This document presents an implementation of the p-PIC clustering algorithm using the MapReduce framework to handle big data. P-PIC is a parallel version of the Power Iteration Clustering (PIC) algorithm that is able to cluster large datasets in a distributed environment. The document first provides background on PIC and challenges with scaling to big data. It then describes how p-PIC addresses these challenges using MPI for parallelization. The design of implementing p-PIC within MapReduce is presented, including the map and reduce functions. Experimental results on synthetic datasets up to 100,000 records show that p-PIC using MapReduce has increased performance and scalability compared to the original p-PIC implementation using MPI.