SlideShare a Scribd company logo
OVERVIEW OF
INDEX
Kabilarasan RPresented by
INDEX
 Purpose: Index makes the database table search faster.
 A database index is a data structure that improves the speed of data retrieval operations on a
database table
 Indexes are used to quickly locate data without having to search every row in a database table
How it Works?
 This index table contains a field which contains the pointer to the actual record in the table.
 Indexes can be created using one or more columns of a database table
Types of Index
Primary Index
 Primary index contains all the key fields of the table and a pointer to the non-key
fields.
 It is automatically created at the time of creation of table.
 Primary index is a unique index
Example
MAND
T
CARRID COUNT_NU
M
P
001 AA 001 7
001 BA 001 9
001 BA 002 12
001 BA 003 5
001 BA 004 2
001 LH 001 10
001 LH 002 4
001 LH 003 8
001 LH 004 11
001 LH 005 1
001 LH 006 13
001 LH 007 6
001 UA 001 3
001 UA 008 14
MANDT CARRID COUNT_NU
M
AIRPOR
T
001 LH 005 ACA
001 BA 004 ACE
001 UA 001 BER
001 LH 002 LCY
001 BA 003 LHR
001 LH 007 BER
001 AA 001 DEN
001 LH 003 FRA
001 BA 001 LCY
001 LH 001 LGW
001 LH 004 LHR
001 BA 002 MUD
001 LH 006 RTM
001 UA 008 HAM
Primary Index
for
SCOUNTER
Table:
SCOUNTER
 It demonstrates how the primary
index table will look like.
 The pointer refers to position where
the same record in the sorted primary
table is available in the actual
database table which you can see
with the highlighted Red line.
Key Fields
Secondary Index
 We can also add our own index to the table known as secondary index. We create
secondary index for the non-key fields.
 The secondary indexes are only to be created when these fields are used
extensively in search.
MANDT CARRID COUNT_NUM AIRPORT
001 LH 005 ACA
001 BA 004 ACE
001 UA 001 BER
001 LH 002 LCY
001 BA 003 LHR
001 LH 007 BER
001 AA 001 DEN
001 LH 003 FRA
001 BA 001 LCY
001 LH 001 LGW
001 LH 004 LHR
001 BA 002 MUD
001 LH 006 RTM
001 UA 008 HAM
 From this table (SCOUNTER) consider a
scenario where I wanted to fetch the
record from the database table based on
the airport code (AIRPORT) which is
actually a non-key field.
 Sorting of the primary keys will not be of
any use as the airport code will still be
scattered.
 A secondary index for the field airport code
needs to be created to support the faster
access.
Table: SCOUNTER
Example
MANDT CARRID COUNT_NU
M
AIRPOR
T
001 LH 005 ACA
001 BA 004 ACE
001 UA 001 BER
001 LH 002 LCY
001 BA 003 LHR
001 LH 007 BER
001 AA 001 DEN
001 LH 003 FRA
001 BA 001 LCY
001 LH 001 LGW
001 LH 004 LHR
001 BA 002 MUD
001 LH 006 RTM
001 UA 008 HAM
Secondary
Index on
AIRPORT
Table:
SCOUNTER
 Now when I select the records using
the AIRPORT (airport code), then the
system will identify the list of records
for the airport code in the index table.
 And fetch the corresponding records
using the pointer which you can see
through the highlighted colour red for
the airport search LCY.
AIRPORT P
ACA 1
ACE 2
BER 3
BER 6
DEN 7
FRA 8
HAM 14
LCY 4
LCY 9
LGW 10
LHR 6
LHR 11
MUD 12
RTM 13
SELECT * FROM
SCOUNTER
WHERE AIRPORT = ‘LCY’
Options
 Unique Index: If the fields chosen in an index are very unique i.e., for each
combination of fields only one entry exists, then we chose unique index.
 Non-Unique Index: If the above is not true, we choose this option. We have 3 radio
buttons under this called Index on all database systems, For selected database
systems, and No database index. We can chose any one of them depending on our
requirement.
 For client Dependent tables, we always include the field “MANDT” under all the
indexes or else, Optimizer might not use the Index.
Tables that allow Indexing
 Not all the tables allow you to create an Index.
 They are allowed only for transparent tables. All business data and application data
are stored in transparent tables.
 Ex: VBPA (Sales Document: Partner), VLCVEHICLE (VELO: Vehicle), MARA
(General Material Data), etc..
 Secondary indexes are not allowed for the below tables but gives a message saying
‘Index maintenance only possible for transparent tables’.
 Cluster tables:
Ex: BSEG (Accounting Document Segment), KONV Conditions (Transaction
Data) ), etc…
 Pooled tables:
Ex: Configuration tables, etc..
Index in SAP ABAP

More Related Content

What's hot (20)

Abap function module help
Abap function module helpAbap function module help
Abap function module help
Kranthi Kumar
 
Functional specification of sap
Functional specification of  sapFunctional specification of  sap
Functional specification of sap
Saptechies
 
SAP MM Versus SAP S/4 HANA
SAP MM Versus SAP S/4 HANASAP MM Versus SAP S/4 HANA
SAP MM Versus SAP S/4 HANA
Anjali Rao
 
Oracle Index
Oracle IndexOracle Index
Oracle Index
Madhavendra Dutt
 
Introduction to ABAP
Introduction to ABAPIntroduction to ABAP
Introduction to ABAP
sapdocs. info
 
Abap object-oriented-programming-tutorials
Abap object-oriented-programming-tutorialsAbap object-oriented-programming-tutorials
Abap object-oriented-programming-tutorials
cesarmendez78
 
Indexes and Indexing in Oracle 12c
Indexes and Indexing in Oracle 12cIndexes and Indexing in Oracle 12c
Indexes and Indexing in Oracle 12c
Oren Nakdimon
 
Oracle apps-interview-questions
Oracle apps-interview-questionsOracle apps-interview-questions
Oracle apps-interview-questions
Pakeera Mekala
 
Oracle Apps Technical – Short notes on RICE Components.
Oracle Apps Technical – Short notes on RICE Components.Oracle Apps Technical – Short notes on RICE Components.
Oracle Apps Technical – Short notes on RICE Components.
Boopathy CS
 
Sap abap tutorials
Sap abap tutorialsSap abap tutorials
Sap abap tutorials
Harshul Phadke
 
SAP BW - Creation of hierarchies (time dependant hierachy structures)
SAP BW - Creation of hierarchies (time dependant hierachy structures)SAP BW - Creation of hierarchies (time dependant hierachy structures)
SAP BW - Creation of hierarchies (time dependant hierachy structures)
Yasmin Ashraf
 
ABAP Programming Overview
ABAP Programming OverviewABAP Programming Overview
ABAP Programming Overview
sapdocs. info
 
Sap abap database table
Sap abap database tableSap abap database table
Sap abap database table
Ducat
 
SAP HANA Overview
SAP HANA OverviewSAP HANA Overview
SAP HANA Overview
Sitaram Kotnis
 
GST_Configuration Document_GANESH_SAPSD
GST_Configuration Document_GANESH_SAPSD GST_Configuration Document_GANESH_SAPSD
GST_Configuration Document_GANESH_SAPSD
Ganesh Tarlana
 
1000 solved questions
1000 solved questions1000 solved questions
1000 solved questions
Kranthi Kumar
 
Oracle Receivables R12
Oracle Receivables R12Oracle Receivables R12
Oracle Receivables R12
Sarfaraz Ahmed
 
Oracle Inventory - Difference between Cycle Count and Physical Inventory
Oracle Inventory - Difference between Cycle Count and Physical Inventory Oracle Inventory - Difference between Cycle Count and Physical Inventory
Oracle Inventory - Difference between Cycle Count and Physical Inventory
Boopathy CS
 
Oracle APPS :Receivables Auto Invoice
Oracle APPS :Receivables Auto InvoiceOracle APPS :Receivables Auto Invoice
Oracle APPS :Receivables Auto Invoice
Sekhar Byna
 
Oracle Concurrent Program Setup document
Oracle Concurrent Program Setup  documentOracle Concurrent Program Setup  document
Oracle Concurrent Program Setup document
venkatesh gurusamy
 
Abap function module help
Abap function module helpAbap function module help
Abap function module help
Kranthi Kumar
 
Functional specification of sap
Functional specification of  sapFunctional specification of  sap
Functional specification of sap
Saptechies
 
SAP MM Versus SAP S/4 HANA
SAP MM Versus SAP S/4 HANASAP MM Versus SAP S/4 HANA
SAP MM Versus SAP S/4 HANA
Anjali Rao
 
Introduction to ABAP
Introduction to ABAPIntroduction to ABAP
Introduction to ABAP
sapdocs. info
 
Abap object-oriented-programming-tutorials
Abap object-oriented-programming-tutorialsAbap object-oriented-programming-tutorials
Abap object-oriented-programming-tutorials
cesarmendez78
 
Indexes and Indexing in Oracle 12c
Indexes and Indexing in Oracle 12cIndexes and Indexing in Oracle 12c
Indexes and Indexing in Oracle 12c
Oren Nakdimon
 
Oracle apps-interview-questions
Oracle apps-interview-questionsOracle apps-interview-questions
Oracle apps-interview-questions
Pakeera Mekala
 
Oracle Apps Technical – Short notes on RICE Components.
Oracle Apps Technical – Short notes on RICE Components.Oracle Apps Technical – Short notes on RICE Components.
Oracle Apps Technical – Short notes on RICE Components.
Boopathy CS
 
SAP BW - Creation of hierarchies (time dependant hierachy structures)
SAP BW - Creation of hierarchies (time dependant hierachy structures)SAP BW - Creation of hierarchies (time dependant hierachy structures)
SAP BW - Creation of hierarchies (time dependant hierachy structures)
Yasmin Ashraf
 
ABAP Programming Overview
ABAP Programming OverviewABAP Programming Overview
ABAP Programming Overview
sapdocs. info
 
Sap abap database table
Sap abap database tableSap abap database table
Sap abap database table
Ducat
 
GST_Configuration Document_GANESH_SAPSD
GST_Configuration Document_GANESH_SAPSD GST_Configuration Document_GANESH_SAPSD
GST_Configuration Document_GANESH_SAPSD
Ganesh Tarlana
 
1000 solved questions
1000 solved questions1000 solved questions
1000 solved questions
Kranthi Kumar
 
Oracle Receivables R12
Oracle Receivables R12Oracle Receivables R12
Oracle Receivables R12
Sarfaraz Ahmed
 
Oracle Inventory - Difference between Cycle Count and Physical Inventory
Oracle Inventory - Difference between Cycle Count and Physical Inventory Oracle Inventory - Difference between Cycle Count and Physical Inventory
Oracle Inventory - Difference between Cycle Count and Physical Inventory
Boopathy CS
 
Oracle APPS :Receivables Auto Invoice
Oracle APPS :Receivables Auto InvoiceOracle APPS :Receivables Auto Invoice
Oracle APPS :Receivables Auto Invoice
Sekhar Byna
 
Oracle Concurrent Program Setup document
Oracle Concurrent Program Setup  documentOracle Concurrent Program Setup  document
Oracle Concurrent Program Setup document
venkatesh gurusamy
 

Similar to Index in SAP ABAP (20)

Indexing
IndexingIndexing
Indexing
Davood Barfeh
 
MySQL INDEXES
MySQL INDEXESMySQL INDEXES
MySQL INDEXES
HripsimeGhaltaghchya
 
DB LECTURE 4 INDEXINGS PPT NOTES.pptx
DB LECTURE 4 INDEXINGS    PPT NOTES.pptxDB LECTURE 4 INDEXINGS    PPT NOTES.pptx
DB LECTURE 4 INDEXINGS PPT NOTES.pptx
grahamoyigo19
 
MySQL Query And Index Tuning
MySQL Query And Index TuningMySQL Query And Index Tuning
MySQL Query And Index Tuning
Manikanda kumar
 
Database_Indexing_AND ITTS TYPES PRESENTATION
Database_Indexing_AND ITTS TYPES PRESENTATIONDatabase_Indexing_AND ITTS TYPES PRESENTATION
Database_Indexing_AND ITTS TYPES PRESENTATION
polin38
 
Advanced MySQL Query Optimizations
Advanced MySQL Query OptimizationsAdvanced MySQL Query Optimizations
Advanced MySQL Query Optimizations
Dave Stokes
 
MySQL Query Tuning for the Squeemish -- Fossetcon Orlando Sep 2014
MySQL Query Tuning for the Squeemish -- Fossetcon Orlando Sep 2014MySQL Query Tuning for the Squeemish -- Fossetcon Orlando Sep 2014
MySQL Query Tuning for the Squeemish -- Fossetcon Orlando Sep 2014
Dave Stokes
 
Indexing
IndexingIndexing
Indexing
myrajendra
 
Optimizing MySQL Queries
Optimizing MySQL QueriesOptimizing MySQL Queries
Optimizing MySQL Queries
Achievers Tech
 
MySQL Indexing : Improving Query Performance Using Index (Covering Index)
MySQL Indexing : Improving Query Performance Using Index (Covering Index)MySQL Indexing : Improving Query Performance Using Index (Covering Index)
MySQL Indexing : Improving Query Performance Using Index (Covering Index)
Hemant Kumar Singh
 
MySQL Indexes
MySQL IndexesMySQL Indexes
MySQL Indexes
Anton Zhukov
 
Database Management System-Module-IV(part-1).pptx
Database Management System-Module-IV(part-1).pptxDatabase Management System-Module-IV(part-1).pptx
Database Management System-Module-IV(part-1).pptx
AiswaryaMohan31
 
Explain2
Explain2Explain2
Explain2
Anis Berejeb
 
MySQL: Indexing for Better Performance
MySQL: Indexing for Better PerformanceMySQL: Indexing for Better Performance
MySQL: Indexing for Better Performance
jkeriaki
 
Intro to Data warehousing lecture 14
Intro to Data warehousing   lecture 14Intro to Data warehousing   lecture 14
Intro to Data warehousing lecture 14
AnwarrChaudary
 
Intro to Data warehousing lecture 19
Intro to Data warehousing   lecture 19Intro to Data warehousing   lecture 19
Intro to Data warehousing lecture 19
AnwarrChaudary
 
MySQL Indexing
MySQL IndexingMySQL Indexing
MySQL Indexing
BADR
 
MySQL best practices at Trovit
MySQL best practices at TrovitMySQL best practices at Trovit
MySQL best practices at Trovit
Ivan Lopez
 
Introduction to Databases - query optimizations for MySQL
Introduction to Databases - query optimizations for MySQLIntroduction to Databases - query optimizations for MySQL
Introduction to Databases - query optimizations for MySQL
Márton Kodok
 
Mysql query optimization
Mysql query optimizationMysql query optimization
Mysql query optimization
Baohua Cai
 
DB LECTURE 4 INDEXINGS PPT NOTES.pptx
DB LECTURE 4 INDEXINGS    PPT NOTES.pptxDB LECTURE 4 INDEXINGS    PPT NOTES.pptx
DB LECTURE 4 INDEXINGS PPT NOTES.pptx
grahamoyigo19
 
MySQL Query And Index Tuning
MySQL Query And Index TuningMySQL Query And Index Tuning
MySQL Query And Index Tuning
Manikanda kumar
 
Database_Indexing_AND ITTS TYPES PRESENTATION
Database_Indexing_AND ITTS TYPES PRESENTATIONDatabase_Indexing_AND ITTS TYPES PRESENTATION
Database_Indexing_AND ITTS TYPES PRESENTATION
polin38
 
Advanced MySQL Query Optimizations
Advanced MySQL Query OptimizationsAdvanced MySQL Query Optimizations
Advanced MySQL Query Optimizations
Dave Stokes
 
MySQL Query Tuning for the Squeemish -- Fossetcon Orlando Sep 2014
MySQL Query Tuning for the Squeemish -- Fossetcon Orlando Sep 2014MySQL Query Tuning for the Squeemish -- Fossetcon Orlando Sep 2014
MySQL Query Tuning for the Squeemish -- Fossetcon Orlando Sep 2014
Dave Stokes
 
Optimizing MySQL Queries
Optimizing MySQL QueriesOptimizing MySQL Queries
Optimizing MySQL Queries
Achievers Tech
 
MySQL Indexing : Improving Query Performance Using Index (Covering Index)
MySQL Indexing : Improving Query Performance Using Index (Covering Index)MySQL Indexing : Improving Query Performance Using Index (Covering Index)
MySQL Indexing : Improving Query Performance Using Index (Covering Index)
Hemant Kumar Singh
 
Database Management System-Module-IV(part-1).pptx
Database Management System-Module-IV(part-1).pptxDatabase Management System-Module-IV(part-1).pptx
Database Management System-Module-IV(part-1).pptx
AiswaryaMohan31
 
MySQL: Indexing for Better Performance
MySQL: Indexing for Better PerformanceMySQL: Indexing for Better Performance
MySQL: Indexing for Better Performance
jkeriaki
 
Intro to Data warehousing lecture 14
Intro to Data warehousing   lecture 14Intro to Data warehousing   lecture 14
Intro to Data warehousing lecture 14
AnwarrChaudary
 
Intro to Data warehousing lecture 19
Intro to Data warehousing   lecture 19Intro to Data warehousing   lecture 19
Intro to Data warehousing lecture 19
AnwarrChaudary
 
MySQL Indexing
MySQL IndexingMySQL Indexing
MySQL Indexing
BADR
 
MySQL best practices at Trovit
MySQL best practices at TrovitMySQL best practices at Trovit
MySQL best practices at Trovit
Ivan Lopez
 
Introduction to Databases - query optimizations for MySQL
Introduction to Databases - query optimizations for MySQLIntroduction to Databases - query optimizations for MySQL
Introduction to Databases - query optimizations for MySQL
Márton Kodok
 
Mysql query optimization
Mysql query optimizationMysql query optimization
Mysql query optimization
Baohua Cai
 

Recently uploaded (20)

apidays New York 2025 - Turn API Chaos Into AI-Powered Growth by Jeremy Water...
apidays New York 2025 - Turn API Chaos Into AI-Powered Growth by Jeremy Water...apidays New York 2025 - Turn API Chaos Into AI-Powered Growth by Jeremy Water...
apidays New York 2025 - Turn API Chaos Into AI-Powered Growth by Jeremy Water...
apidays
 
TUG BD Kick Off Meet up 21 May Slide Deck.pptx
TUG BD Kick Off Meet up 21 May Slide Deck.pptxTUG BD Kick Off Meet up 21 May Slide Deck.pptx
TUG BD Kick Off Meet up 21 May Slide Deck.pptx
SaidAlHaque
 
DIGITAL MARKETING TRAINING IN KERALA.pdf
DIGITAL MARKETING TRAINING IN KERALA.pdfDIGITAL MARKETING TRAINING IN KERALA.pdf
DIGITAL MARKETING TRAINING IN KERALA.pdf
aacj102006
 
dinosourrrrrrrrrrrrrrrrrrrrrr formula .pptx
dinosourrrrrrrrrrrrrrrrrrrrrr formula .pptxdinosourrrrrrrrrrrrrrrrrrrrrr formula .pptx
dinosourrrrrrrrrrrrrrrrrrrrrr formula .pptx
ShohidulIslamSovon
 
Splunk itsi infrastructure components implementation and integration
Splunk itsi infrastructure components implementation and integrationSplunk itsi infrastructure components implementation and integration
Splunk itsi infrastructure components implementation and integration
willmorekanan
 
14th International Conference on Advanced Computer Science and Information Te...
14th International Conference on Advanced Computer Science and Information Te...14th International Conference on Advanced Computer Science and Information Te...
14th International Conference on Advanced Computer Science and Information Te...
ijitcs
 
Bringing data to life - Crime webinar Accessible.pptx
Bringing data to life - Crime webinar Accessible.pptxBringing data to life - Crime webinar Accessible.pptx
Bringing data to life - Crime webinar Accessible.pptx
Office for National Statistics
 
390713553-Introduction-to-Apportionment-and-Voting.pptx
390713553-Introduction-to-Apportionment-and-Voting.pptx390713553-Introduction-to-Apportionment-and-Voting.pptx
390713553-Introduction-to-Apportionment-and-Voting.pptx
KhimJDAbordo
 
Group Presentation - Cyclic Redundancy Checks.pptx
Group Presentation - Cyclic Redundancy Checks.pptxGroup Presentation - Cyclic Redundancy Checks.pptx
Group Presentation - Cyclic Redundancy Checks.pptx
vimbaimapfumo25
 
apidays New York 2025 - To tune or not to tune by Anamitra Dutta Majumdar (In...
apidays New York 2025 - To tune or not to tune by Anamitra Dutta Majumdar (In...apidays New York 2025 - To tune or not to tune by Anamitra Dutta Majumdar (In...
apidays New York 2025 - To tune or not to tune by Anamitra Dutta Majumdar (In...
apidays
 
Mathcad Sales Presentation software for use.PPTX
Mathcad Sales Presentation software for use.PPTXMathcad Sales Presentation software for use.PPTX
Mathcad Sales Presentation software for use.PPTX
ManojSharma311544
 
Understanding LLM Temperature: A comprehensive Guide
Understanding LLM Temperature: A comprehensive GuideUnderstanding LLM Temperature: A comprehensive Guide
Understanding LLM Temperature: A comprehensive Guide
Tamanna36
 
Magician PeterMagician PeterMagician PeterMagician Peter
Magician PeterMagician PeterMagician PeterMagician PeterMagician PeterMagician PeterMagician PeterMagician Peter
Magician PeterMagician PeterMagician PeterMagician Peter
seomarket363
 
artificial intelligence (1).pptx hgggfcgfch
artificial intelligence (1).pptx hgggfcgfchartificial intelligence (1).pptx hgggfcgfch
artificial intelligence (1).pptx hgggfcgfch
DevAnshGupta609215
 
ch068.pptnsnsnjsjjzjzjdjdjdjdjdjdjjdjdjdjdjxj
ch068.pptnsnsnjsjjzjzjdjdjdjdjdjdjjdjdjdjdjxjch068.pptnsnsnjsjjzjzjdjdjdjdjdjdjjdjdjdjdjxj
ch068.pptnsnsnjsjjzjzjdjdjdjdjdjdjjdjdjdjdjxj
MikkoPlanas
 
Lec 11.pdfgghjuuyffhkiiiiuuiiiiiiuhffghjiu
Lec 11.pdfgghjuuyffhkiiiiuuiiiiiiuhffghjiuLec 11.pdfgghjuuyffhkiiiiuuiiiiiiuhffghjiu
Lec 11.pdfgghjuuyffhkiiiiuuiiiiiiuhffghjiu
saifalroby72
 
An Algorithmic Test Using The Game of Poker
An Algorithmic Test Using The Game of PokerAn Algorithmic Test Using The Game of Poker
An Algorithmic Test Using The Game of Poker
Graham Ware
 
Monterey College of Law’s mission is to z
Monterey College of Law’s mission is to zMonterey College of Law’s mission is to z
Monterey College of Law’s mission is to z
seoali2660
 
tinywow_Varia_PPT Leadership skills1_80706257.docx
tinywow_Varia_PPT Leadership skills1_80706257.docxtinywow_Varia_PPT Leadership skills1_80706257.docx
tinywow_Varia_PPT Leadership skills1_80706257.docx
abdulrhmansultanfa
 
IoT, Data Analytics and Big Data Security.pptx
IoT, Data Analytics and Big Data Security.pptxIoT, Data Analytics and Big Data Security.pptx
IoT, Data Analytics and Big Data Security.pptx
fizarcse
 
apidays New York 2025 - Turn API Chaos Into AI-Powered Growth by Jeremy Water...
apidays New York 2025 - Turn API Chaos Into AI-Powered Growth by Jeremy Water...apidays New York 2025 - Turn API Chaos Into AI-Powered Growth by Jeremy Water...
apidays New York 2025 - Turn API Chaos Into AI-Powered Growth by Jeremy Water...
apidays
 
TUG BD Kick Off Meet up 21 May Slide Deck.pptx
TUG BD Kick Off Meet up 21 May Slide Deck.pptxTUG BD Kick Off Meet up 21 May Slide Deck.pptx
TUG BD Kick Off Meet up 21 May Slide Deck.pptx
SaidAlHaque
 
DIGITAL MARKETING TRAINING IN KERALA.pdf
DIGITAL MARKETING TRAINING IN KERALA.pdfDIGITAL MARKETING TRAINING IN KERALA.pdf
DIGITAL MARKETING TRAINING IN KERALA.pdf
aacj102006
 
dinosourrrrrrrrrrrrrrrrrrrrrr formula .pptx
dinosourrrrrrrrrrrrrrrrrrrrrr formula .pptxdinosourrrrrrrrrrrrrrrrrrrrrr formula .pptx
dinosourrrrrrrrrrrrrrrrrrrrrr formula .pptx
ShohidulIslamSovon
 
Splunk itsi infrastructure components implementation and integration
Splunk itsi infrastructure components implementation and integrationSplunk itsi infrastructure components implementation and integration
Splunk itsi infrastructure components implementation and integration
willmorekanan
 
14th International Conference on Advanced Computer Science and Information Te...
14th International Conference on Advanced Computer Science and Information Te...14th International Conference on Advanced Computer Science and Information Te...
14th International Conference on Advanced Computer Science and Information Te...
ijitcs
 
390713553-Introduction-to-Apportionment-and-Voting.pptx
390713553-Introduction-to-Apportionment-and-Voting.pptx390713553-Introduction-to-Apportionment-and-Voting.pptx
390713553-Introduction-to-Apportionment-and-Voting.pptx
KhimJDAbordo
 
Group Presentation - Cyclic Redundancy Checks.pptx
Group Presentation - Cyclic Redundancy Checks.pptxGroup Presentation - Cyclic Redundancy Checks.pptx
Group Presentation - Cyclic Redundancy Checks.pptx
vimbaimapfumo25
 
apidays New York 2025 - To tune or not to tune by Anamitra Dutta Majumdar (In...
apidays New York 2025 - To tune or not to tune by Anamitra Dutta Majumdar (In...apidays New York 2025 - To tune or not to tune by Anamitra Dutta Majumdar (In...
apidays New York 2025 - To tune or not to tune by Anamitra Dutta Majumdar (In...
apidays
 
Mathcad Sales Presentation software for use.PPTX
Mathcad Sales Presentation software for use.PPTXMathcad Sales Presentation software for use.PPTX
Mathcad Sales Presentation software for use.PPTX
ManojSharma311544
 
Understanding LLM Temperature: A comprehensive Guide
Understanding LLM Temperature: A comprehensive GuideUnderstanding LLM Temperature: A comprehensive Guide
Understanding LLM Temperature: A comprehensive Guide
Tamanna36
 
Magician PeterMagician PeterMagician PeterMagician Peter
Magician PeterMagician PeterMagician PeterMagician PeterMagician PeterMagician PeterMagician PeterMagician Peter
Magician PeterMagician PeterMagician PeterMagician Peter
seomarket363
 
artificial intelligence (1).pptx hgggfcgfch
artificial intelligence (1).pptx hgggfcgfchartificial intelligence (1).pptx hgggfcgfch
artificial intelligence (1).pptx hgggfcgfch
DevAnshGupta609215
 
ch068.pptnsnsnjsjjzjzjdjdjdjdjdjdjjdjdjdjdjxj
ch068.pptnsnsnjsjjzjzjdjdjdjdjdjdjjdjdjdjdjxjch068.pptnsnsnjsjjzjzjdjdjdjdjdjdjjdjdjdjdjxj
ch068.pptnsnsnjsjjzjzjdjdjdjdjdjdjjdjdjdjdjxj
MikkoPlanas
 
Lec 11.pdfgghjuuyffhkiiiiuuiiiiiiuhffghjiu
Lec 11.pdfgghjuuyffhkiiiiuuiiiiiiuhffghjiuLec 11.pdfgghjuuyffhkiiiiuuiiiiiiuhffghjiu
Lec 11.pdfgghjuuyffhkiiiiuuiiiiiiuhffghjiu
saifalroby72
 
An Algorithmic Test Using The Game of Poker
An Algorithmic Test Using The Game of PokerAn Algorithmic Test Using The Game of Poker
An Algorithmic Test Using The Game of Poker
Graham Ware
 
Monterey College of Law’s mission is to z
Monterey College of Law’s mission is to zMonterey College of Law’s mission is to z
Monterey College of Law’s mission is to z
seoali2660
 
tinywow_Varia_PPT Leadership skills1_80706257.docx
tinywow_Varia_PPT Leadership skills1_80706257.docxtinywow_Varia_PPT Leadership skills1_80706257.docx
tinywow_Varia_PPT Leadership skills1_80706257.docx
abdulrhmansultanfa
 
IoT, Data Analytics and Big Data Security.pptx
IoT, Data Analytics and Big Data Security.pptxIoT, Data Analytics and Big Data Security.pptx
IoT, Data Analytics and Big Data Security.pptx
fizarcse
 

Index in SAP ABAP

  • 2. INDEX  Purpose: Index makes the database table search faster.  A database index is a data structure that improves the speed of data retrieval operations on a database table  Indexes are used to quickly locate data without having to search every row in a database table How it Works?  This index table contains a field which contains the pointer to the actual record in the table.  Indexes can be created using one or more columns of a database table
  • 4. Primary Index  Primary index contains all the key fields of the table and a pointer to the non-key fields.  It is automatically created at the time of creation of table.  Primary index is a unique index
  • 5. Example MAND T CARRID COUNT_NU M P 001 AA 001 7 001 BA 001 9 001 BA 002 12 001 BA 003 5 001 BA 004 2 001 LH 001 10 001 LH 002 4 001 LH 003 8 001 LH 004 11 001 LH 005 1 001 LH 006 13 001 LH 007 6 001 UA 001 3 001 UA 008 14 MANDT CARRID COUNT_NU M AIRPOR T 001 LH 005 ACA 001 BA 004 ACE 001 UA 001 BER 001 LH 002 LCY 001 BA 003 LHR 001 LH 007 BER 001 AA 001 DEN 001 LH 003 FRA 001 BA 001 LCY 001 LH 001 LGW 001 LH 004 LHR 001 BA 002 MUD 001 LH 006 RTM 001 UA 008 HAM Primary Index for SCOUNTER Table: SCOUNTER  It demonstrates how the primary index table will look like.  The pointer refers to position where the same record in the sorted primary table is available in the actual database table which you can see with the highlighted Red line. Key Fields
  • 6. Secondary Index  We can also add our own index to the table known as secondary index. We create secondary index for the non-key fields.  The secondary indexes are only to be created when these fields are used extensively in search.
  • 7. MANDT CARRID COUNT_NUM AIRPORT 001 LH 005 ACA 001 BA 004 ACE 001 UA 001 BER 001 LH 002 LCY 001 BA 003 LHR 001 LH 007 BER 001 AA 001 DEN 001 LH 003 FRA 001 BA 001 LCY 001 LH 001 LGW 001 LH 004 LHR 001 BA 002 MUD 001 LH 006 RTM 001 UA 008 HAM  From this table (SCOUNTER) consider a scenario where I wanted to fetch the record from the database table based on the airport code (AIRPORT) which is actually a non-key field.  Sorting of the primary keys will not be of any use as the airport code will still be scattered.  A secondary index for the field airport code needs to be created to support the faster access. Table: SCOUNTER
  • 8. Example MANDT CARRID COUNT_NU M AIRPOR T 001 LH 005 ACA 001 BA 004 ACE 001 UA 001 BER 001 LH 002 LCY 001 BA 003 LHR 001 LH 007 BER 001 AA 001 DEN 001 LH 003 FRA 001 BA 001 LCY 001 LH 001 LGW 001 LH 004 LHR 001 BA 002 MUD 001 LH 006 RTM 001 UA 008 HAM Secondary Index on AIRPORT Table: SCOUNTER  Now when I select the records using the AIRPORT (airport code), then the system will identify the list of records for the airport code in the index table.  And fetch the corresponding records using the pointer which you can see through the highlighted colour red for the airport search LCY. AIRPORT P ACA 1 ACE 2 BER 3 BER 6 DEN 7 FRA 8 HAM 14 LCY 4 LCY 9 LGW 10 LHR 6 LHR 11 MUD 12 RTM 13 SELECT * FROM SCOUNTER WHERE AIRPORT = ‘LCY’
  • 9. Options  Unique Index: If the fields chosen in an index are very unique i.e., for each combination of fields only one entry exists, then we chose unique index.  Non-Unique Index: If the above is not true, we choose this option. We have 3 radio buttons under this called Index on all database systems, For selected database systems, and No database index. We can chose any one of them depending on our requirement.  For client Dependent tables, we always include the field “MANDT” under all the indexes or else, Optimizer might not use the Index.
  • 10. Tables that allow Indexing  Not all the tables allow you to create an Index.  They are allowed only for transparent tables. All business data and application data are stored in transparent tables.  Ex: VBPA (Sales Document: Partner), VLCVEHICLE (VELO: Vehicle), MARA (General Material Data), etc..
  • 11.  Secondary indexes are not allowed for the below tables but gives a message saying ‘Index maintenance only possible for transparent tables’.  Cluster tables: Ex: BSEG (Accounting Document Segment), KONV Conditions (Transaction Data) ), etc…  Pooled tables: Ex: Configuration tables, etc..

Editor's Notes

  • #3: 1. A data structure is a specialized format for organizing and storing data 2. A database index is a data structure that improves the speed of data retrieval operations on a database table at the cost of additional writes and storage space to maintain the index data structure. 3. Data structure: B- trees are the most commonly used Reason: 1.bcoz its time efficient. i.e., lookups, insertion, deletion are done in logarithmic time 2. data that is stored inside the B- tree can be sorted. either asc or desc (default asc).
  • #5: Primary index is a unique index constructed from the key fields of the primary key.
  • #9: The airport ID is used to search for counters for such an access. Sorting the primary index is of no use in speeding up this access. Since table SCOUNTER has a large number of entries, a secondary index on the field AIRPORT (ID of the airport) must be created to support access using the airport ID.