SlideShare a Scribd company logo
DATA VIRTUALIZATION PACKED LUNCH
WEBINAR SERIES
Sessions Covering Key Data Integration Challenges
Solved with Data Virtualization
In Memory Parallel Processing for Big
Data Scenarios
Pablo Alvarez-Yanez
Principal Solution Architect, Denodo
Paul Moxon
VP Data Architectures & Chief Evangelist, Denodo
Agenda
1. Modern Data Architecture
2. Denodo Platform – Big Data Integrations
3. Big Data Performance
4. Putting This All Together
5. Q&A
6. Next Steps
The Modern Data Architecture
4
Data Integration – A Modern Data Ecosystem
5
Organizations are Storing More and More Data…
6
Data Lake – The Challenges
7
8
Big Data & Analytics Reference Architecture
Denodo Platform and
Big Data Integrations
9
Hadoop as a Data Source
10
Denodo offers native connectors for all the
major SQL-on-Hadoop engines:
 Hive
 Impala
 SparkSQL
 Presto
In addition, Denodo also offers connectivity for
HBase and direct HDFS access to different file
formats
Hadoop as a Cache
11
Denodo uses an external RDBMS of your choice to
persist copies of the result sets to improve
execution times
• Since data is persisted in an RDBMS, Denodo can
push down relational operations, like JOINS with
other tables, to the database used for cache
SQL-on-Hadoop systems can also be used as
Denodo’s cache
Cache load process based on direct load to HDFS:
1. Creation of the target table in Cache system
2. Generation of Parquet files (in chunks) with Snappy
compression in the local machine
3. Upload in parallel of Parquet files to HDFS
Hadoop as a Processing Engine
12
Denodo optimizer provides native integration
with MPP systems to provide one extra key
capability: Query Acceleration
Denodo can move, on demand, processing to
the MPP during execution of a query
• Parallel power for calculations in the
virtual layer
• Avoids slow processing in-disk when
processing buffers don’t fit into Denodo’s
memory (swapped data)
Demo
13
14
Combining Denodo’s Optimizer with a Hadoop MPP
Denodo provides the most advanced optimizer in the
market, with techniques focused on data virtualization
scenarios with large data volumes
In addition to traditional Cost Based Optimizations (CBO),
Denodo’s optimizer applies innovative optimization
strategies, designed specifically for virtualized scenarios,
beyond traditional RDBMS optimizatios.
Combined with the tight integration with SQL-on-Hadoop
MPP databases, it creates a very powerful combo
15
Example Scenario
Trend of sales by zip code over the
previous years.
Scenario:
• Current data (last 12 months) in EDW
• Historical data offloaded to Hadoop cluster for
cheaper storage
• Customer master data is used often, so it is
cached in the Hadoop cluster
Very large data volumes:
• Sales tables have hundreds of millions of rows
join
group by ZIP
union
Current Sales
100 million rows
Historical Sales
300 million rows
Customer
2 million rows (cached)
16
Example: What are the options?
1. Option A: Simple Federation in Virtual Layer
• Move hundreds of millions of rows for processing in the virtual layer
2. Option B: Data Shipping
• Move “Current sales” to Hadoop and process content in the cluster
• Moves 100 million rows
3. Option C: Partial Aggregation Pushdown (Denodo 6)
• Modifies the execution tree to split the aggregation in two steps:
1. First by Customer ID for the JOIN (pushed down to source)
2. Second by zip code for the final results (in virtual layer)
• Reduces significantly network traffic but processing of large amount of
data in the virtual layer (aggregation by zip code) becomes the bottleneck
4. Denodo’s MPP Integration (Denodo 7)
Simple Federation
Shipping
join
group by ID
group by ZIP
group by ZIP
join
17
Example: Denodo’s Integration with the Hadoop Ecosystem
2M rows
(sales by customer)
System Execution Time Optimization Techniques
Others ~ 10 min Simple federation
No MPP 43 sec Aggregation push-down
With MPP 11 sec
Aggregation push-down + MPP integration
(Impala 8 nodes)
Current Sales
100 M rows
group by
customer ID1. Partial Aggregation
push down
Maximizes source processing
dramatically Reduces network
traffic
3. On-demand data transfer
Denodo automatically generates
and upload Parquet files
4. Integration with local
and pre-cached data
The engine detects when data
Is cached or comes from a
local table already in the MPP
2. Integrated with Cost Based Optimizer
Based on data volume estimation and
the cost of these particular operations,
the CBO can decide to move all or part
of the execution tree to the MPP
5. Fast parallel execution
Support for Spark, Presto and Impala
For fast analytical processing in
inexpensive Hadoop-based solutions
Hist. Sales
300 M rows
Customer
2 M rows
(cached)
join
group by ZIP
Demo
18
Putting It All Together
19
Putting all the pieces together
20
These three techniques (Hadoop as a data source, cache and
processing engine) can be combined to successfully approach
complex scenarios with big data volumes in an efficient way:
 Surfaces all the company data without the need to replicate
all data to the Hadoop lake
 Improves governance and metadata management to avoid
“data swamps”
 Allows for on-demand combination of real-time (from the
original sources) with historical data (in the cluster)
 Leverages the processing power of the existing cluster
controlled by Denodo’s optimizer
Architecture
21
To benefit from this architecture,
Denodo servers should run in edge
nodes of the Hadoop cluster
This will ensure:
 Faster uploads to HDFS
 Faster data retrieval from the MPP
 Better compatibility with the
Hadoop configuration and versions
of the libraries
Denodo Cluster
 Multiple nodes behind
a load balancer for HA
 Running on Hadoop
Edge nodes
Hadoop Cluster
 Processing and Storage nodes
 Same subnet as Denodo
cluster
Q&A
Next steps
Download Denodo Express:
www.denodoexpress.com
Access Denodo Platform in the Cloud!
30 day FREE trial available!
Denodo for Azure:
www.denodo.com/TrialAzure/PackedLunch
Denodo for AWS: www.denodo.com/TrialAWS/PackedLunch
Next session
Self-Service Information Consumption
Using Data Catalog
Thursday, March 15th, 2018 at 11:00am (PST)
Paul Moxon
VP Data Architectures and Chief Evangelist
Thank you!
© Copyright Denodo Technologies. All rights reserved
Unless otherwise specified, no part of this PDF file may be reproduced or utilized in any for or by any means, electronic or mechanical, including photocopying and
microfilm, without prior the written authorization from Denodo Technologies.
Ad

More Related Content

What's hot (20)

Empowering your Enterprise with a Self-Service Data Marketplace (ASEAN)
Empowering your Enterprise with a Self-Service Data Marketplace (ASEAN)Empowering your Enterprise with a Self-Service Data Marketplace (ASEAN)
Empowering your Enterprise with a Self-Service Data Marketplace (ASEAN)
Denodo
 
Data Virtualization: The Agile Delivery Platform
Data Virtualization: The Agile Delivery PlatformData Virtualization: The Agile Delivery Platform
Data Virtualization: The Agile Delivery Platform
Denodo
 
Denodo Platform 7.0: What's New?
Denodo Platform 7.0: What's New?Denodo Platform 7.0: What's New?
Denodo Platform 7.0: What's New?
Denodo
 
Analyst Webinar: Enabling a Customer Data Platform Using Data Virtualization
Analyst Webinar: Enabling a Customer Data Platform Using Data VirtualizationAnalyst Webinar: Enabling a Customer Data Platform Using Data Virtualization
Analyst Webinar: Enabling a Customer Data Platform Using Data Virtualization
Denodo
 
Maximizing Data Lake ROI with Data Virtualization: A Technical Demonstration
Maximizing Data Lake ROI with Data Virtualization: A Technical DemonstrationMaximizing Data Lake ROI with Data Virtualization: A Technical Demonstration
Maximizing Data Lake ROI with Data Virtualization: A Technical Demonstration
Denodo
 
Technical Demonstration - Denodo Platform 7.0
Technical Demonstration - Denodo Platform 7.0Technical Demonstration - Denodo Platform 7.0
Technical Demonstration - Denodo Platform 7.0
Denodo
 
Myth Busters: I’m Building a Data Lake, So I Don’t Need Data Virtualization (...
Myth Busters: I’m Building a Data Lake, So I Don’t Need Data Virtualization (...Myth Busters: I’m Building a Data Lake, So I Don’t Need Data Virtualization (...
Myth Busters: I’m Building a Data Lake, So I Don’t Need Data Virtualization (...
Denodo
 
Data Virtualization - Enabling Next Generation Analytics
Data Virtualization - Enabling Next Generation AnalyticsData Virtualization - Enabling Next Generation Analytics
Data Virtualization - Enabling Next Generation Analytics
Denodo
 
Take your Data Management Practice to the Next Level with Denodo 7
Take your Data Management Practice to the Next Level with Denodo 7Take your Data Management Practice to the Next Level with Denodo 7
Take your Data Management Practice to the Next Level with Denodo 7
Denodo
 
Customer Keynote: Data Service and Security at an Enterprise Scale with Logic...
Customer Keynote: Data Service and Security at an Enterprise Scale with Logic...Customer Keynote: Data Service and Security at an Enterprise Scale with Logic...
Customer Keynote: Data Service and Security at an Enterprise Scale with Logic...
Denodo
 
Denodo Data Virtualization - IT Days in Luxembourg with Oktopus
Denodo Data Virtualization - IT Days in Luxembourg with OktopusDenodo Data Virtualization - IT Days in Luxembourg with Oktopus
Denodo Data Virtualization - IT Days in Luxembourg with Oktopus
Denodo
 
Denodo DataFest 2016: The Role of Data Virtualization in IoT Integration
Denodo DataFest 2016: The Role of Data Virtualization in IoT IntegrationDenodo DataFest 2016: The Role of Data Virtualization in IoT Integration
Denodo DataFest 2016: The Role of Data Virtualization in IoT Integration
Denodo
 
Applying Big Data Superpowers to Healthcare
Applying Big Data Superpowers to HealthcareApplying Big Data Superpowers to Healthcare
Applying Big Data Superpowers to Healthcare
Paul Boal
 
Data Virtualization: An Introduction
Data Virtualization: An IntroductionData Virtualization: An Introduction
Data Virtualization: An Introduction
Denodo
 
Big Data Fabric for At-Scale Real-Time Analysis by Edwin Robbins
 Big Data Fabric for At-Scale Real-Time Analysis by Edwin Robbins Big Data Fabric for At-Scale Real-Time Analysis by Edwin Robbins
Big Data Fabric for At-Scale Real-Time Analysis by Edwin Robbins
Data Con LA
 
Analyst View of Data Virtualization: Conversations with Boulder Business Inte...
Analyst View of Data Virtualization: Conversations with Boulder Business Inte...Analyst View of Data Virtualization: Conversations with Boulder Business Inte...
Analyst View of Data Virtualization: Conversations with Boulder Business Inte...
Denodo
 
Advanced Analytics and Machine Learning with Data Virtualization
Advanced Analytics and Machine Learning with Data VirtualizationAdvanced Analytics and Machine Learning with Data Virtualization
Advanced Analytics and Machine Learning with Data Virtualization
Denodo
 
Accelerate Self-Service Analytics with Data Virtualization and Visualization
Accelerate Self-Service Analytics with Data Virtualization and VisualizationAccelerate Self-Service Analytics with Data Virtualization and Visualization
Accelerate Self-Service Analytics with Data Virtualization and Visualization
Denodo
 
SAP Analytics Cloud: Haben Sie schon alle Datenquellen im Live-Zugriff?
SAP Analytics Cloud: Haben Sie schon alle Datenquellen im Live-Zugriff?SAP Analytics Cloud: Haben Sie schon alle Datenquellen im Live-Zugriff?
SAP Analytics Cloud: Haben Sie schon alle Datenquellen im Live-Zugriff?
Denodo
 
Why Data Virtualization? An Introduction
Why Data Virtualization? An IntroductionWhy Data Virtualization? An Introduction
Why Data Virtualization? An Introduction
Denodo
 
Empowering your Enterprise with a Self-Service Data Marketplace (ASEAN)
Empowering your Enterprise with a Self-Service Data Marketplace (ASEAN)Empowering your Enterprise with a Self-Service Data Marketplace (ASEAN)
Empowering your Enterprise with a Self-Service Data Marketplace (ASEAN)
Denodo
 
Data Virtualization: The Agile Delivery Platform
Data Virtualization: The Agile Delivery PlatformData Virtualization: The Agile Delivery Platform
Data Virtualization: The Agile Delivery Platform
Denodo
 
Denodo Platform 7.0: What's New?
Denodo Platform 7.0: What's New?Denodo Platform 7.0: What's New?
Denodo Platform 7.0: What's New?
Denodo
 
Analyst Webinar: Enabling a Customer Data Platform Using Data Virtualization
Analyst Webinar: Enabling a Customer Data Platform Using Data VirtualizationAnalyst Webinar: Enabling a Customer Data Platform Using Data Virtualization
Analyst Webinar: Enabling a Customer Data Platform Using Data Virtualization
Denodo
 
Maximizing Data Lake ROI with Data Virtualization: A Technical Demonstration
Maximizing Data Lake ROI with Data Virtualization: A Technical DemonstrationMaximizing Data Lake ROI with Data Virtualization: A Technical Demonstration
Maximizing Data Lake ROI with Data Virtualization: A Technical Demonstration
Denodo
 
Technical Demonstration - Denodo Platform 7.0
Technical Demonstration - Denodo Platform 7.0Technical Demonstration - Denodo Platform 7.0
Technical Demonstration - Denodo Platform 7.0
Denodo
 
Myth Busters: I’m Building a Data Lake, So I Don’t Need Data Virtualization (...
Myth Busters: I’m Building a Data Lake, So I Don’t Need Data Virtualization (...Myth Busters: I’m Building a Data Lake, So I Don’t Need Data Virtualization (...
Myth Busters: I’m Building a Data Lake, So I Don’t Need Data Virtualization (...
Denodo
 
Data Virtualization - Enabling Next Generation Analytics
Data Virtualization - Enabling Next Generation AnalyticsData Virtualization - Enabling Next Generation Analytics
Data Virtualization - Enabling Next Generation Analytics
Denodo
 
Take your Data Management Practice to the Next Level with Denodo 7
Take your Data Management Practice to the Next Level with Denodo 7Take your Data Management Practice to the Next Level with Denodo 7
Take your Data Management Practice to the Next Level with Denodo 7
Denodo
 
Customer Keynote: Data Service and Security at an Enterprise Scale with Logic...
Customer Keynote: Data Service and Security at an Enterprise Scale with Logic...Customer Keynote: Data Service and Security at an Enterprise Scale with Logic...
Customer Keynote: Data Service and Security at an Enterprise Scale with Logic...
Denodo
 
Denodo Data Virtualization - IT Days in Luxembourg with Oktopus
Denodo Data Virtualization - IT Days in Luxembourg with OktopusDenodo Data Virtualization - IT Days in Luxembourg with Oktopus
Denodo Data Virtualization - IT Days in Luxembourg with Oktopus
Denodo
 
Denodo DataFest 2016: The Role of Data Virtualization in IoT Integration
Denodo DataFest 2016: The Role of Data Virtualization in IoT IntegrationDenodo DataFest 2016: The Role of Data Virtualization in IoT Integration
Denodo DataFest 2016: The Role of Data Virtualization in IoT Integration
Denodo
 
Applying Big Data Superpowers to Healthcare
Applying Big Data Superpowers to HealthcareApplying Big Data Superpowers to Healthcare
Applying Big Data Superpowers to Healthcare
Paul Boal
 
Data Virtualization: An Introduction
Data Virtualization: An IntroductionData Virtualization: An Introduction
Data Virtualization: An Introduction
Denodo
 
Big Data Fabric for At-Scale Real-Time Analysis by Edwin Robbins
 Big Data Fabric for At-Scale Real-Time Analysis by Edwin Robbins Big Data Fabric for At-Scale Real-Time Analysis by Edwin Robbins
Big Data Fabric for At-Scale Real-Time Analysis by Edwin Robbins
Data Con LA
 
Analyst View of Data Virtualization: Conversations with Boulder Business Inte...
Analyst View of Data Virtualization: Conversations with Boulder Business Inte...Analyst View of Data Virtualization: Conversations with Boulder Business Inte...
Analyst View of Data Virtualization: Conversations with Boulder Business Inte...
Denodo
 
Advanced Analytics and Machine Learning with Data Virtualization
Advanced Analytics and Machine Learning with Data VirtualizationAdvanced Analytics and Machine Learning with Data Virtualization
Advanced Analytics and Machine Learning with Data Virtualization
Denodo
 
Accelerate Self-Service Analytics with Data Virtualization and Visualization
Accelerate Self-Service Analytics with Data Virtualization and VisualizationAccelerate Self-Service Analytics with Data Virtualization and Visualization
Accelerate Self-Service Analytics with Data Virtualization and Visualization
Denodo
 
SAP Analytics Cloud: Haben Sie schon alle Datenquellen im Live-Zugriff?
SAP Analytics Cloud: Haben Sie schon alle Datenquellen im Live-Zugriff?SAP Analytics Cloud: Haben Sie schon alle Datenquellen im Live-Zugriff?
SAP Analytics Cloud: Haben Sie schon alle Datenquellen im Live-Zugriff?
Denodo
 
Why Data Virtualization? An Introduction
Why Data Virtualization? An IntroductionWhy Data Virtualization? An Introduction
Why Data Virtualization? An Introduction
Denodo
 

Similar to In Memory Parallel Processing for Big Data Scenarios (20)

Denodo Platform 7.0: Redefine Analytics with In-Memory Parallel Processing an...
Denodo Platform 7.0: Redefine Analytics with In-Memory Parallel Processing an...Denodo Platform 7.0: Redefine Analytics with In-Memory Parallel Processing an...
Denodo Platform 7.0: Redefine Analytics with In-Memory Parallel Processing an...
Denodo
 
From Single Purpose to Multi Purpose Data Lakes - Broadening End Users
From Single Purpose to Multi Purpose Data Lakes - Broadening End UsersFrom Single Purpose to Multi Purpose Data Lakes - Broadening End Users
From Single Purpose to Multi Purpose Data Lakes - Broadening End Users
Denodo
 
Logical Data Lakes: From Single Purpose to Multipurpose Data Lakes (APAC)
Logical Data Lakes: From Single Purpose to Multipurpose Data Lakes (APAC)Logical Data Lakes: From Single Purpose to Multipurpose Data Lakes (APAC)
Logical Data Lakes: From Single Purpose to Multipurpose Data Lakes (APAC)
Denodo
 
Syncsort et le retour d'expérience ComScore
Syncsort et le retour d'expérience ComScoreSyncsort et le retour d'expérience ComScore
Syncsort et le retour d'expérience ComScore
Modern Data Stack France
 
Demystifying Data Virtualization (ASEAN)
Demystifying Data Virtualization (ASEAN)Demystifying Data Virtualization (ASEAN)
Demystifying Data Virtualization (ASEAN)
Denodo
 
How to Achieve Fast Data Performance in Big Data, Logical Data Warehouse, and...
How to Achieve Fast Data Performance in Big Data, Logical Data Warehouse, and...How to Achieve Fast Data Performance in Big Data, Logical Data Warehouse, and...
How to Achieve Fast Data Performance in Big Data, Logical Data Warehouse, and...
Denodo
 
Logical Data Lakes: From Single Purpose to Multipurpose Data Lakes (APAC)
Logical Data Lakes: From Single Purpose to Multipurpose Data Lakes (APAC)Logical Data Lakes: From Single Purpose to Multipurpose Data Lakes (APAC)
Logical Data Lakes: From Single Purpose to Multipurpose Data Lakes (APAC)
Denodo
 
Oct 2011 CHADNUG Presentation on Hadoop
Oct 2011 CHADNUG Presentation on HadoopOct 2011 CHADNUG Presentation on Hadoop
Oct 2011 CHADNUG Presentation on Hadoop
Josh Patterson
 
Accelerating Big Data Analytics
Accelerating Big Data AnalyticsAccelerating Big Data Analytics
Accelerating Big Data Analytics
Attunity
 
La creación de una capa operacional con MongoDB
La creación de una capa operacional con MongoDBLa creación de una capa operacional con MongoDB
La creación de una capa operacional con MongoDB
MongoDB
 
Module 01 - Understanding Big Data and Hadoop 1.x,2.x
Module 01 - Understanding Big Data and Hadoop 1.x,2.xModule 01 - Understanding Big Data and Hadoop 1.x,2.x
Module 01 - Understanding Big Data and Hadoop 1.x,2.x
NPN Training
 
Data Orchestration for the Hybrid Cloud Era
Data Orchestration for the Hybrid Cloud EraData Orchestration for the Hybrid Cloud Era
Data Orchestration for the Hybrid Cloud Era
Alluxio, Inc.
 
Deutsche Telekom on Big Data
Deutsche Telekom on Big DataDeutsche Telekom on Big Data
Deutsche Telekom on Big Data
DataWorks Summit
 
How can Hadoop & SAP be integrated
How can Hadoop & SAP be integratedHow can Hadoop & SAP be integrated
How can Hadoop & SAP be integrated
Douglas Bernardini
 
Hadoop project design and a usecase
Hadoop project design and  a usecaseHadoop project design and  a usecase
Hadoop project design and a usecase
sudhakara st
 
Comparison of MPP Data Warehouse Platforms
Comparison of MPP Data Warehouse PlatformsComparison of MPP Data Warehouse Platforms
Comparison of MPP Data Warehouse Platforms
David Portnoy
 
Can data virtualization uphold performance with complex queries?
Can data virtualization uphold performance with complex queries?Can data virtualization uphold performance with complex queries?
Can data virtualization uphold performance with complex queries?
Denodo
 
DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization
DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization
DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization
Denodo
 
IBMHadoopofferingTechline-Systems2015
IBMHadoopofferingTechline-Systems2015IBMHadoopofferingTechline-Systems2015
IBMHadoopofferingTechline-Systems2015
Daniela Zuppini
 
1. beyond mission critical virtualizing big data and hadoop
1. beyond mission critical   virtualizing big data and hadoop1. beyond mission critical   virtualizing big data and hadoop
1. beyond mission critical virtualizing big data and hadoop
Chiou-Nan Chen
 
Denodo Platform 7.0: Redefine Analytics with In-Memory Parallel Processing an...
Denodo Platform 7.0: Redefine Analytics with In-Memory Parallel Processing an...Denodo Platform 7.0: Redefine Analytics with In-Memory Parallel Processing an...
Denodo Platform 7.0: Redefine Analytics with In-Memory Parallel Processing an...
Denodo
 
From Single Purpose to Multi Purpose Data Lakes - Broadening End Users
From Single Purpose to Multi Purpose Data Lakes - Broadening End UsersFrom Single Purpose to Multi Purpose Data Lakes - Broadening End Users
From Single Purpose to Multi Purpose Data Lakes - Broadening End Users
Denodo
 
Logical Data Lakes: From Single Purpose to Multipurpose Data Lakes (APAC)
Logical Data Lakes: From Single Purpose to Multipurpose Data Lakes (APAC)Logical Data Lakes: From Single Purpose to Multipurpose Data Lakes (APAC)
Logical Data Lakes: From Single Purpose to Multipurpose Data Lakes (APAC)
Denodo
 
Syncsort et le retour d'expérience ComScore
Syncsort et le retour d'expérience ComScoreSyncsort et le retour d'expérience ComScore
Syncsort et le retour d'expérience ComScore
Modern Data Stack France
 
Demystifying Data Virtualization (ASEAN)
Demystifying Data Virtualization (ASEAN)Demystifying Data Virtualization (ASEAN)
Demystifying Data Virtualization (ASEAN)
Denodo
 
How to Achieve Fast Data Performance in Big Data, Logical Data Warehouse, and...
How to Achieve Fast Data Performance in Big Data, Logical Data Warehouse, and...How to Achieve Fast Data Performance in Big Data, Logical Data Warehouse, and...
How to Achieve Fast Data Performance in Big Data, Logical Data Warehouse, and...
Denodo
 
Logical Data Lakes: From Single Purpose to Multipurpose Data Lakes (APAC)
Logical Data Lakes: From Single Purpose to Multipurpose Data Lakes (APAC)Logical Data Lakes: From Single Purpose to Multipurpose Data Lakes (APAC)
Logical Data Lakes: From Single Purpose to Multipurpose Data Lakes (APAC)
Denodo
 
Oct 2011 CHADNUG Presentation on Hadoop
Oct 2011 CHADNUG Presentation on HadoopOct 2011 CHADNUG Presentation on Hadoop
Oct 2011 CHADNUG Presentation on Hadoop
Josh Patterson
 
Accelerating Big Data Analytics
Accelerating Big Data AnalyticsAccelerating Big Data Analytics
Accelerating Big Data Analytics
Attunity
 
La creación de una capa operacional con MongoDB
La creación de una capa operacional con MongoDBLa creación de una capa operacional con MongoDB
La creación de una capa operacional con MongoDB
MongoDB
 
Module 01 - Understanding Big Data and Hadoop 1.x,2.x
Module 01 - Understanding Big Data and Hadoop 1.x,2.xModule 01 - Understanding Big Data and Hadoop 1.x,2.x
Module 01 - Understanding Big Data and Hadoop 1.x,2.x
NPN Training
 
Data Orchestration for the Hybrid Cloud Era
Data Orchestration for the Hybrid Cloud EraData Orchestration for the Hybrid Cloud Era
Data Orchestration for the Hybrid Cloud Era
Alluxio, Inc.
 
Deutsche Telekom on Big Data
Deutsche Telekom on Big DataDeutsche Telekom on Big Data
Deutsche Telekom on Big Data
DataWorks Summit
 
How can Hadoop & SAP be integrated
How can Hadoop & SAP be integratedHow can Hadoop & SAP be integrated
How can Hadoop & SAP be integrated
Douglas Bernardini
 
Hadoop project design and a usecase
Hadoop project design and  a usecaseHadoop project design and  a usecase
Hadoop project design and a usecase
sudhakara st
 
Comparison of MPP Data Warehouse Platforms
Comparison of MPP Data Warehouse PlatformsComparison of MPP Data Warehouse Platforms
Comparison of MPP Data Warehouse Platforms
David Portnoy
 
Can data virtualization uphold performance with complex queries?
Can data virtualization uphold performance with complex queries?Can data virtualization uphold performance with complex queries?
Can data virtualization uphold performance with complex queries?
Denodo
 
DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization
DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization
DAMA & Denodo Webinar: Modernizing Data Architecture Using Data Virtualization
Denodo
 
IBMHadoopofferingTechline-Systems2015
IBMHadoopofferingTechline-Systems2015IBMHadoopofferingTechline-Systems2015
IBMHadoopofferingTechline-Systems2015
Daniela Zuppini
 
1. beyond mission critical virtualizing big data and hadoop
1. beyond mission critical   virtualizing big data and hadoop1. beyond mission critical   virtualizing big data and hadoop
1. beyond mission critical virtualizing big data and hadoop
Chiou-Nan Chen
 
Ad

More from Denodo (20)

Enterprise Monitoring and Auditing in Denodo
Enterprise Monitoring and Auditing in DenodoEnterprise Monitoring and Auditing in Denodo
Enterprise Monitoring and Auditing in Denodo
Denodo
 
Lunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps Approach
Lunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps ApproachLunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps Approach
Lunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps Approach
Denodo
 
Achieving Self-Service Analytics with a Governed Data Services Layer
Achieving Self-Service Analytics with a Governed Data Services LayerAchieving Self-Service Analytics with a Governed Data Services Layer
Achieving Self-Service Analytics with a Governed Data Services Layer
Denodo
 
What you need to know about Generative AI and Data Management?
What you need to know about Generative AI and Data Management?What you need to know about Generative AI and Data Management?
What you need to know about Generative AI and Data Management?
Denodo
 
Mastering Data Compliance in a Dynamic Business Landscape
Mastering Data Compliance in a Dynamic Business LandscapeMastering Data Compliance in a Dynamic Business Landscape
Mastering Data Compliance in a Dynamic Business Landscape
Denodo
 
Denodo Partner Connect: Business Value Demo with Denodo Demo Lite
Denodo Partner Connect: Business Value Demo with Denodo Demo LiteDenodo Partner Connect: Business Value Demo with Denodo Demo Lite
Denodo Partner Connect: Business Value Demo with Denodo Demo Lite
Denodo
 
Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...
Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...
Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...
Denodo
 
Drive Data Privacy Regulatory Compliance
Drive Data Privacy Regulatory ComplianceDrive Data Privacy Regulatory Compliance
Drive Data Privacy Regulatory Compliance
Denodo
 
Знакомство с виртуализацией данных для профессионалов в области данных
Знакомство с виртуализацией данных для профессионалов в области данныхЗнакомство с виртуализацией данных для профессионалов в области данных
Знакомство с виртуализацией данных для профессионалов в области данных
Denodo
 
Data Democratization: A Secret Sauce to Say Goodbye to Data Fragmentation
Data Democratization: A Secret Sauce to Say Goodbye to Data FragmentationData Democratization: A Secret Sauce to Say Goodbye to Data Fragmentation
Data Democratization: A Secret Sauce to Say Goodbye to Data Fragmentation
Denodo
 
Denodo Partner Connect - Technical Webinar - Ask Me Anything
Denodo Partner Connect - Technical Webinar - Ask Me AnythingDenodo Partner Connect - Technical Webinar - Ask Me Anything
Denodo Partner Connect - Technical Webinar - Ask Me Anything
Denodo
 
Lunch and Learn ANZ: Key Takeaways for 2023!
Lunch and Learn ANZ: Key Takeaways for 2023!Lunch and Learn ANZ: Key Takeaways for 2023!
Lunch and Learn ANZ: Key Takeaways for 2023!
Denodo
 
It’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way Forward
It’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way ForwardIt’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way Forward
It’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way Forward
Denodo
 
Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...
Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...
Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...
Denodo
 
Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...
Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...
Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...
Denodo
 
How to Build Your Data Marketplace with Data Virtualization?
How to Build Your Data Marketplace with Data Virtualization?How to Build Your Data Marketplace with Data Virtualization?
How to Build Your Data Marketplace with Data Virtualization?
Denodo
 
Webinar #2 - Transforming Challenges into Opportunities for Credit Unions
Webinar #2 - Transforming Challenges into Opportunities for Credit UnionsWebinar #2 - Transforming Challenges into Opportunities for Credit Unions
Webinar #2 - Transforming Challenges into Opportunities for Credit Unions
Denodo
 
Enabling Data Catalog users with advanced usability
Enabling Data Catalog users with advanced usabilityEnabling Data Catalog users with advanced usability
Enabling Data Catalog users with advanced usability
Denodo
 
Denodo Partner Connect: Technical Webinar - Architect Associate Certification...
Denodo Partner Connect: Technical Webinar - Architect Associate Certification...Denodo Partner Connect: Technical Webinar - Architect Associate Certification...
Denodo Partner Connect: Technical Webinar - Architect Associate Certification...
Denodo
 
GenAI y el futuro de la gestión de datos: mitos y realidades
GenAI y el futuro de la gestión de datos: mitos y realidadesGenAI y el futuro de la gestión de datos: mitos y realidades
GenAI y el futuro de la gestión de datos: mitos y realidades
Denodo
 
Enterprise Monitoring and Auditing in Denodo
Enterprise Monitoring and Auditing in DenodoEnterprise Monitoring and Auditing in Denodo
Enterprise Monitoring and Auditing in Denodo
Denodo
 
Lunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps Approach
Lunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps ApproachLunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps Approach
Lunch and Learn ANZ: Mastering Cloud Data Cost Control: A FinOps Approach
Denodo
 
Achieving Self-Service Analytics with a Governed Data Services Layer
Achieving Self-Service Analytics with a Governed Data Services LayerAchieving Self-Service Analytics with a Governed Data Services Layer
Achieving Self-Service Analytics with a Governed Data Services Layer
Denodo
 
What you need to know about Generative AI and Data Management?
What you need to know about Generative AI and Data Management?What you need to know about Generative AI and Data Management?
What you need to know about Generative AI and Data Management?
Denodo
 
Mastering Data Compliance in a Dynamic Business Landscape
Mastering Data Compliance in a Dynamic Business LandscapeMastering Data Compliance in a Dynamic Business Landscape
Mastering Data Compliance in a Dynamic Business Landscape
Denodo
 
Denodo Partner Connect: Business Value Demo with Denodo Demo Lite
Denodo Partner Connect: Business Value Demo with Denodo Demo LiteDenodo Partner Connect: Business Value Demo with Denodo Demo Lite
Denodo Partner Connect: Business Value Demo with Denodo Demo Lite
Denodo
 
Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...
Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...
Expert Panel: Overcoming Challenges with Distributed Data to Maximize Busines...
Denodo
 
Drive Data Privacy Regulatory Compliance
Drive Data Privacy Regulatory ComplianceDrive Data Privacy Regulatory Compliance
Drive Data Privacy Regulatory Compliance
Denodo
 
Знакомство с виртуализацией данных для профессионалов в области данных
Знакомство с виртуализацией данных для профессионалов в области данныхЗнакомство с виртуализацией данных для профессионалов в области данных
Знакомство с виртуализацией данных для профессионалов в области данных
Denodo
 
Data Democratization: A Secret Sauce to Say Goodbye to Data Fragmentation
Data Democratization: A Secret Sauce to Say Goodbye to Data FragmentationData Democratization: A Secret Sauce to Say Goodbye to Data Fragmentation
Data Democratization: A Secret Sauce to Say Goodbye to Data Fragmentation
Denodo
 
Denodo Partner Connect - Technical Webinar - Ask Me Anything
Denodo Partner Connect - Technical Webinar - Ask Me AnythingDenodo Partner Connect - Technical Webinar - Ask Me Anything
Denodo Partner Connect - Technical Webinar - Ask Me Anything
Denodo
 
Lunch and Learn ANZ: Key Takeaways for 2023!
Lunch and Learn ANZ: Key Takeaways for 2023!Lunch and Learn ANZ: Key Takeaways for 2023!
Lunch and Learn ANZ: Key Takeaways for 2023!
Denodo
 
It’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way Forward
It’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way ForwardIt’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way Forward
It’s a Wrap! 2023 – A Groundbreaking Year for AI and The Way Forward
Denodo
 
Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...
Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...
Quels sont les facteurs-clés de succès pour appliquer au mieux le RGPD à votr...
Denodo
 
Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...
Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...
Lunch and Learn ANZ: Achieving Self-Service Analytics with a Governed Data Se...
Denodo
 
How to Build Your Data Marketplace with Data Virtualization?
How to Build Your Data Marketplace with Data Virtualization?How to Build Your Data Marketplace with Data Virtualization?
How to Build Your Data Marketplace with Data Virtualization?
Denodo
 
Webinar #2 - Transforming Challenges into Opportunities for Credit Unions
Webinar #2 - Transforming Challenges into Opportunities for Credit UnionsWebinar #2 - Transforming Challenges into Opportunities for Credit Unions
Webinar #2 - Transforming Challenges into Opportunities for Credit Unions
Denodo
 
Enabling Data Catalog users with advanced usability
Enabling Data Catalog users with advanced usabilityEnabling Data Catalog users with advanced usability
Enabling Data Catalog users with advanced usability
Denodo
 
Denodo Partner Connect: Technical Webinar - Architect Associate Certification...
Denodo Partner Connect: Technical Webinar - Architect Associate Certification...Denodo Partner Connect: Technical Webinar - Architect Associate Certification...
Denodo Partner Connect: Technical Webinar - Architect Associate Certification...
Denodo
 
GenAI y el futuro de la gestión de datos: mitos y realidades
GenAI y el futuro de la gestión de datos: mitos y realidadesGenAI y el futuro de la gestión de datos: mitos y realidades
GenAI y el futuro de la gestión de datos: mitos y realidades
Denodo
 
Ad

Recently uploaded (20)

Developing Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response ApplicationsDeveloping Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response Applications
VICTOR MAESTRE RAMIREZ
 
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptxmd-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
fatimalazaar2004
 
VKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptxVKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptx
Vinod Srivastava
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsAI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
Contify
 
How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136
illuminati Agent uganda call+256776963507/0741506136
 
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnTemplate_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
cegiver630
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...
Pixellion
 
Developing Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response ApplicationsDeveloping Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response Applications
VICTOR MAESTRE RAMIREZ
 
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptxmd-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
fatimalazaar2004
 
VKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptxVKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptx
Vinod Srivastava
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsAI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
Contify
 
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnTemplate_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
cegiver630
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...
Pixellion
 

In Memory Parallel Processing for Big Data Scenarios

  • 1. DATA VIRTUALIZATION PACKED LUNCH WEBINAR SERIES Sessions Covering Key Data Integration Challenges Solved with Data Virtualization
  • 2. In Memory Parallel Processing for Big Data Scenarios Pablo Alvarez-Yanez Principal Solution Architect, Denodo Paul Moxon VP Data Architectures & Chief Evangelist, Denodo
  • 3. Agenda 1. Modern Data Architecture 2. Denodo Platform – Big Data Integrations 3. Big Data Performance 4. Putting This All Together 5. Q&A 6. Next Steps
  • 4. The Modern Data Architecture 4
  • 5. Data Integration – A Modern Data Ecosystem 5
  • 6. Organizations are Storing More and More Data… 6
  • 7. Data Lake – The Challenges 7
  • 8. 8 Big Data & Analytics Reference Architecture
  • 9. Denodo Platform and Big Data Integrations 9
  • 10. Hadoop as a Data Source 10 Denodo offers native connectors for all the major SQL-on-Hadoop engines:  Hive  Impala  SparkSQL  Presto In addition, Denodo also offers connectivity for HBase and direct HDFS access to different file formats
  • 11. Hadoop as a Cache 11 Denodo uses an external RDBMS of your choice to persist copies of the result sets to improve execution times • Since data is persisted in an RDBMS, Denodo can push down relational operations, like JOINS with other tables, to the database used for cache SQL-on-Hadoop systems can also be used as Denodo’s cache Cache load process based on direct load to HDFS: 1. Creation of the target table in Cache system 2. Generation of Parquet files (in chunks) with Snappy compression in the local machine 3. Upload in parallel of Parquet files to HDFS
  • 12. Hadoop as a Processing Engine 12 Denodo optimizer provides native integration with MPP systems to provide one extra key capability: Query Acceleration Denodo can move, on demand, processing to the MPP during execution of a query • Parallel power for calculations in the virtual layer • Avoids slow processing in-disk when processing buffers don’t fit into Denodo’s memory (swapped data)
  • 14. 14 Combining Denodo’s Optimizer with a Hadoop MPP Denodo provides the most advanced optimizer in the market, with techniques focused on data virtualization scenarios with large data volumes In addition to traditional Cost Based Optimizations (CBO), Denodo’s optimizer applies innovative optimization strategies, designed specifically for virtualized scenarios, beyond traditional RDBMS optimizatios. Combined with the tight integration with SQL-on-Hadoop MPP databases, it creates a very powerful combo
  • 15. 15 Example Scenario Trend of sales by zip code over the previous years. Scenario: • Current data (last 12 months) in EDW • Historical data offloaded to Hadoop cluster for cheaper storage • Customer master data is used often, so it is cached in the Hadoop cluster Very large data volumes: • Sales tables have hundreds of millions of rows join group by ZIP union Current Sales 100 million rows Historical Sales 300 million rows Customer 2 million rows (cached)
  • 16. 16 Example: What are the options? 1. Option A: Simple Federation in Virtual Layer • Move hundreds of millions of rows for processing in the virtual layer 2. Option B: Data Shipping • Move “Current sales” to Hadoop and process content in the cluster • Moves 100 million rows 3. Option C: Partial Aggregation Pushdown (Denodo 6) • Modifies the execution tree to split the aggregation in two steps: 1. First by Customer ID for the JOIN (pushed down to source) 2. Second by zip code for the final results (in virtual layer) • Reduces significantly network traffic but processing of large amount of data in the virtual layer (aggregation by zip code) becomes the bottleneck 4. Denodo’s MPP Integration (Denodo 7) Simple Federation Shipping join group by ID group by ZIP group by ZIP join
  • 17. 17 Example: Denodo’s Integration with the Hadoop Ecosystem 2M rows (sales by customer) System Execution Time Optimization Techniques Others ~ 10 min Simple federation No MPP 43 sec Aggregation push-down With MPP 11 sec Aggregation push-down + MPP integration (Impala 8 nodes) Current Sales 100 M rows group by customer ID1. Partial Aggregation push down Maximizes source processing dramatically Reduces network traffic 3. On-demand data transfer Denodo automatically generates and upload Parquet files 4. Integration with local and pre-cached data The engine detects when data Is cached or comes from a local table already in the MPP 2. Integrated with Cost Based Optimizer Based on data volume estimation and the cost of these particular operations, the CBO can decide to move all or part of the execution tree to the MPP 5. Fast parallel execution Support for Spark, Presto and Impala For fast analytical processing in inexpensive Hadoop-based solutions Hist. Sales 300 M rows Customer 2 M rows (cached) join group by ZIP
  • 19. Putting It All Together 19
  • 20. Putting all the pieces together 20 These three techniques (Hadoop as a data source, cache and processing engine) can be combined to successfully approach complex scenarios with big data volumes in an efficient way:  Surfaces all the company data without the need to replicate all data to the Hadoop lake  Improves governance and metadata management to avoid “data swamps”  Allows for on-demand combination of real-time (from the original sources) with historical data (in the cluster)  Leverages the processing power of the existing cluster controlled by Denodo’s optimizer
  • 21. Architecture 21 To benefit from this architecture, Denodo servers should run in edge nodes of the Hadoop cluster This will ensure:  Faster uploads to HDFS  Faster data retrieval from the MPP  Better compatibility with the Hadoop configuration and versions of the libraries Denodo Cluster  Multiple nodes behind a load balancer for HA  Running on Hadoop Edge nodes Hadoop Cluster  Processing and Storage nodes  Same subnet as Denodo cluster
  • 22. Q&A
  • 23. Next steps Download Denodo Express: www.denodoexpress.com Access Denodo Platform in the Cloud! 30 day FREE trial available! Denodo for Azure: www.denodo.com/TrialAzure/PackedLunch Denodo for AWS: www.denodo.com/TrialAWS/PackedLunch
  • 24. Next session Self-Service Information Consumption Using Data Catalog Thursday, March 15th, 2018 at 11:00am (PST) Paul Moxon VP Data Architectures and Chief Evangelist
  • 25. Thank you! © Copyright Denodo Technologies. All rights reserved Unless otherwise specified, no part of this PDF file may be reproduced or utilized in any for or by any means, electronic or mechanical, including photocopying and microfilm, without prior the written authorization from Denodo Technologies.