SlideShare a Scribd company logo
in	
  conjunc(on	
  with	
  
Data Management & Warehousing   http://www.datamgmt.com
What	
  is	
  the	
  Spa(al	
  Module?	
  

•  It’s	
  the	
  ability	
  to	
  analyse	
  informa(on	
  in	
  a	
  
   geographic	
  context:	
  
          –  Where	
  is	
  the	
  nearest	
  petrol	
  sta(on?	
  
          –  Which	
  road	
  am	
  I	
  on?	
  
          –  How	
  many	
  ATMs	
  are	
  in	
  this	
  area?	
  
•  It’s	
  not	
  maps	
  and	
  images	
  
          –  These	
  come	
  later	
  with	
  tools	
  that	
  help	
  present	
  the	
  
             informa(on	
  

Wednesday,	
  July	
  28,	
  2010	
     ©	
  2010	
  Data	
  Management	
  &	
  Warehousing	
     2	
  
The	
  three	
  types	
  of	
  data	
  &	
  many	
  ques(ons	
  

•  Points	
                                                                •  How	
  close	
  are	
  two	
  
          –  OS	
  Grid	
                                                     points?	
  
          –  La(tude	
  &	
  Longitude	
  	
                               •  Does	
  a	
  point	
  touch	
  a	
  
•  Lines	
                                                                    line?	
  
          –  Pairs	
  of	
  points	
                                       •  Is	
  a	
  point	
  inside	
  or	
  
          –  e.g.	
  Road	
  Segments	
                                       outside	
  a	
  polygon?	
  
•  Polygons	
                                                              •  Does	
  a	
  line	
  cross	
  a	
  
          –  A	
  series	
  of	
  points	
  that	
                            polygon?	
  
             define	
  a	
  boundary	
                                      •  How	
  many	
  points	
  are	
  in	
  
          –  e.g.	
  Postcode	
  Boundaries	
                                 a	
  polygon?	
  

Wednesday,	
  July	
  28,	
  2010	
     ©	
  2010	
  Data	
  Management	
  &	
  Warehousing	
                   3	
  
Using	
  Spa(al	
  Data	
  Is	
  Complex	
  
•  Different	
  distances	
  
   between	
  points	
  at	
  
   different	
  longitudes	
  and	
  
   la(tudes	
  
•  Measurement	
  over	
  a	
  
   curved	
  irregular	
  surface	
  
•  Mul(ple	
  input	
  and	
  output	
  
   formats	
  
•  Mul(ple	
  co-­‐ordinate	
  
   systems	
  see:
   A	
  Guide	
  to	
  Coordinate	
  
   Systems	
  in	
  Great	
  Britain	
  	
  

Wednesday,	
  July	
  28,	
  2010	
     ©	
  2010	
  Data	
  Management	
  &	
  Warehousing	
     4	
  
Sources	
  of	
  Informa(on	
  –	
  GPS	
  
•  In	
  Car	
  Device	
  
          –  Sends	
  frequent	
  data	
  sets	
  to	
  
             processing	
  centre	
  
          –  Point	
  Data	
  
                    •  Speed,	
  Direc(on,	
  	
  
                       Loca(on	
  and	
  G-­‐force	
  
          –  Aggregate	
  Data	
  
                    •  Speed	
  and	
  Direc(on	
  
•  Other	
  Devices	
  
          –  Sat	
  Nav	
  Systems	
  
          –  Smart	
  Phone	
  Apps	
  	
  
             e.g.	
  ‘GPS	
  Tracker’	
  
          –  Cameras	
  

Wednesday,	
  July	
  28,	
  2010	
          ©	
  2010	
  Data	
  Management	
  &	
  Warehousing	
     5	
  
Sources	
  of	
  Informa(on	
  –	
  Ordnance	
  Survey	
  

•  Integrated	
  Road	
  Network:	
  
   A	
  series	
  of	
  3	
  million	
  
   ‘linestrings’	
  and	
  17	
  million	
  
   points	
  that	
  describe	
  every	
  
   road	
  in	
  the	
  UK	
  
•  Linestrings	
  have	
  between	
  2	
  
   and	
  655	
  points,	
  most	
  have	
  
   less	
  than	
  10	
  
•  23	
  points	
  for	
  this	
  picture	
  	
  	
  

Wednesday,	
  July	
  28,	
  2010	
     ©	
  2010	
  Data	
  Management	
  &	
  Warehousing	
     6	
  
Sources	
  of	
  Informa(on	
  –	
  Post	
  Office/GAdm	
  

•  Postal	
  Address	
  File:	
  
   A	
  series	
  of	
  c.1.75M	
  UK	
  
   postcodes	
  
          –  Postcode	
  Boundaries	
  	
  
          –  Over	
  28M	
  complete	
  
             addresses	
  
•  Global	
  Admin	
  Boundaries	
  
          –  Na(onal	
  and	
  regional	
  
             boundaries	
  for	
  c.245	
  
             countries	
  
          –  hgp://www.gadm.org	
  	
  

Wednesday,	
  July	
  28,	
  2010	
     ©	
  2010	
  Data	
  Management	
  &	
  Warehousing	
     7	
  
Data	
  Layers	
  –	
  Enriching	
  what	
  you	
  have	
  

•  Data	
  Layers	
  are	
  sets	
  of	
  informa(on	
  (ed	
  to	
  a	
  
   geographic	
  point	
  
          –  Road	
  Speed	
  for	
  a	
  given	
  road	
  segment	
  
          –  ATM	
  Loca(on	
  
          –  House	
  Price	
  for	
  a	
  postcode	
  
•  Where	
  data	
  has	
  loca(on	
  informa(on	
  it	
  is	
  
   known	
  as	
  ‘Geo-­‐tagged’	
  


Wednesday,	
  July	
  28,	
  2010	
     ©	
  2010	
  Data	
  Management	
  &	
  Warehousing	
     8	
  
Data	
  Layer	
  Sources	
  (1)	
  

•  Ordnance	
  Survey	
  
          –  Road	
  Types,	
  Limits,	
  Closures,	
  etc.	
  
•  Government	
  
          –  UK	
  Government	
  now	
  providing	
  masses	
  of	
  	
  
             geo-­‐tagged	
  info	
  (hgp://data.gov.uk)	
  
•  Met	
  Office	
  /	
  HM	
  Nau(cal	
  Almanac	
  Office	
  	
  
          –  Weather,	
  Daylight	
  to	
  Postcode	
  Level	
  


Wednesday,	
  July	
  28,	
  2010	
     ©	
  2010	
  Data	
  Management	
  &	
  Warehousing	
     9	
  
Data	
  Layer	
  Sources	
  (2)	
  
•  Wikipedia	
  
          –  Geo-­‐tag	
  Access	
  API	
  –	
  what’s	
  nearby?	
  
•  Google	
  Maps	
  
          –  Road	
  level	
  photographic	
  images	
  
•  Commercial	
  Sources	
  
          –  Fast	
  Food	
  Outlets,	
  Supermarkets,	
  Petrol	
  Sta(ons,	
  ATMs,	
  
             etc.	
  

•  Massive	
  growth	
  in	
  both	
  commercial	
  and	
  public	
  domain	
  
   geo-­‐tagged	
  data	
  


Wednesday,	
  July	
  28,	
  2010	
     ©	
  2010	
  Data	
  Management	
  &	
  Warehousing	
     10	
  
Issues	
  with	
  Geo-­‐tagged	
  data	
  

•  Geo-­‐tagging	
  uses	
  different	
  formats	
  
          –  Longitude	
  &	
  La(tude,	
  OS	
  Grid	
  Reference,	
  etc	
  
•  Geo-­‐tagging	
  at	
  different	
  levels	
  
          –  Data	
  for	
  a	
  postcode	
  or	
  a	
  an	
  en(re	
  county	
  which	
  makes	
  
             it	
  difficult	
  to	
  compare	
  
•  Geo-­‐tagging	
  coverage	
  is	
  patchy	
  and/or	
  historic	
  
          –  Rate	
  of	
  change	
  of	
  fine	
  detail	
  data	
  is	
  very	
  high	
  	
  
          –  e.g.	
  OS	
  issues	
  monthly	
  updates	
  to	
  the	
  UK	
  mapping	
  
•  Mul(ple	
  standards	
  and	
  formats	
  
          –  XML	
  &	
  CSV,	
  different	
  file	
  formats,	
  etc.	
  	
  

Wednesday,	
  July	
  28,	
  2010	
     ©	
  2010	
  Data	
  Management	
  &	
  Warehousing	
     11	
  
Our	
  Model	
  For	
  Delivering	
  Spa(al	
  Data	
  

             Source	
                   1.       Load	
  Mul(ple	
  File	
  Formats	
                                                          Netezza	
  
                                        2.       Standardise	
  Geo-­‐Tagging	
  
                                        3.       Extract	
  &	
  Load	
  CSVs	
  




                                                                                                             	
  (Proximity,	
  Contains,	
  Excludes)	
  




                                                                                                                                                                                                         (Tableau,	
  Google	
  Maps,	
  etc.)	
  
                                                                                                                                                                                                          Query	
  &	
  Presenta(on	
  Tools	
  
             Source	
                   4.       Perform	
  Spa(al	
  Analysis	
  




                                                                                                                                                             (Sets	
  of	
  data	
  with	
  spa(al	
  
                                                                                                                                                               Spa(al	
  Presenta(on	
  
                                        5.       Create	
  User	
  Access	
  Area	
  




                                                                                                                        Spa(al	
  Analysis	
  




                                                                                                                                                                       agributes)	
  
             Source	
  


             Source	
                                      (Small)	
  
                                         1	
              Postgres	
                     3	
  

                                                          Database	
  
             Source	
  

                                                                  2	
  
             Source	
                                                                                                               4	
                                        5	
  




Wednesday,	
  July	
  28,	
  2010	
                     ©	
  2010	
  Data	
  Management	
  &	
  Warehousing	
                                                                                                            12	
  
Netezza	
  Spa(al	
  Value	
  Add	
  
•  Netezza	
  Spa(al	
  is	
  fast	
                                            •  Netezza	
  Spa(al	
  is	
  easy	
  
          –  Analysis	
                                                                  –  Distance	
  and	
  proximity	
  
                    •  Look	
  up	
  a	
  typical	
  18	
  point	
                          calcula(ons	
  are	
  simple	
  
                       trip	
  in	
  the	
  3M	
  linestrings	
  to	
                    –  ‘Touches’,	
  ‘Overlaps’	
  &	
  
                       find	
  the	
  roads	
  that	
  the	
                                 ‘Contains’	
  queries	
  allow	
  
                       vehicle	
  was	
  on	
  in	
  less	
  than	
  
                       1	
  second	
                                                        instant	
  value	
  add	
  	
  
                    •  Overnight	
  batch	
  process	
  of	
  
                       300,000	
  points	
  to	
  matching	
                    •  Netezza	
  Spa(al	
  integrates	
  
                       road	
  names	
  in	
  under	
  30	
  
                       minutes	
                                                         –  Works	
  well	
  with	
  Tableau	
  
          –  Presenta(on	
                                                               –  Easy	
  to	
  generate	
  KML	
  for	
  
                    •  Tools	
  rely	
  on	
  fast	
  query	
                               use	
  with	
  Google	
  Earth	
  and	
  
                       access	
  to	
  render	
  any	
                                      Google	
  Maps	
  
                       queried	
  map	
  with	
  sub-­‐
                       second	
  response	
  (mes	
  


Wednesday,	
  July	
  28,	
  2010	
               ©	
  2010	
  Data	
  Management	
  &	
  Warehousing	
                            13	
  
Netezza	
  Spa(al	
  Limita(ons	
  
•  Fails	
  the	
  Slar(barpast	
  Test:	
  
          –  Polygons	
  for	
  very	
  detailed	
  maps	
  
             are	
  too	
  big	
  to	
  be	
  loaded	
  as	
  
             Netezza	
  limits	
  the	
  maximum	
  
             block	
  size	
  to	
  64000	
  characters	
                                                   Norway	
  
          –  Named	
  aqer	
  the	
  Hitch-­‐Hikers	
  
             Guide	
  to	
  the	
  Galaxy	
  coastline	
  
             designer	
  responsible	
  for	
  the	
  
             twiddly	
  bits	
  around	
  the	
  
             Norwegian	
  rords	
  
•  Work-­‐around:	
  
          –  Use	
  regional	
  boundaries	
  (e.g.	
  
             UK	
  Coun(es,	
  US	
  States,	
  etc.)	
  
             and	
  then	
  aggregate	
  into	
  
             na(onal	
  boundaries	
  
          –  If	
  a	
  point	
  is	
  in	
  Berkshire	
  then	
  by	
                                         Slar(barpast	
  
             defini(on	
  it	
  is	
  also	
  in	
  England	
  

Wednesday,	
  July	
  28,	
  2010	
               ©	
  2010	
  Data	
  Management	
  &	
  Warehousing	
                           Page	
  14	
  
Current	
  Uses	
  …	
  

•        M/A/B	
  road	
  driving	
  profiles	
  
•        Time	
  of	
  day	
  driving	
  profiles	
  
•        Speed	
  Limits	
  vs.	
  Driven	
  Speed	
  
•        Matching	
  GPS	
  posi(ons	
  to	
  road	
  names	
  
•        Out	
  of	
  bounds	
  driving	
  
•        Customer	
  Demographic	
  Profiles	
  
     	
  …	
  but	
  this	
  is	
  only	
  the	
  start	
  in	
  a	
  very	
  short	
  (me	
  

Wednesday,	
  July	
  28,	
  2010	
     ©	
  2010	
  Data	
  Management	
  &	
  Warehousing	
     15	
  
in	
  conjunc(on	
  with	
  
Data Management & Warehousing   http://www.datamgmt.com
Ad

More Related Content

Viewers also liked (20)

Building a data warehouse of call data records
Building a data warehouse of call data recordsBuilding a data warehouse of call data records
Building a data warehouse of call data records
David Walker
 
The ABC of Data Governance: driving Information Excellence
The ABC of Data Governance: driving Information ExcellenceThe ABC of Data Governance: driving Information Excellence
The ABC of Data Governance: driving Information Excellence
Alan D. Duncan
 
Data Driven Insurance Underwriting (Dutch Language Version)
Data Driven Insurance Underwriting (Dutch Language Version)Data Driven Insurance Underwriting (Dutch Language Version)
Data Driven Insurance Underwriting (Dutch Language Version)
David Walker
 
LL Higher Ed BI 2014 Key BI Market Trends 20140513a
LL Higher Ed BI 2014 Key BI Market Trends 20140513aLL Higher Ed BI 2014 Key BI Market Trends 20140513a
LL Higher Ed BI 2014 Key BI Market Trends 20140513a
Alan D. Duncan
 
Basics of Microsoft Business Intelligence and Data Integration Techniques
Basics of Microsoft Business Intelligence and Data Integration TechniquesBasics of Microsoft Business Intelligence and Data Integration Techniques
Basics of Microsoft Business Intelligence and Data Integration Techniques
Valmik Potbhare
 
Data Driven Insurance Underwriting
Data Driven Insurance UnderwritingData Driven Insurance Underwriting
Data Driven Insurance Underwriting
David Walker
 
Data warehousing change in a challenging environment
Data warehousing change in a challenging environmentData warehousing change in a challenging environment
Data warehousing change in a challenging environment
David Walker
 
Igqie14 analytics and ethics 20141107
Igqie14   analytics and ethics 20141107Igqie14   analytics and ethics 20141107
Igqie14 analytics and ethics 20141107
Alan D. Duncan
 
The one question you must never ask!" (Information Requirements Gathering for...
The one question you must never ask!" (Information Requirements Gathering for...The one question you must never ask!" (Information Requirements Gathering for...
The one question you must never ask!" (Information Requirements Gathering for...
Alan D. Duncan
 
04. Logical Data Definition template
04. Logical Data Definition template04. Logical Data Definition template
04. Logical Data Definition template
Alan D. Duncan
 
02. Information solution outline template
02. Information solution outline template02. Information solution outline template
02. Information solution outline template
Alan D. Duncan
 
WHITE PAPER: Distributed Data Quality
WHITE PAPER: Distributed Data QualityWHITE PAPER: Distributed Data Quality
WHITE PAPER: Distributed Data Quality
Alan D. Duncan
 
Example data specifications and info requirements framework OVERVIEW
Example data specifications and info requirements framework OVERVIEWExample data specifications and info requirements framework OVERVIEW
Example data specifications and info requirements framework OVERVIEW
Alan D. Duncan
 
05. Physical Data Specification Template
05. Physical Data Specification Template05. Physical Data Specification Template
05. Physical Data Specification Template
Alan D. Duncan
 
Managing for Effective Data Governance: workshop for DQ Asia Pacific Congress...
Managing for Effective Data Governance: workshop for DQ Asia Pacific Congress...Managing for Effective Data Governance: workshop for DQ Asia Pacific Congress...
Managing for Effective Data Governance: workshop for DQ Asia Pacific Congress...
Alan D. Duncan
 
Moving From Scorecards To Strategic Management
Moving From Scorecards To Strategic ManagementMoving From Scorecards To Strategic Management
Moving From Scorecards To Strategic Management
Wynyard Group
 
06. Transformation Logic Template (Source to Target)
06. Transformation Logic Template (Source to Target)06. Transformation Logic Template (Source to Target)
06. Transformation Logic Template (Source to Target)
Alan D. Duncan
 
DATA MART APPROCHES TO ARCHITECTURE
DATA MART APPROCHES TO ARCHITECTUREDATA MART APPROCHES TO ARCHITECTURE
DATA MART APPROCHES TO ARCHITECTURE
Sachin Batham
 
03. Business Information Requirements Template
03. Business Information Requirements Template03. Business Information Requirements Template
03. Business Information Requirements Template
Alan D. Duncan
 
Using the right data model in a data mart
Using the right data model in a data martUsing the right data model in a data mart
Using the right data model in a data mart
David Walker
 
Building a data warehouse of call data records
Building a data warehouse of call data recordsBuilding a data warehouse of call data records
Building a data warehouse of call data records
David Walker
 
The ABC of Data Governance: driving Information Excellence
The ABC of Data Governance: driving Information ExcellenceThe ABC of Data Governance: driving Information Excellence
The ABC of Data Governance: driving Information Excellence
Alan D. Duncan
 
Data Driven Insurance Underwriting (Dutch Language Version)
Data Driven Insurance Underwriting (Dutch Language Version)Data Driven Insurance Underwriting (Dutch Language Version)
Data Driven Insurance Underwriting (Dutch Language Version)
David Walker
 
LL Higher Ed BI 2014 Key BI Market Trends 20140513a
LL Higher Ed BI 2014 Key BI Market Trends 20140513aLL Higher Ed BI 2014 Key BI Market Trends 20140513a
LL Higher Ed BI 2014 Key BI Market Trends 20140513a
Alan D. Duncan
 
Basics of Microsoft Business Intelligence and Data Integration Techniques
Basics of Microsoft Business Intelligence and Data Integration TechniquesBasics of Microsoft Business Intelligence and Data Integration Techniques
Basics of Microsoft Business Intelligence and Data Integration Techniques
Valmik Potbhare
 
Data Driven Insurance Underwriting
Data Driven Insurance UnderwritingData Driven Insurance Underwriting
Data Driven Insurance Underwriting
David Walker
 
Data warehousing change in a challenging environment
Data warehousing change in a challenging environmentData warehousing change in a challenging environment
Data warehousing change in a challenging environment
David Walker
 
Igqie14 analytics and ethics 20141107
Igqie14   analytics and ethics 20141107Igqie14   analytics and ethics 20141107
Igqie14 analytics and ethics 20141107
Alan D. Duncan
 
The one question you must never ask!" (Information Requirements Gathering for...
The one question you must never ask!" (Information Requirements Gathering for...The one question you must never ask!" (Information Requirements Gathering for...
The one question you must never ask!" (Information Requirements Gathering for...
Alan D. Duncan
 
04. Logical Data Definition template
04. Logical Data Definition template04. Logical Data Definition template
04. Logical Data Definition template
Alan D. Duncan
 
02. Information solution outline template
02. Information solution outline template02. Information solution outline template
02. Information solution outline template
Alan D. Duncan
 
WHITE PAPER: Distributed Data Quality
WHITE PAPER: Distributed Data QualityWHITE PAPER: Distributed Data Quality
WHITE PAPER: Distributed Data Quality
Alan D. Duncan
 
Example data specifications and info requirements framework OVERVIEW
Example data specifications and info requirements framework OVERVIEWExample data specifications and info requirements framework OVERVIEW
Example data specifications and info requirements framework OVERVIEW
Alan D. Duncan
 
05. Physical Data Specification Template
05. Physical Data Specification Template05. Physical Data Specification Template
05. Physical Data Specification Template
Alan D. Duncan
 
Managing for Effective Data Governance: workshop for DQ Asia Pacific Congress...
Managing for Effective Data Governance: workshop for DQ Asia Pacific Congress...Managing for Effective Data Governance: workshop for DQ Asia Pacific Congress...
Managing for Effective Data Governance: workshop for DQ Asia Pacific Congress...
Alan D. Duncan
 
Moving From Scorecards To Strategic Management
Moving From Scorecards To Strategic ManagementMoving From Scorecards To Strategic Management
Moving From Scorecards To Strategic Management
Wynyard Group
 
06. Transformation Logic Template (Source to Target)
06. Transformation Logic Template (Source to Target)06. Transformation Logic Template (Source to Target)
06. Transformation Logic Template (Source to Target)
Alan D. Duncan
 
DATA MART APPROCHES TO ARCHITECTURE
DATA MART APPROCHES TO ARCHITECTUREDATA MART APPROCHES TO ARCHITECTURE
DATA MART APPROCHES TO ARCHITECTURE
Sachin Batham
 
03. Business Information Requirements Template
03. Business Information Requirements Template03. Business Information Requirements Template
03. Business Information Requirements Template
Alan D. Duncan
 
Using the right data model in a data mart
Using the right data model in a data martUsing the right data model in a data mart
Using the right data model in a data mart
David Walker
 

Similar to Implementing Netezza Spatial (20)

Large Scale Data Analysis with Map/Reduce, part I
Large Scale Data Analysis with Map/Reduce, part ILarge Scale Data Analysis with Map/Reduce, part I
Large Scale Data Analysis with Map/Reduce, part I
Marin Dimitrov
 
EMOS 2018 Big Data methods and techniques
EMOS 2018 Big Data methods and techniquesEMOS 2018 Big Data methods and techniques
EMOS 2018 Big Data methods and techniques
Piet J.H. Daas
 
Exploratory Spatial Analytics (ESA)
Exploratory Spatial Analytics (ESA)Exploratory Spatial Analytics (ESA)
Exploratory Spatial Analytics (ESA)
Stig-Arne Kristoffersen
 
From Sensor Data to Triples: Information Flow in Semantic Sensor Networks
From Sensor Data to Triples: Information Flow in Semantic Sensor NetworksFrom Sensor Data to Triples: Information Flow in Semantic Sensor Networks
From Sensor Data to Triples: Information Flow in Semantic Sensor Networks
Nikolaos Konstantinou
 
Big learning 1.2
Big learning   1.2Big learning   1.2
Big learning 1.2
Mohit Garg
 
Lecture1 introduction to big data
Lecture1 introduction to big dataLecture1 introduction to big data
Lecture1 introduction to big data
hktripathy
 
Scientific Applications of The Data Distribution Service
Scientific Applications of The Data Distribution ServiceScientific Applications of The Data Distribution Service
Scientific Applications of The Data Distribution Service
Angelo Corsaro
 
Taming the Survey Data "Tower of Babel"
Taming the Survey Data "Tower of Babel"Taming the Survey Data "Tower of Babel"
Taming the Survey Data "Tower of Babel"
mercatorlem
 
CIGRE Presentation
CIGRE PresentationCIGRE Presentation
CIGRE Presentation
Bert Taube
 
Seattle hug 2010
Seattle hug 2010Seattle hug 2010
Seattle hug 2010
Abe Taha
 
Classification of Big Data Use Cases by different Facets
Classification of Big Data Use Cases by different FacetsClassification of Big Data Use Cases by different Facets
Classification of Big Data Use Cases by different Facets
Geoffrey Fox
 
INF2190_W1_2016_public
INF2190_W1_2016_publicINF2190_W1_2016_public
INF2190_W1_2016_public
Attila Barta
 
Big Data and IOT
Big Data and IOTBig Data and IOT
Big Data and IOT
Shubhangi Sheel
 
Term Paper Presentation
Term Paper PresentationTerm Paper Presentation
Term Paper Presentation
Shubham Singh
 
Gis capabilities on Big Data Systems
Gis capabilities on Big Data SystemsGis capabilities on Big Data Systems
Gis capabilities on Big Data Systems
Ahmad Jawwad
 
Apache con big data 2015 magellan
Apache con big data 2015 magellanApache con big data 2015 magellan
Apache con big data 2015 magellan
Ram Sriharsha
 
Graph Theory and Databases
Graph Theory and DatabasesGraph Theory and Databases
Graph Theory and Databases
Pere Urbón-Bayes
 
Unit 3 part i Data mining
Unit 3 part i Data miningUnit 3 part i Data mining
Unit 3 part i Data mining
Dhilsath Fathima
 
Maps4Finland 28.8.2012, Jari Reini
Maps4Finland 28.8.2012, Jari ReiniMaps4Finland 28.8.2012, Jari Reini
Maps4Finland 28.8.2012, Jari Reini
Apps4Finland
 
Drupal Day 2011 - Thinking spatially with your open data
Drupal Day 2011 - Thinking spatially with your open dataDrupal Day 2011 - Thinking spatially with your open data
Drupal Day 2011 - Thinking spatially with your open data
DrupalDay
 
Large Scale Data Analysis with Map/Reduce, part I
Large Scale Data Analysis with Map/Reduce, part ILarge Scale Data Analysis with Map/Reduce, part I
Large Scale Data Analysis with Map/Reduce, part I
Marin Dimitrov
 
EMOS 2018 Big Data methods and techniques
EMOS 2018 Big Data methods and techniquesEMOS 2018 Big Data methods and techniques
EMOS 2018 Big Data methods and techniques
Piet J.H. Daas
 
From Sensor Data to Triples: Information Flow in Semantic Sensor Networks
From Sensor Data to Triples: Information Flow in Semantic Sensor NetworksFrom Sensor Data to Triples: Information Flow in Semantic Sensor Networks
From Sensor Data to Triples: Information Flow in Semantic Sensor Networks
Nikolaos Konstantinou
 
Big learning 1.2
Big learning   1.2Big learning   1.2
Big learning 1.2
Mohit Garg
 
Lecture1 introduction to big data
Lecture1 introduction to big dataLecture1 introduction to big data
Lecture1 introduction to big data
hktripathy
 
Scientific Applications of The Data Distribution Service
Scientific Applications of The Data Distribution ServiceScientific Applications of The Data Distribution Service
Scientific Applications of The Data Distribution Service
Angelo Corsaro
 
Taming the Survey Data "Tower of Babel"
Taming the Survey Data "Tower of Babel"Taming the Survey Data "Tower of Babel"
Taming the Survey Data "Tower of Babel"
mercatorlem
 
CIGRE Presentation
CIGRE PresentationCIGRE Presentation
CIGRE Presentation
Bert Taube
 
Seattle hug 2010
Seattle hug 2010Seattle hug 2010
Seattle hug 2010
Abe Taha
 
Classification of Big Data Use Cases by different Facets
Classification of Big Data Use Cases by different FacetsClassification of Big Data Use Cases by different Facets
Classification of Big Data Use Cases by different Facets
Geoffrey Fox
 
INF2190_W1_2016_public
INF2190_W1_2016_publicINF2190_W1_2016_public
INF2190_W1_2016_public
Attila Barta
 
Term Paper Presentation
Term Paper PresentationTerm Paper Presentation
Term Paper Presentation
Shubham Singh
 
Gis capabilities on Big Data Systems
Gis capabilities on Big Data SystemsGis capabilities on Big Data Systems
Gis capabilities on Big Data Systems
Ahmad Jawwad
 
Apache con big data 2015 magellan
Apache con big data 2015 magellanApache con big data 2015 magellan
Apache con big data 2015 magellan
Ram Sriharsha
 
Maps4Finland 28.8.2012, Jari Reini
Maps4Finland 28.8.2012, Jari ReiniMaps4Finland 28.8.2012, Jari Reini
Maps4Finland 28.8.2012, Jari Reini
Apps4Finland
 
Drupal Day 2011 - Thinking spatially with your open data
Drupal Day 2011 - Thinking spatially with your open dataDrupal Day 2011 - Thinking spatially with your open data
Drupal Day 2011 - Thinking spatially with your open data
DrupalDay
 
Ad

More from David Walker (20)

Moving To MicroServices
Moving To MicroServicesMoving To MicroServices
Moving To MicroServices
David Walker
 
Big Data Week 2016 - Worldpay - Deploying Secure Clusters
Big Data Week 2016  - Worldpay - Deploying Secure ClustersBig Data Week 2016  - Worldpay - Deploying Secure Clusters
Big Data Week 2016 - Worldpay - Deploying Secure Clusters
David Walker
 
Data Works Berlin 2018 - Worldpay - PCI Compliance
Data Works Berlin 2018 - Worldpay - PCI ComplianceData Works Berlin 2018 - Worldpay - PCI Compliance
Data Works Berlin 2018 - Worldpay - PCI Compliance
David Walker
 
Data Works Summit Munich 2017 - Worldpay - Multi Tenancy Clusters
Data Works Summit Munich 2017 - Worldpay - Multi Tenancy ClustersData Works Summit Munich 2017 - Worldpay - Multi Tenancy Clusters
Data Works Summit Munich 2017 - Worldpay - Multi Tenancy Clusters
David Walker
 
Big Data Analytics 2017 - Worldpay - Empowering Payments
Big Data Analytics 2017  - Worldpay - Empowering PaymentsBig Data Analytics 2017  - Worldpay - Empowering Payments
Big Data Analytics 2017 - Worldpay - Empowering Payments
David Walker
 
An introduction to data virtualization in business intelligence
An introduction to data virtualization in business intelligenceAn introduction to data virtualization in business intelligence
An introduction to data virtualization in business intelligence
David Walker
 
Gathering Business Requirements for Data Warehouses
Gathering Business Requirements for Data WarehousesGathering Business Requirements for Data Warehouses
Gathering Business Requirements for Data Warehouses
David Walker
 
Struggling with data management
Struggling with data managementStruggling with data management
Struggling with data management
David Walker
 
A linux mac os x command line interface
A linux mac os x command line interfaceA linux mac os x command line interface
A linux mac os x command line interface
David Walker
 
Connections a life in the day of - david walker
Connections   a life in the day of - david walkerConnections   a life in the day of - david walker
Connections a life in the day of - david walker
David Walker
 
Conspectus data warehousing appliances – fad or future
Conspectus   data warehousing appliances – fad or futureConspectus   data warehousing appliances – fad or future
Conspectus data warehousing appliances – fad or future
David Walker
 
Storage Characteristics Of Call Data Records In Column Store Databases
Storage Characteristics Of Call Data Records In Column Store DatabasesStorage Characteristics Of Call Data Records In Column Store Databases
Storage Characteristics Of Call Data Records In Column Store Databases
David Walker
 
UKOUG06 - An Introduction To Process Neutral Data Modelling - Presentation
UKOUG06 - An Introduction To Process Neutral Data Modelling - PresentationUKOUG06 - An Introduction To Process Neutral Data Modelling - Presentation
UKOUG06 - An Introduction To Process Neutral Data Modelling - Presentation
David Walker
 
Oracle BI06 From Volume To Value - Presentation
Oracle BI06   From Volume To Value - PresentationOracle BI06   From Volume To Value - Presentation
Oracle BI06 From Volume To Value - Presentation
David Walker
 
Openworld04 - Information Delivery - The Change In Data Management At Network...
Openworld04 - Information Delivery - The Change In Data Management At Network...Openworld04 - Information Delivery - The Change In Data Management At Network...
Openworld04 - Information Delivery - The Change In Data Management At Network...
David Walker
 
IRM09 - What Can IT Really Deliver For BI and DW - Presentation
IRM09 - What Can IT Really Deliver For BI and DW - PresentationIRM09 - What Can IT Really Deliver For BI and DW - Presentation
IRM09 - What Can IT Really Deliver For BI and DW - Presentation
David Walker
 
IOUG93 - Technical Architecture for the Data Warehouse - Presentation
IOUG93 - Technical Architecture for the Data Warehouse - PresentationIOUG93 - Technical Architecture for the Data Warehouse - Presentation
IOUG93 - Technical Architecture for the Data Warehouse - Presentation
David Walker
 
ETIS11 - Enterprise Metadata Management
ETIS11 -  Enterprise Metadata ManagementETIS11 -  Enterprise Metadata Management
ETIS11 - Enterprise Metadata Management
David Walker
 
ETIS11 - Agile Business Intelligence - Presentation
ETIS11 -  Agile Business Intelligence - PresentationETIS11 -  Agile Business Intelligence - Presentation
ETIS11 - Agile Business Intelligence - Presentation
David Walker
 
ETIS10 - BI Governance Models & Strategies - Presentation
ETIS10 - BI Governance Models & Strategies - PresentationETIS10 - BI Governance Models & Strategies - Presentation
ETIS10 - BI Governance Models & Strategies - Presentation
David Walker
 
Moving To MicroServices
Moving To MicroServicesMoving To MicroServices
Moving To MicroServices
David Walker
 
Big Data Week 2016 - Worldpay - Deploying Secure Clusters
Big Data Week 2016  - Worldpay - Deploying Secure ClustersBig Data Week 2016  - Worldpay - Deploying Secure Clusters
Big Data Week 2016 - Worldpay - Deploying Secure Clusters
David Walker
 
Data Works Berlin 2018 - Worldpay - PCI Compliance
Data Works Berlin 2018 - Worldpay - PCI ComplianceData Works Berlin 2018 - Worldpay - PCI Compliance
Data Works Berlin 2018 - Worldpay - PCI Compliance
David Walker
 
Data Works Summit Munich 2017 - Worldpay - Multi Tenancy Clusters
Data Works Summit Munich 2017 - Worldpay - Multi Tenancy ClustersData Works Summit Munich 2017 - Worldpay - Multi Tenancy Clusters
Data Works Summit Munich 2017 - Worldpay - Multi Tenancy Clusters
David Walker
 
Big Data Analytics 2017 - Worldpay - Empowering Payments
Big Data Analytics 2017  - Worldpay - Empowering PaymentsBig Data Analytics 2017  - Worldpay - Empowering Payments
Big Data Analytics 2017 - Worldpay - Empowering Payments
David Walker
 
An introduction to data virtualization in business intelligence
An introduction to data virtualization in business intelligenceAn introduction to data virtualization in business intelligence
An introduction to data virtualization in business intelligence
David Walker
 
Gathering Business Requirements for Data Warehouses
Gathering Business Requirements for Data WarehousesGathering Business Requirements for Data Warehouses
Gathering Business Requirements for Data Warehouses
David Walker
 
Struggling with data management
Struggling with data managementStruggling with data management
Struggling with data management
David Walker
 
A linux mac os x command line interface
A linux mac os x command line interfaceA linux mac os x command line interface
A linux mac os x command line interface
David Walker
 
Connections a life in the day of - david walker
Connections   a life in the day of - david walkerConnections   a life in the day of - david walker
Connections a life in the day of - david walker
David Walker
 
Conspectus data warehousing appliances – fad or future
Conspectus   data warehousing appliances – fad or futureConspectus   data warehousing appliances – fad or future
Conspectus data warehousing appliances – fad or future
David Walker
 
Storage Characteristics Of Call Data Records In Column Store Databases
Storage Characteristics Of Call Data Records In Column Store DatabasesStorage Characteristics Of Call Data Records In Column Store Databases
Storage Characteristics Of Call Data Records In Column Store Databases
David Walker
 
UKOUG06 - An Introduction To Process Neutral Data Modelling - Presentation
UKOUG06 - An Introduction To Process Neutral Data Modelling - PresentationUKOUG06 - An Introduction To Process Neutral Data Modelling - Presentation
UKOUG06 - An Introduction To Process Neutral Data Modelling - Presentation
David Walker
 
Oracle BI06 From Volume To Value - Presentation
Oracle BI06   From Volume To Value - PresentationOracle BI06   From Volume To Value - Presentation
Oracle BI06 From Volume To Value - Presentation
David Walker
 
Openworld04 - Information Delivery - The Change In Data Management At Network...
Openworld04 - Information Delivery - The Change In Data Management At Network...Openworld04 - Information Delivery - The Change In Data Management At Network...
Openworld04 - Information Delivery - The Change In Data Management At Network...
David Walker
 
IRM09 - What Can IT Really Deliver For BI and DW - Presentation
IRM09 - What Can IT Really Deliver For BI and DW - PresentationIRM09 - What Can IT Really Deliver For BI and DW - Presentation
IRM09 - What Can IT Really Deliver For BI and DW - Presentation
David Walker
 
IOUG93 - Technical Architecture for the Data Warehouse - Presentation
IOUG93 - Technical Architecture for the Data Warehouse - PresentationIOUG93 - Technical Architecture for the Data Warehouse - Presentation
IOUG93 - Technical Architecture for the Data Warehouse - Presentation
David Walker
 
ETIS11 - Enterprise Metadata Management
ETIS11 -  Enterprise Metadata ManagementETIS11 -  Enterprise Metadata Management
ETIS11 - Enterprise Metadata Management
David Walker
 
ETIS11 - Agile Business Intelligence - Presentation
ETIS11 -  Agile Business Intelligence - PresentationETIS11 -  Agile Business Intelligence - Presentation
ETIS11 - Agile Business Intelligence - Presentation
David Walker
 
ETIS10 - BI Governance Models & Strategies - Presentation
ETIS10 - BI Governance Models & Strategies - PresentationETIS10 - BI Governance Models & Strategies - Presentation
ETIS10 - BI Governance Models & Strategies - Presentation
David Walker
 
Ad

Recently uploaded (20)

MINDCTI revenue release Quarter 1 2025 PR
MINDCTI revenue release Quarter 1 2025 PRMINDCTI revenue release Quarter 1 2025 PR
MINDCTI revenue release Quarter 1 2025 PR
MIND CTI
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
Vaibhav Gupta BAML: AI work flows without Hallucinations
Vaibhav Gupta BAML: AI work flows without HallucinationsVaibhav Gupta BAML: AI work flows without Hallucinations
Vaibhav Gupta BAML: AI work flows without Hallucinations
john409870
 
Top 10 IT Help Desk Outsourcing Services
Top 10 IT Help Desk Outsourcing ServicesTop 10 IT Help Desk Outsourcing Services
Top 10 IT Help Desk Outsourcing Services
Infrassist Technologies Pvt. Ltd.
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Unlocking the Power of IVR: A Comprehensive Guide
Unlocking the Power of IVR: A Comprehensive GuideUnlocking the Power of IVR: A Comprehensive Guide
Unlocking the Power of IVR: A Comprehensive Guide
vikasascentbpo
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
MINDCTI revenue release Quarter 1 2025 PR
MINDCTI revenue release Quarter 1 2025 PRMINDCTI revenue release Quarter 1 2025 PR
MINDCTI revenue release Quarter 1 2025 PR
MIND CTI
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
Vaibhav Gupta BAML: AI work flows without Hallucinations
Vaibhav Gupta BAML: AI work flows without HallucinationsVaibhav Gupta BAML: AI work flows without Hallucinations
Vaibhav Gupta BAML: AI work flows without Hallucinations
john409870
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Unlocking the Power of IVR: A Comprehensive Guide
Unlocking the Power of IVR: A Comprehensive GuideUnlocking the Power of IVR: A Comprehensive Guide
Unlocking the Power of IVR: A Comprehensive Guide
vikasascentbpo
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 

Implementing Netezza Spatial

  • 1. in  conjunc(on  with   Data Management & Warehousing http://www.datamgmt.com
  • 2. What  is  the  Spa(al  Module?   •  It’s  the  ability  to  analyse  informa(on  in  a   geographic  context:   –  Where  is  the  nearest  petrol  sta(on?   –  Which  road  am  I  on?   –  How  many  ATMs  are  in  this  area?   •  It’s  not  maps  and  images   –  These  come  later  with  tools  that  help  present  the   informa(on   Wednesday,  July  28,  2010   ©  2010  Data  Management  &  Warehousing   2  
  • 3. The  three  types  of  data  &  many  ques(ons   •  Points   •  How  close  are  two   –  OS  Grid   points?   –  La(tude  &  Longitude     •  Does  a  point  touch  a   •  Lines   line?   –  Pairs  of  points   •  Is  a  point  inside  or   –  e.g.  Road  Segments   outside  a  polygon?   •  Polygons   •  Does  a  line  cross  a   –  A  series  of  points  that   polygon?   define  a  boundary   •  How  many  points  are  in   –  e.g.  Postcode  Boundaries   a  polygon?   Wednesday,  July  28,  2010   ©  2010  Data  Management  &  Warehousing   3  
  • 4. Using  Spa(al  Data  Is  Complex   •  Different  distances   between  points  at   different  longitudes  and   la(tudes   •  Measurement  over  a   curved  irregular  surface   •  Mul(ple  input  and  output   formats   •  Mul(ple  co-­‐ordinate   systems  see: A  Guide  to  Coordinate   Systems  in  Great  Britain     Wednesday,  July  28,  2010   ©  2010  Data  Management  &  Warehousing   4  
  • 5. Sources  of  Informa(on  –  GPS   •  In  Car  Device   –  Sends  frequent  data  sets  to   processing  centre   –  Point  Data   •  Speed,  Direc(on,     Loca(on  and  G-­‐force   –  Aggregate  Data   •  Speed  and  Direc(on   •  Other  Devices   –  Sat  Nav  Systems   –  Smart  Phone  Apps     e.g.  ‘GPS  Tracker’   –  Cameras   Wednesday,  July  28,  2010   ©  2010  Data  Management  &  Warehousing   5  
  • 6. Sources  of  Informa(on  –  Ordnance  Survey   •  Integrated  Road  Network:   A  series  of  3  million   ‘linestrings’  and  17  million   points  that  describe  every   road  in  the  UK   •  Linestrings  have  between  2   and  655  points,  most  have   less  than  10   •  23  points  for  this  picture       Wednesday,  July  28,  2010   ©  2010  Data  Management  &  Warehousing   6  
  • 7. Sources  of  Informa(on  –  Post  Office/GAdm   •  Postal  Address  File:   A  series  of  c.1.75M  UK   postcodes   –  Postcode  Boundaries     –  Over  28M  complete   addresses   •  Global  Admin  Boundaries   –  Na(onal  and  regional   boundaries  for  c.245   countries   –  hgp://www.gadm.org     Wednesday,  July  28,  2010   ©  2010  Data  Management  &  Warehousing   7  
  • 8. Data  Layers  –  Enriching  what  you  have   •  Data  Layers  are  sets  of  informa(on  (ed  to  a   geographic  point   –  Road  Speed  for  a  given  road  segment   –  ATM  Loca(on   –  House  Price  for  a  postcode   •  Where  data  has  loca(on  informa(on  it  is   known  as  ‘Geo-­‐tagged’   Wednesday,  July  28,  2010   ©  2010  Data  Management  &  Warehousing   8  
  • 9. Data  Layer  Sources  (1)   •  Ordnance  Survey   –  Road  Types,  Limits,  Closures,  etc.   •  Government   –  UK  Government  now  providing  masses  of     geo-­‐tagged  info  (hgp://data.gov.uk)   •  Met  Office  /  HM  Nau(cal  Almanac  Office     –  Weather,  Daylight  to  Postcode  Level   Wednesday,  July  28,  2010   ©  2010  Data  Management  &  Warehousing   9  
  • 10. Data  Layer  Sources  (2)   •  Wikipedia   –  Geo-­‐tag  Access  API  –  what’s  nearby?   •  Google  Maps   –  Road  level  photographic  images   •  Commercial  Sources   –  Fast  Food  Outlets,  Supermarkets,  Petrol  Sta(ons,  ATMs,   etc.   •  Massive  growth  in  both  commercial  and  public  domain   geo-­‐tagged  data   Wednesday,  July  28,  2010   ©  2010  Data  Management  &  Warehousing   10  
  • 11. Issues  with  Geo-­‐tagged  data   •  Geo-­‐tagging  uses  different  formats   –  Longitude  &  La(tude,  OS  Grid  Reference,  etc   •  Geo-­‐tagging  at  different  levels   –  Data  for  a  postcode  or  a  an  en(re  county  which  makes   it  difficult  to  compare   •  Geo-­‐tagging  coverage  is  patchy  and/or  historic   –  Rate  of  change  of  fine  detail  data  is  very  high     –  e.g.  OS  issues  monthly  updates  to  the  UK  mapping   •  Mul(ple  standards  and  formats   –  XML  &  CSV,  different  file  formats,  etc.     Wednesday,  July  28,  2010   ©  2010  Data  Management  &  Warehousing   11  
  • 12. Our  Model  For  Delivering  Spa(al  Data   Source   1.  Load  Mul(ple  File  Formats   Netezza   2.  Standardise  Geo-­‐Tagging   3.  Extract  &  Load  CSVs    (Proximity,  Contains,  Excludes)   (Tableau,  Google  Maps,  etc.)   Query  &  Presenta(on  Tools   Source   4.  Perform  Spa(al  Analysis   (Sets  of  data  with  spa(al   Spa(al  Presenta(on   5.  Create  User  Access  Area   Spa(al  Analysis   agributes)   Source   Source   (Small)   1   Postgres   3   Database   Source   2   Source   4   5   Wednesday,  July  28,  2010   ©  2010  Data  Management  &  Warehousing   12  
  • 13. Netezza  Spa(al  Value  Add   •  Netezza  Spa(al  is  fast   •  Netezza  Spa(al  is  easy   –  Analysis   –  Distance  and  proximity   •  Look  up  a  typical  18  point   calcula(ons  are  simple   trip  in  the  3M  linestrings  to   –  ‘Touches’,  ‘Overlaps’  &   find  the  roads  that  the   ‘Contains’  queries  allow   vehicle  was  on  in  less  than   1  second   instant  value  add     •  Overnight  batch  process  of   300,000  points  to  matching   •  Netezza  Spa(al  integrates   road  names  in  under  30   minutes   –  Works  well  with  Tableau   –  Presenta(on   –  Easy  to  generate  KML  for   •  Tools  rely  on  fast  query   use  with  Google  Earth  and   access  to  render  any   Google  Maps   queried  map  with  sub-­‐ second  response  (mes   Wednesday,  July  28,  2010   ©  2010  Data  Management  &  Warehousing   13  
  • 14. Netezza  Spa(al  Limita(ons   •  Fails  the  Slar(barpast  Test:   –  Polygons  for  very  detailed  maps   are  too  big  to  be  loaded  as   Netezza  limits  the  maximum   block  size  to  64000  characters   Norway   –  Named  aqer  the  Hitch-­‐Hikers   Guide  to  the  Galaxy  coastline   designer  responsible  for  the   twiddly  bits  around  the   Norwegian  rords   •  Work-­‐around:   –  Use  regional  boundaries  (e.g.   UK  Coun(es,  US  States,  etc.)   and  then  aggregate  into   na(onal  boundaries   –  If  a  point  is  in  Berkshire  then  by   Slar(barpast   defini(on  it  is  also  in  England   Wednesday,  July  28,  2010   ©  2010  Data  Management  &  Warehousing   Page  14  
  • 15. Current  Uses  …   •  M/A/B  road  driving  profiles   •  Time  of  day  driving  profiles   •  Speed  Limits  vs.  Driven  Speed   •  Matching  GPS  posi(ons  to  road  names   •  Out  of  bounds  driving   •  Customer  Demographic  Profiles    …  but  this  is  only  the  start  in  a  very  short  (me   Wednesday,  July  28,  2010   ©  2010  Data  Management  &  Warehousing   15  
  • 16. in  conjunc(on  with   Data Management & Warehousing http://www.datamgmt.com