managing/tracking changes Disconnected from the data delivery process • Do not ensure delivered data conforms to glossaries • Do not enforce security, data quality and governance policies in the data delivery process • The problem of how to enforce these policies across multiple data sources and consumption tools remain
  • 8. 8 Gartner – The Evolution of Analytical Environments This is a Second Major Cycle of Analytical Consolidation Operational Application Operational Application Operational Application IoT Data Other NewData Operational Application Operational Application Cube Operational Application Cube ? Operational Application Operational Application Operational Application IoT Data Other NewData 1980s Pre EDW 1990s EDW 2010s 2000s Post EDW Time LDW Operational Application Operational Application Operational Application Data Warehouse Data Warehouse Data Lake ? Logical Data Warehouse Data Warehouse Data Lake Marts ODS Staging/Ingest Unified analysis › Consolidated data › "Collect the data" › Single server, multiple nodes › More analysis than any one server can provide ©2018 Gartner, Inc. Unified analysis › Logically consolidated view of all data › "Connect and collect" › Multiple servers, of multiple nodes › More analysis than any one system can provide ID: 342254 Fragmented/ nonexistent analysis › Multiple sources › Multiple structured sources Fragmented analysis › "Collect the data" (Into › different repositories) › New data types, › processing, requirements › Uncoordinated views “Adopt the Logical Data Warehouse Architecture to Meet Your Modern Analytical Needs”. Henry Cook, Gartner April 2018
  • 9. 9 Denodo proprietary and confidential. DO NOT DISTRIBUTE Gartner: Unified Data Integration, Delivery and Governance Denodo
  • 10. 10 Denodo’s Logical Data Fabric Links: Business Interface to Data 1. Single Access Point to all Data at any location 2. Semantic Layer – Expose Data in Business-Friendly form, adapted to the needs of each consumer 3. Up to 80% reduction in integration costs, in terms of resources and technology data 4. Consume data with any tool and access technology (SQL, REST, GraphQL, OData,…) 5. Single entry point to apply security and governance policies 6. Abstraction: change vendor / location / processing engine without affecting data consumers
  • 11. 11 Data Virtualization: Logical Data Delivery for the Business Development Lifecycle Monitoring & Audit Governance Security Development Tools / SDK Scheduler Cache Optimiser JDBC/ODBC/ADO.Net REST / GraphQL / OData U LoB View Mart View J Application Layer Business Layer Unified View Unified View Unified View Unified View A J J Derived View Derived View J J S Transformation & Cleansing Data Source Layer Base View Base View Base View Base View Base View Base View Base View Abstraction
  • 12. 12 Data Virtualization for Data Governance Single Entry Point for Enforcing Security and Governance Policies Data on-premises and off, combined through the same governed virtual layer Single Source of Truth / Canonical Views Who is Doing / Accessing What, When and How Fewer copies of personal data. Lineage of copies is available.
  • 13. Query Execution and Performance Source Abstraction Virtual Modelling Business Delivery Query Optimizer Security & Governance Query Engine Delegate processing to data sources ▪ Transparently switch workloads according to cost or performance Most advanced execution engine for distributed scenarios ▪ Unique techniques automatically rewrite user queries to maximize pushdown ▪ Leverage MPP capabilities to deal with large data volumes Advancing Caching / Acceleration Mechanisms ▪ Selectively materialize subsets of the data for protecting data sources and query acceleration ▪ Machine Learning for automatically proposing selective data materializations for query acceleration
  • 14. 14 Source: Gartner 2018 Data Virtualization Market Guide In 2020, organizations utilizing data virtualization will spend 45% less on building and managing data integration processes.” Through 2022, 60% of enterprises will implement some form of data virtualization as one enterprise production option for data integration. Source: Gartner 2018 Data Virtualization Market Guide
  • 15. 15
  • 16. 16 Gartner Gives DV its Highest Maturity Rating “Data Virtualization can be deployed with low risk and effort to achieve maximum value.”
  • 17. 17 Source: Gartner Magic Quadrant for Data Integration, August 2018 Denodo continues to expand its leadership and mind share in data virtualization, reaching almost 95% of Gartner client inquiries on the subject.” Denodo grew at an impressive rate in 2018 and 2019... its leadership in the Data Virtualization market is enabling its growth Source: Gartner Market Share Analysis: Data Integration Worldwide, 2018 (published August 2019) and 2019 (published April 2020)
  • 18. 18 Customer Satisfaction Why Customers Choose Denodo ▪ Gartner Peer Insights Customer’s Choice Award (January 2021) ▪ Both in 2019 and 2020, the only vendor where 100% of reviewers would recommend Denodo ▪ 125+ verified reviews with overall score of 4.7 out of 5
  • 19. 19 Spectrum Health (Michigan) Regional Healthcare System (Hospitals, Physicians and Plans) • 170 service sites, including hospitals, urgent care centers, primary care physician offices, community clinics, rehabilitation, outpatient facilities and elderly care. • Revenue $6.9 billion with 39,000 employees and volunteers • Health plan with 1 million members Primary Challenges • Integrating multiple analytical data sources quickly • Reconciling provider data from multiple sources accurately (business impact)
  • 20. 20 Spectrum Health 1st Project – COVID-19 Dashboard COMPONENTS: Tableau, Denodo, Oracle and SQL Server, 10+ other sources TEAM: 1 Tableau developer, 2 Denodo developers, 1 Denodo admin DEVELOPMENT TIME: • 2 days - Prototype • 2 weeks – Production*server available CHALLENGES: • Very short timeframe • No formal Data Fabric training • Understanding performance optimization (queries from hours to less than a minute) “Overall, I felt the team did an amazing job and the platform did help us deliver value much quicker than we would have been able to going the traditional ETL route. It would have take us at least 6 weeks.” - Senior Information Architect
  • 21. 21 Data Platform and Regulatory Compliance
  • 22. 22 Speeding Up M&A Integration
  • 23. 23 Speeding Up M&A Integration
  • 24. About BHP We are a leading global resources company ▪ Our purpose is to bring people and resources together to build a better world. ▪ Our strategy is to have the best capabilities, best commodities and best assets, to create long-term value and high returns. ▪ At BHP, we have a unique perspective on the extraordinary potential of natural resources to provide the essential building blocks of progress. ▪ We are among the world’s top producers of major commodities, including iron ore, metallurgical coal and copper. We also have substantial interests in oil and gas. ▪ We have a global presence with operations and offices across Australia, Asia, the UK, Canada, the USA and Central and South America. 24 Data Virtualization Platform - September 2020
  • 25. Multi-Location Hybrid Data Fabric 25 Problems: • Repeated engineering effort • Long lead-times • Project-centric repositories: duplicate data everywhere Brisbane Perth Santiago Houston Cloud Tenancy Data Lake Data Mart Data Mart Analytics Analytics Analytics Data Virtualization Platform - September 2020
  • 26. Reference architecture 26 Data Source ✓ Application data stores ✓ SaaS / Cloud Applications ✓ Application interfaces ✓ Manual data sources Data Fabric Consumers ✓ Enterprise & Regional Data Stores Self Service Data Catalogue Query Optimisation Query Development Data Federation Data Discovery Abstraction / Semantic Layer Security Layer Kerberos Delegation + Encryption in Transit + Extensive Auditing Secure Faster Connect to data stores or direct to source Get access to the right data, fast. Self service Flexible protocols ✓ Analytics ✓ Self Service ✓ Business Intelligence ✓ Transactional Applications ✓ Bring your own tool BHP Data Fabric - September 2020
  • 27. Multi-Location Hybrid Data Fabric 27 Problems: • Repeated engineering effort • Long lead-times • Project-centric repositories: duplicate data everywhere Brisbane Perth Santiago Houston Cloud Tenancy Data Lake Data Mart Data Mart Analytics Analytics Analytics Data Virtualization Platform - September 2020
  • 28. Enabling Agile Analytics and Data Governance with Data Virtualization Demostración de producto Juan González Líder Técnico March 2021
  • 29. Revisión del modelo conceptual 29 Data Virtualization Platform - September 2020
  • 30. Revisión del modelo conceptual 30 Data Virtualization Platform - September 2020
  • 37. Revisión del modelo conceptual 37 Data Virtualization Platform - September 2020
  • 53. Revisión del modelo conceptual 53 Data Virtualization Platform - September 2020
  • 89. Revisión del modelo conceptual 89 Data Virtualization Platform - September 2020
  • 102. Q&A
  • 103. Q&A ¡Gracias! www.denodo.com [email protected] (+34) 912 77 58 55 www.auctus.cl [email protected] (+56 2) 32 13 99 53 (+56 2) 22 45 72 84