SlideShare a Scribd company logo
Integration of
Trigonometric Functions
RAYMUND T. DE LA CRUZ
MAEd-mathematics
Integration by Algebraic Substitution>>>
By noting the formulas for differentiating the six trigonometric functions, and the antiderivatives that are found
using them, we have the following integration formulas:
sin 𝑢 𝑑𝑢 = − cos 𝑢 + 𝐶
cos 𝑢 𝑑𝑢 = sin 𝑢 + 𝐶
sec2 𝑢 𝑑𝑢 = tan 𝑢 + 𝐶
csc2 𝑢 𝑑𝑢 = − cot 𝑢 + 𝐶
sec 𝑢 tan 𝑢 𝑑𝑢 = sec 𝑢 + 𝐶
csc 𝑢 cot 𝑢 𝑑𝑢 = − csc 𝑢 + 𝐶
Integration by Algebraic Substitution>>>
Example1
Integrate: 𝑥 𝑠𝑒𝑐2
𝑥2
𝑑𝑥.
With 𝑢 = 𝑥2
, 𝑑𝑢 = 2𝑥 𝑑𝑥, we have
𝑥 𝑠𝑒𝑐2
𝑥2
𝑑𝑥 =
1
2
(𝑠𝑒𝑐2
𝑥2
(2𝑥 𝑑𝑥)
=
1
2
tan 𝑥2
+ 𝐶
Example2
Integrate:
tan 2𝑥
cos 2𝑥
𝑑𝑥.
By using the basic identity sec 𝜃 =
1
cos 𝜃
, we can transform this integral into the form
sec2𝑥 tan2𝑥 𝑑𝑥. In this form, 𝑢 = 2𝑥, 𝑑𝑢 = 2 𝑑𝑥. Therefore,
tan 2𝑥
cos 2𝑥
𝑑𝑥 = sec2𝑥 tan2𝑥 𝑑𝑥 =
1
2
sec2𝑥 tan2𝑥 2 𝑑𝑥
=
1
2
sec2𝑥 + 𝐶
Integration by Algebraic Substitution>>>
We also have the following integration formulas:
tan 𝑢 𝑑𝑢 = − 𝑙𝑛 cos 𝑢 + 𝐶
cot 𝑢 𝑑𝑢 = ln sin 𝑢 + 𝐶
sec 𝑢 𝑑𝑢 = ln sec 𝑢 + tan 𝑢 + 𝐶
csc 𝑢 𝑑𝑢 = ln csc 𝑢 − cot 𝑢 + 𝐶
Example3
Integrate: tan 4𝜃 𝑑𝜃.
Noting that 𝑢 = 4𝜃, 𝑑𝑢 = 4𝑑𝜃, we have
tan 4𝜃 𝑑𝜃 =
1
4
tan 4𝜃(4𝑑𝜃)
= −
1
4
ln cos 4𝜃 + 𝐶
Integration by Algebraic Substitution>>>
By use of trigonometric relations, it is possible to transform many integrals involving powers of the
trigonometric functions into integrable form. We now show the relationships that are useful for
these integrals.
𝑐𝑜𝑠2
𝑥 + 𝑠𝑖𝑛2
𝑥 = 1
1 + 𝑡𝑎𝑛2
𝑥 = 𝑠𝑒𝑐2
𝑥
1 + 𝑐𝑜𝑡2
𝑥 = 𝑐𝑠𝑐2
𝑥
2𝑐𝑜𝑠2
𝑥 = 1 + cos 2𝑥
2𝑠𝑖𝑛2
𝑥 = 1 − cos 2𝑥
Example1
Integration with odd power of sin u
Integrate: 𝑠𝑖𝑛3
𝑥 𝑐𝑜𝑠2
𝑥 𝑑𝑥.
Because 𝑠𝑖𝑛3
𝑥 = 𝑠𝑖𝑛2
𝑥 sin 𝑥 = 1 − 𝑐𝑜𝑠2
𝑥 sin 𝑥, we can write this integral with powers of
cos x along with – sin x, which is the necessary 𝑑𝑢 for this integral. Therefore,
𝑠𝑖𝑛3
𝑥 𝑐𝑜𝑠2
𝑥 𝑑𝑥 = (1 − 𝑐𝑜𝑠2
𝑥)(sin 𝑥) 𝑐𝑜𝑠2
𝑥 𝑑𝑥
= (𝑐𝑜𝑠2
𝑥 − 𝑐𝑜𝑠4
𝑥)(sin 𝑥 𝑑𝑥)
=− 𝑐𝑜𝑠2
𝑥(− sin 𝑥 𝑑𝑥) + 𝑐𝑜𝑠4
𝑥(− sin 𝑥 𝑑𝑥)
= −
1
3
𝑐𝑜𝑠3
𝑥 +
1
5
𝑐𝑜𝑠5
𝑥 + 𝐶
Integration by Algebraic Substitution>>>
Example2
Integration with odd power of cos u
Integrate: 𝑐𝑜𝑠5
2𝑥 𝑑𝑥.
Because 𝑐𝑜𝑠5
2𝑥 = 𝑐𝑜𝑠4
2𝑥 cos 2𝑥 = (1 − 𝑠𝑖𝑛2
2𝑥)2
cos 2𝑥, it is possible to write this integral
with powers of sin 2x along with cos 2x dx. Thus, with the introduction of a factor of 2, (cos 2x)(2dx)
is the necessary 𝑑𝑢 for this integral. Thus,
𝑐𝑜𝑠5
2𝑥 𝑑𝑥 = (1 − 𝑠𝑖𝑛2
2𝑥)2
cos 2𝑥 𝑑𝑥
= 1 − 2𝑠𝑖𝑛2
2𝑥 + 𝑠𝑖𝑛4
2𝑥 cos 2𝑥 𝑑𝑥
= cos 2𝑥 𝑑𝑥 − 2𝑠𝑖𝑛2
2𝑥 cos 2𝑥 𝑑𝑥 + 𝑠𝑖𝑛4
2𝑥 cos 2𝑥 𝑑𝑥
=
1
2
cos 2𝑥 2𝑑𝑥 − 𝑠𝑖𝑛2
2𝑥 (2cos 2𝑥 𝑑𝑥) +
1
2
𝑠𝑖𝑛4
2𝑥 (2cos 2𝑥 𝑑𝑥)
=
1
2
𝑠𝑖𝑛 2𝑥 −
1
3
𝑠𝑖𝑛3
2𝑥 +
1
10
𝑠𝑖𝑛5
2𝑥 + 𝐶
Integration by Algebraic Substitution>>>
Example4
Integration with power of sec u
Integrate: 𝑠𝑒𝑐3
𝑡 tan 𝑡 𝑑𝑡.
By writing 𝑠𝑒𝑐3
𝑡 tan 𝑡 as 𝑠𝑒𝑐2
𝑡 (sec 𝑡 tan 𝑡), we can use the sec 𝑡 tan 𝑡 𝑑𝑡 as the 𝑑𝑢 of the
integral. Thus,
𝑠𝑒𝑐3
𝑡 tan 𝑡 𝑑𝑡 = 𝑠𝑒𝑐2
𝑡 (sec 𝑡 tan 𝑡 𝑑𝑡)
=
1
3
𝑠𝑒𝑐3
𝑡 + 𝐶
Example3
Integration with even power of sin u
Integrate: 𝑠𝑖𝑛2
2𝑥 𝑑𝑥.
Since 𝑠𝑖𝑛2
2𝑥 =
1
2
(1 − cos 4𝑥), this integral can be transformed into a form that can be
integrated. Therefore we write
𝑠𝑖𝑛2
2𝑥 𝑑𝑥 =
1
2
(1 − cos 4𝑥) 𝑑𝑥
=
1
2
𝑑𝑥 −
1
8
cos 4𝑥(4𝑑𝑥)
=
𝑥
2
−
1
8
sin 4𝑥 + 𝐶
Integration by Algebraic Substitution>>>
Example5
Integration with power of tan u
Integrate: 𝑡𝑎𝑛5
𝑥 𝑑𝑥.
Because 𝑡𝑎𝑛5
𝑥 = 𝑡𝑎𝑛3
𝑥 𝑡𝑎𝑛2
𝑥 = 𝑡𝑎𝑛3
𝑠𝑒𝑐2
− 1 , we can write this integral with powers of
tan 𝑥 along with 𝑠𝑒𝑐2
𝑥 𝑑𝑥. Thus, 𝑠𝑒𝑐2
𝑥 𝑑𝑥 becomes the necessary 𝑑𝑢 of the integral. It is necessary
to replace 𝑡𝑎𝑛2
𝑥 with 𝑠𝑒𝑐2
𝑥 − 1 twice during the integration. Therefore,
𝑡𝑎𝑛5
𝑥 𝑑𝑥 = 𝑡𝑎𝑛3
𝑠𝑒𝑐2
− 1 𝑑𝑥
= 𝑡𝑎𝑛3
𝑥 (𝑠𝑒𝑐2
𝑥 𝑑𝑥) − 𝑡𝑎𝑛3
𝑥 𝑑𝑥
=
1
4
𝑡𝑎𝑛4
𝑥 − tan 𝑥 𝑠𝑒𝑐2
𝑥 − 1 𝑑𝑥
=
1
4
𝑡𝑎𝑛4
𝑥 − tan 𝑥(𝑠𝑒𝑐2
𝑥 𝑑𝑥) + tan 𝑥 𝑑𝑥
=
1
4
𝑡𝑎𝑛4
𝑥 −
1
2
𝑡𝑎𝑛2
𝑥 − ln cos 𝑥 + 𝐶
P r a c t ic e Ex e r c is e
Integrate:
1. sin5𝑥 𝑑𝑥 4. 𝑠𝑖𝑛3
𝑥 𝑑𝑥
2. 6𝑐𝑠𝑐2
3𝑥 𝑑𝑥 5. 𝑠𝑒𝑐4
𝑥 𝑑𝑥
3. 4𝑥 cot 𝑥2
𝑑𝑥
Integration by Trigonometric Substitution>>>
Substitutions based on trigonometric relations are particularly useful for integrating expressions
involving radicals.
Example1 For 𝑎2 − 𝑥2, let 𝑥 = 𝑎 sin 𝜃
Integrate:
𝑑𝑥
𝑥2 1−𝑥2
.
If we let 𝑥 = sin 𝜃, then 1 − 𝑠𝑖𝑛2 𝜃 = cos 𝜃, and the integral can be transformed into a
trigonometric integral. Carefully replacing all factors of the integral with expressions in terms of 𝜃,
we have 𝑥 = sin 𝜃, 1 − 𝑥2 = cos 𝜃, and 𝑑𝑥 = cos 𝜃 𝑑𝜃. Therefore,
𝑑𝑥
𝑥2 1−𝑥2
=
cos 𝜃 𝑑𝜃
𝑠𝑖𝑛 2 𝜃 1−𝑠𝑖𝑛 2 𝜃
=
𝑐𝑜𝑠𝜃 𝑑𝜃
𝑠𝑖𝑛 2 𝜃 cos 𝜃
= 𝑐𝑠𝑐2
𝜃 𝑑𝜃
= − cot 𝜃 + 𝐶
We have now performed the integration, but the answer we now have is in terms of 𝜃, and we must
express the result in terms of x. Making a triangle with an angle 𝜃 such that sin 𝜃 =
𝑥
1
, we may
express any of the trigonometric functions in terms of x. Thus,
cot 𝜃 =
1−𝑥2
𝑥
Therefore, the result of the integration becomes
𝑑𝑥
𝑥2 1−𝑥2
= − cot 𝜃 + 𝐶 = −
1−𝑥2
𝑥
+ 𝐶
Integration by Trigonometric Substitution>>>
Example2 For 𝑎2 + 𝑥2, let 𝑥 = 𝑎 tan 𝜃
Integrate:
𝑑𝑥
𝑥2+4
.
If we let 𝑥 = 2 tan 𝜃, the radical in this integral becomes
𝑥2 + 4 = 4 𝑡𝑎𝑛2 𝜃 + 4 = 2 𝑡𝑎𝑛2 𝜃 + 1 = 2 𝑠𝑒𝑐2 𝜃 = 2 sec 𝜃
Therefore, with 𝑥 = 2 tan 𝜃 and 𝑑𝑥 = 2 𝑠𝑒𝑐2
𝜃 𝑑𝜃, we have
𝑑𝑥
𝑥2+4
=
2 𝑠𝑒𝑐 2 𝜃 𝑑𝜃
4 𝑡𝑎𝑛 2 𝜃+4
=
2 𝑠𝑒𝑐 2 𝜃 𝑑𝜃
2 sec 𝜃
= sec 𝜃 𝑑𝜃 = ln sec 𝜃 + tan 𝜃 + 𝐶
= ln
𝑥2+4
2
+
𝑥
2
+ 𝐶 = ln
𝑥2+4+𝑥
2
+ 𝐶
This answer is acceptable, but by using the properties of logarithms, we have
ln
𝑥2+4+𝑥
2
+ 𝐶 = ln 𝑥2 + 4 + 𝑥 + (𝐶 − ln 2)
= ln 𝑥2 + 4 + 𝑥 + 𝐶′
Integration by Trigonometric Substitution>>>
Example3 For 𝑥2 − 𝑎2, let 𝑥 = 𝑎 sec 𝜃
Integrate:
2 𝑑𝑥
𝑥 𝑥2−9
.
If we let 𝑥 = 3 sec 𝜃, the radical in this integral becomes
𝑥2 − 9 = 9 𝑠𝑒𝑐2 𝜃 − 9 = 3 𝑠𝑒𝑐2 𝜃 − 1 = 3 𝑡𝑎𝑛2 𝜃 = 3 tan 𝜃
Therefore, with 𝑥 = 3 sec 𝜃 tan 𝜃 𝑑𝜃, we have
2 𝑑𝑥
𝑥 𝑥2−9
= 2
3 sec 𝜃 tan 𝜃 𝑑𝜃
3 sec 𝜃 9𝑠𝑒𝑐 2 𝜃−9
= 2
tan 𝜃 𝑑𝜃
3 tan 𝜃
=
2
3
𝑑𝜃 =
2
3
𝜃 + 𝐶 =
2
3
𝑠𝑒𝑐−1 𝑥
3
+ 𝐶
P r a c t ic e Ex e r c is e
Integrate:
1.
1−𝑥2
𝑥2
𝑑𝑥 4.
6𝑑𝑧
𝑧2 𝑧2+9
2.
2𝑑𝑥
𝑥2−36
5.
6𝑑𝑥
𝑥 4−𝑥2
3.
𝑥2−25
𝑥
𝑑𝑥
Integration of Trigonometric Functions
Ad

More Related Content

What's hot (20)

Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite Integral
JelaiAujero
 
Piecewise functions
Piecewise functions Piecewise functions
Piecewise functions
stem redsea high school
 
Introduction of Probability
Introduction of ProbabilityIntroduction of Probability
Introduction of Probability
rey castro
 
Math presentation on domain and range
Math presentation on domain and rangeMath presentation on domain and range
Math presentation on domain and range
Touhidul Shawan
 
Properties of logarithms
Properties of logarithmsProperties of logarithms
Properties of logarithms
Jessica Garcia
 
Completing the square
Completing the squareCompleting the square
Completing the square
Ron Eick
 
Introduction to Function, Domain and Range - Mohd Noor
Introduction to Function, Domain and Range - Mohd Noor Introduction to Function, Domain and Range - Mohd Noor
Introduction to Function, Domain and Range - Mohd Noor
Mohd. Noor Abdul Hamid
 
2.4 Linear Functions
2.4 Linear Functions2.4 Linear Functions
2.4 Linear Functions
smiller5
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
Matthew Leingang
 
Lesson 1 - Introduction to Limits.pptx
Lesson 1 - Introduction to Limits.pptxLesson 1 - Introduction to Limits.pptx
Lesson 1 - Introduction to Limits.pptx
LoryMaeAlcosaba
 
Adding and subtracting rational expressions
Adding and subtracting rational expressionsAdding and subtracting rational expressions
Adding and subtracting rational expressions
Dawn Adams2
 
Limits
LimitsLimits
Limits
admercano101
 
Rational Expressions
Rational ExpressionsRational Expressions
Rational Expressions
Ver Louie Gautani
 
Sequence and series
Sequence and seriesSequence and series
Sequence and series
Denmar Marasigan
 
Factors on difference of two squares
Factors on difference of two squaresFactors on difference of two squares
Factors on difference of two squares
Lorie Jane Letada
 
Rearranging Formulas
Rearranging FormulasRearranging Formulas
Rearranging Formulas
Passy World
 
Basic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation RulesBasic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation Rules
Juan Miguel Palero
 
Function Operations
Function OperationsFunction Operations
Function Operations
swartzje
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
Farzad Javidanrad
 
Exponential functions
Exponential functionsExponential functions
Exponential functions
Ron Eick
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite Integral
JelaiAujero
 
Introduction of Probability
Introduction of ProbabilityIntroduction of Probability
Introduction of Probability
rey castro
 
Math presentation on domain and range
Math presentation on domain and rangeMath presentation on domain and range
Math presentation on domain and range
Touhidul Shawan
 
Properties of logarithms
Properties of logarithmsProperties of logarithms
Properties of logarithms
Jessica Garcia
 
Completing the square
Completing the squareCompleting the square
Completing the square
Ron Eick
 
Introduction to Function, Domain and Range - Mohd Noor
Introduction to Function, Domain and Range - Mohd Noor Introduction to Function, Domain and Range - Mohd Noor
Introduction to Function, Domain and Range - Mohd Noor
Mohd. Noor Abdul Hamid
 
2.4 Linear Functions
2.4 Linear Functions2.4 Linear Functions
2.4 Linear Functions
smiller5
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
Matthew Leingang
 
Lesson 1 - Introduction to Limits.pptx
Lesson 1 - Introduction to Limits.pptxLesson 1 - Introduction to Limits.pptx
Lesson 1 - Introduction to Limits.pptx
LoryMaeAlcosaba
 
Adding and subtracting rational expressions
Adding and subtracting rational expressionsAdding and subtracting rational expressions
Adding and subtracting rational expressions
Dawn Adams2
 
Factors on difference of two squares
Factors on difference of two squaresFactors on difference of two squares
Factors on difference of two squares
Lorie Jane Letada
 
Rearranging Formulas
Rearranging FormulasRearranging Formulas
Rearranging Formulas
Passy World
 
Basic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation RulesBasic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation Rules
Juan Miguel Palero
 
Function Operations
Function OperationsFunction Operations
Function Operations
swartzje
 
Exponential functions
Exponential functionsExponential functions
Exponential functions
Ron Eick
 

Viewers also liked (20)

Macro: Chapter 1 Study
Macro: Chapter 1 StudyMacro: Chapter 1 Study
Macro: Chapter 1 Study
Mr. Pauly's Classes
 
Limit of algebraic functions
Limit of algebraic functionsLimit of algebraic functions
Limit of algebraic functions
Dewi Setiyani Putri
 
CaSt 01122015 Een kijkje in de nieuwe wereld
CaSt 01122015 Een kijkje in de nieuwe wereldCaSt 01122015 Een kijkje in de nieuwe wereld
CaSt 01122015 Een kijkje in de nieuwe wereld
Dr. Carl H.D. Steinmetz
 
CaSt 11012016 De Nieuwe Wereld op school versie 2
CaSt 11012016 De Nieuwe Wereld op school versie 2CaSt 11012016 De Nieuwe Wereld op school versie 2
CaSt 11012016 De Nieuwe Wereld op school versie 2
Dr. Carl H.D. Steinmetz
 
CaSt 30092015 Utrecht Opvoeden en Radicaliseren versie2
CaSt 30092015 Utrecht Opvoeden en Radicaliseren versie2CaSt 30092015 Utrecht Opvoeden en Radicaliseren versie2
CaSt 30092015 Utrecht Opvoeden en Radicaliseren versie2
Dr. Carl H.D. Steinmetz
 
Graph of linear equations
Graph of linear equationsGraph of linear equations
Graph of linear equations
Raymundo Raymund
 
Identifying variables
Identifying variablesIdentifying variables
Identifying variables
Kiefer Sison
 
Math Analysis I
Math Analysis I Math Analysis I
Math Analysis I
Raymundo Raymund
 
Tobacco Control and Prevention - Public Health Agency of Catalonia
Tobacco Control and Prevention - Public Health Agency of Catalonia Tobacco Control and Prevention - Public Health Agency of Catalonia
Tobacco Control and Prevention - Public Health Agency of Catalonia
Agència de Salut Pública de Barcelona - ASPB
 
Dharmendra maharana
Dharmendra maharanaDharmendra maharana
Dharmendra maharana
Dharmendra Maharana
 
Education POG GGZ for InHolland
Education POG GGZ for InHollandEducation POG GGZ for InHolland
Education POG GGZ for InHolland
Dr. Carl H.D. Steinmetz
 
Trastornos por deterioro cognitivo griselda
Trastornos por deterioro cognitivo griseldaTrastornos por deterioro cognitivo griselda
Trastornos por deterioro cognitivo griselda
Griselda Muñoz Hernandez
 
Reporte de global de las calificaciones de todos los cursos del iv modulo i g...
Reporte de global de las calificaciones de todos los cursos del iv modulo i g...Reporte de global de las calificaciones de todos los cursos del iv modulo i g...
Reporte de global de las calificaciones de todos los cursos del iv modulo i g...
Holmes Iza Sinche
 
Jacob riis[1] (1) lol
Jacob riis[1] (1) lolJacob riis[1] (1) lol
Jacob riis[1] (1) lol
micaelalol
 
Social media plan
Social media planSocial media plan
Social media plan
FionaScullion
 
CaSt 28102014 Bullies & Whipping Boys Korean School Amsterdam
CaSt 28102014 Bullies & Whipping Boys Korean School AmsterdamCaSt 28102014 Bullies & Whipping Boys Korean School Amsterdam
CaSt 28102014 Bullies & Whipping Boys Korean School Amsterdam
Dr. Carl H.D. Steinmetz
 
Ca st 04042014 expats at stake
Ca st 04042014 expats at stakeCa st 04042014 expats at stake
Ca st 04042014 expats at stake
Dr. Carl H.D. Steinmetz
 
dCOT study phase 4 Pattern of use, acceptability and perceived risk of electr...
dCOT study phase 4 Pattern of use, acceptability and perceived risk of electr...dCOT study phase 4 Pattern of use, acceptability and perceived risk of electr...
dCOT study phase 4 Pattern of use, acceptability and perceived risk of electr...
Agència de Salut Pública de Barcelona - ASPB
 
CaSt 01122015 Een kijkje in de nieuwe wereld
CaSt 01122015 Een kijkje in de nieuwe wereldCaSt 01122015 Een kijkje in de nieuwe wereld
CaSt 01122015 Een kijkje in de nieuwe wereld
Dr. Carl H.D. Steinmetz
 
CaSt 11012016 De Nieuwe Wereld op school versie 2
CaSt 11012016 De Nieuwe Wereld op school versie 2CaSt 11012016 De Nieuwe Wereld op school versie 2
CaSt 11012016 De Nieuwe Wereld op school versie 2
Dr. Carl H.D. Steinmetz
 
CaSt 30092015 Utrecht Opvoeden en Radicaliseren versie2
CaSt 30092015 Utrecht Opvoeden en Radicaliseren versie2CaSt 30092015 Utrecht Opvoeden en Radicaliseren versie2
CaSt 30092015 Utrecht Opvoeden en Radicaliseren versie2
Dr. Carl H.D. Steinmetz
 
Identifying variables
Identifying variablesIdentifying variables
Identifying variables
Kiefer Sison
 
Reporte de global de las calificaciones de todos los cursos del iv modulo i g...
Reporte de global de las calificaciones de todos los cursos del iv modulo i g...Reporte de global de las calificaciones de todos los cursos del iv modulo i g...
Reporte de global de las calificaciones de todos los cursos del iv modulo i g...
Holmes Iza Sinche
 
Jacob riis[1] (1) lol
Jacob riis[1] (1) lolJacob riis[1] (1) lol
Jacob riis[1] (1) lol
micaelalol
 
CaSt 28102014 Bullies & Whipping Boys Korean School Amsterdam
CaSt 28102014 Bullies & Whipping Boys Korean School AmsterdamCaSt 28102014 Bullies & Whipping Boys Korean School Amsterdam
CaSt 28102014 Bullies & Whipping Boys Korean School Amsterdam
Dr. Carl H.D. Steinmetz
 
Ad

Similar to Integration of Trigonometric Functions (20)

INTEGRATION.pptx
INTEGRATION.pptxINTEGRATION.pptx
INTEGRATION.pptx
SHANIKUMAR66
 
Basic mathematics integration
Basic mathematics integrationBasic mathematics integration
Basic mathematics integration
Muhammad Luthfan
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
Rai University
 
A05330107
A05330107A05330107
A05330107
IOSR-JEN
 
Integral dalam Bahasa Inggris
Integral dalam Bahasa InggrisIntegral dalam Bahasa Inggris
Integral dalam Bahasa Inggris
immochacha
 
Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1
tinardo
 
2 Indefinte Integral.pptx
2 Indefinte Integral.pptx2 Indefinte Integral.pptx
2 Indefinte Integral.pptx
johnkyllelumacang699
 
Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsx
HebaEng
 
Solutions for Problems – Introduction to Digital Communications by Ali Grami
Solutions for Problems – Introduction to Digital Communications by Ali GramiSolutions for Problems – Introduction to Digital Communications by Ali Grami
Solutions for Problems – Introduction to Digital Communications by Ali Grami
maryarchitect25
 
Chapter 2 - Types of a Function.pdf
Chapter 2 - Types of a Function.pdfChapter 2 - Types of a Function.pdf
Chapter 2 - Types of a Function.pdf
ManarKareem1
 
ANALISIS RIIL 1 3.2 ROBERT G BARTLE
ANALISIS RIIL 1 3.2 ROBERT G BARTLEANALISIS RIIL 1 3.2 ROBERT G BARTLE
ANALISIS RIIL 1 3.2 ROBERT G BARTLE
Muhammad Nur Chalim
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 
Lesson 9 transcendental functions
Lesson 9 transcendental functionsLesson 9 transcendental functions
Lesson 9 transcendental functions
Lawrence De Vera
 
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Vladimir Godovalov
 
Trigonometric Identities.
Trigonometric Identities. Trigonometric Identities.
Trigonometric Identities.
jhey2
 
Chapter 3 - Inverse Functions.pdf
Chapter 3 - Inverse Functions.pdfChapter 3 - Inverse Functions.pdf
Chapter 3 - Inverse Functions.pdf
ManarKareem1
 
Adomian decomposition Method and Differential Transform Method to solve the H...
Adomian decomposition Method and Differential Transform Method to solve the H...Adomian decomposition Method and Differential Transform Method to solve the H...
Adomian decomposition Method and Differential Transform Method to solve the H...
IJERA Editor
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
Santhanam Krishnan
 
Differentiation (Part 1).pptx
Differentiation (Part 1).pptxDifferentiation (Part 1).pptx
Differentiation (Part 1).pptx
SakibAhmed402053
 
Dealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbDealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdb
foxtrot jp R
 
Basic mathematics integration
Basic mathematics integrationBasic mathematics integration
Basic mathematics integration
Muhammad Luthfan
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
Rai University
 
Integral dalam Bahasa Inggris
Integral dalam Bahasa InggrisIntegral dalam Bahasa Inggris
Integral dalam Bahasa Inggris
immochacha
 
Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1
tinardo
 
Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsx
HebaEng
 
Solutions for Problems – Introduction to Digital Communications by Ali Grami
Solutions for Problems – Introduction to Digital Communications by Ali GramiSolutions for Problems – Introduction to Digital Communications by Ali Grami
Solutions for Problems – Introduction to Digital Communications by Ali Grami
maryarchitect25
 
Chapter 2 - Types of a Function.pdf
Chapter 2 - Types of a Function.pdfChapter 2 - Types of a Function.pdf
Chapter 2 - Types of a Function.pdf
ManarKareem1
 
ANALISIS RIIL 1 3.2 ROBERT G BARTLE
ANALISIS RIIL 1 3.2 ROBERT G BARTLEANALISIS RIIL 1 3.2 ROBERT G BARTLE
ANALISIS RIIL 1 3.2 ROBERT G BARTLE
Muhammad Nur Chalim
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 
Lesson 9 transcendental functions
Lesson 9 transcendental functionsLesson 9 transcendental functions
Lesson 9 transcendental functions
Lawrence De Vera
 
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Comparative analysis of x^3+y^3=z^3 and x^2+y^2=z^2 in the Interconnected Sets
Vladimir Godovalov
 
Trigonometric Identities.
Trigonometric Identities. Trigonometric Identities.
Trigonometric Identities.
jhey2
 
Chapter 3 - Inverse Functions.pdf
Chapter 3 - Inverse Functions.pdfChapter 3 - Inverse Functions.pdf
Chapter 3 - Inverse Functions.pdf
ManarKareem1
 
Adomian decomposition Method and Differential Transform Method to solve the H...
Adomian decomposition Method and Differential Transform Method to solve the H...Adomian decomposition Method and Differential Transform Method to solve the H...
Adomian decomposition Method and Differential Transform Method to solve the H...
IJERA Editor
 
Differentiation (Part 1).pptx
Differentiation (Part 1).pptxDifferentiation (Part 1).pptx
Differentiation (Part 1).pptx
SakibAhmed402053
 
Dealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdbDealinggreensfncsolft sqrdb
Dealinggreensfncsolft sqrdb
foxtrot jp R
 
Ad

More from Raymundo Raymund (6)

Application of Integration
Application of IntegrationApplication of Integration
Application of Integration
Raymundo Raymund
 
Higher Derivatives & Partial Differentiation
Higher Derivatives & Partial DifferentiationHigher Derivatives & Partial Differentiation
Higher Derivatives & Partial Differentiation
Raymundo Raymund
 
Report on set theory
Report on set theoryReport on set theory
Report on set theory
Raymundo Raymund
 
Report on set theory
Report on set theoryReport on set theory
Report on set theory
Raymundo Raymund
 
Congruence between triangles
Congruence between trianglesCongruence between triangles
Congruence between triangles
Raymundo Raymund
 
Report on differential equation
Report on differential equationReport on differential equation
Report on differential equation
Raymundo Raymund
 
Application of Integration
Application of IntegrationApplication of Integration
Application of Integration
Raymundo Raymund
 
Higher Derivatives & Partial Differentiation
Higher Derivatives & Partial DifferentiationHigher Derivatives & Partial Differentiation
Higher Derivatives & Partial Differentiation
Raymundo Raymund
 
Congruence between triangles
Congruence between trianglesCongruence between triangles
Congruence between triangles
Raymundo Raymund
 
Report on differential equation
Report on differential equationReport on differential equation
Report on differential equation
Raymundo Raymund
 

Recently uploaded (20)

Handling Multiple Choice Responses: Fortune Effiong.pptx
Handling Multiple Choice Responses: Fortune Effiong.pptxHandling Multiple Choice Responses: Fortune Effiong.pptx
Handling Multiple Choice Responses: Fortune Effiong.pptx
AuthorAIDNationalRes
 
P-glycoprotein pamphlet: iteration 4 of 4 final
P-glycoprotein pamphlet: iteration 4 of 4 finalP-glycoprotein pamphlet: iteration 4 of 4 final
P-glycoprotein pamphlet: iteration 4 of 4 final
bs22n2s
 
UNIT 3 NATIONAL HEALTH PROGRAMMEE. SOCIAL AND PREVENTIVE PHARMACY
UNIT 3 NATIONAL HEALTH PROGRAMMEE. SOCIAL AND PREVENTIVE PHARMACYUNIT 3 NATIONAL HEALTH PROGRAMMEE. SOCIAL AND PREVENTIVE PHARMACY
UNIT 3 NATIONAL HEALTH PROGRAMMEE. SOCIAL AND PREVENTIVE PHARMACY
DR.PRISCILLA MARY J
 
Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...
Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...
Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...
Library Association of Ireland
 
How to Manage Opening & Closing Controls in Odoo 17 POS
How to Manage Opening & Closing Controls in Odoo 17 POSHow to Manage Opening & Closing Controls in Odoo 17 POS
How to Manage Opening & Closing Controls in Odoo 17 POS
Celine George
 
Stein, Hunt, Green letter to Congress April 2025
Stein, Hunt, Green letter to Congress April 2025Stein, Hunt, Green letter to Congress April 2025
Stein, Hunt, Green letter to Congress April 2025
Mebane Rash
 
Metamorphosis: Life's Transformative Journey
Metamorphosis: Life's Transformative JourneyMetamorphosis: Life's Transformative Journey
Metamorphosis: Life's Transformative Journey
Arshad Shaikh
 
CBSE - Grade 8 - Science - Chemistry - Metals and Non Metals - Worksheet
CBSE - Grade 8 - Science - Chemistry - Metals and Non Metals - WorksheetCBSE - Grade 8 - Science - Chemistry - Metals and Non Metals - Worksheet
CBSE - Grade 8 - Science - Chemistry - Metals and Non Metals - Worksheet
Sritoma Majumder
 
To study Digestive system of insect.pptx
To study Digestive system of insect.pptxTo study Digestive system of insect.pptx
To study Digestive system of insect.pptx
Arshad Shaikh
 
Phoenix – A Collaborative Renewal of Children’s and Young People’s Services C...
Phoenix – A Collaborative Renewal of Children’s and Young People’s Services C...Phoenix – A Collaborative Renewal of Children’s and Young People’s Services C...
Phoenix – A Collaborative Renewal of Children’s and Young People’s Services C...
Library Association of Ireland
 
Geography Sem II Unit 1C Correlation of Geography with other school subjects
Geography Sem II Unit 1C Correlation of Geography with other school subjectsGeography Sem II Unit 1C Correlation of Geography with other school subjects
Geography Sem II Unit 1C Correlation of Geography with other school subjects
ProfDrShaikhImran
 
How to Subscribe Newsletter From Odoo 18 Website
How to Subscribe Newsletter From Odoo 18 WebsiteHow to Subscribe Newsletter From Odoo 18 Website
How to Subscribe Newsletter From Odoo 18 Website
Celine George
 
Biophysics Chapter 3 Methods of Studying Macromolecules.pdf
Biophysics Chapter 3 Methods of Studying Macromolecules.pdfBiophysics Chapter 3 Methods of Studying Macromolecules.pdf
Biophysics Chapter 3 Methods of Studying Macromolecules.pdf
PKLI-Institute of Nursing and Allied Health Sciences Lahore , Pakistan.
 
Anti-Depressants pharmacology 1slide.pptx
Anti-Depressants pharmacology 1slide.pptxAnti-Depressants pharmacology 1slide.pptx
Anti-Depressants pharmacology 1slide.pptx
Mayuri Chavan
 
New Microsoft PowerPoint Presentation.pptx
New Microsoft PowerPoint Presentation.pptxNew Microsoft PowerPoint Presentation.pptx
New Microsoft PowerPoint Presentation.pptx
milanasargsyan5
 
Operations Management (Dr. Abdulfatah Salem).pdf
Operations Management (Dr. Abdulfatah Salem).pdfOperations Management (Dr. Abdulfatah Salem).pdf
Operations Management (Dr. Abdulfatah Salem).pdf
Arab Academy for Science, Technology and Maritime Transport
 
2541William_McCollough_DigitalDetox.docx
2541William_McCollough_DigitalDetox.docx2541William_McCollough_DigitalDetox.docx
2541William_McCollough_DigitalDetox.docx
contactwilliamm2546
 
Quality Contril Analysis of Containers.pdf
Quality Contril Analysis of Containers.pdfQuality Contril Analysis of Containers.pdf
Quality Contril Analysis of Containers.pdf
Dr. Bindiya Chauhan
 
apa-style-referencing-visual-guide-2025.pdf
apa-style-referencing-visual-guide-2025.pdfapa-style-referencing-visual-guide-2025.pdf
apa-style-referencing-visual-guide-2025.pdf
Ishika Ghosh
 
Presentation on Tourism Product Development By Md Shaifullar Rabbi
Presentation on Tourism Product Development By Md Shaifullar RabbiPresentation on Tourism Product Development By Md Shaifullar Rabbi
Presentation on Tourism Product Development By Md Shaifullar Rabbi
Md Shaifullar Rabbi
 
Handling Multiple Choice Responses: Fortune Effiong.pptx
Handling Multiple Choice Responses: Fortune Effiong.pptxHandling Multiple Choice Responses: Fortune Effiong.pptx
Handling Multiple Choice Responses: Fortune Effiong.pptx
AuthorAIDNationalRes
 
P-glycoprotein pamphlet: iteration 4 of 4 final
P-glycoprotein pamphlet: iteration 4 of 4 finalP-glycoprotein pamphlet: iteration 4 of 4 final
P-glycoprotein pamphlet: iteration 4 of 4 final
bs22n2s
 
UNIT 3 NATIONAL HEALTH PROGRAMMEE. SOCIAL AND PREVENTIVE PHARMACY
UNIT 3 NATIONAL HEALTH PROGRAMMEE. SOCIAL AND PREVENTIVE PHARMACYUNIT 3 NATIONAL HEALTH PROGRAMMEE. SOCIAL AND PREVENTIVE PHARMACY
UNIT 3 NATIONAL HEALTH PROGRAMMEE. SOCIAL AND PREVENTIVE PHARMACY
DR.PRISCILLA MARY J
 
Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...
Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...
Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...
Library Association of Ireland
 
How to Manage Opening & Closing Controls in Odoo 17 POS
How to Manage Opening & Closing Controls in Odoo 17 POSHow to Manage Opening & Closing Controls in Odoo 17 POS
How to Manage Opening & Closing Controls in Odoo 17 POS
Celine George
 
Stein, Hunt, Green letter to Congress April 2025
Stein, Hunt, Green letter to Congress April 2025Stein, Hunt, Green letter to Congress April 2025
Stein, Hunt, Green letter to Congress April 2025
Mebane Rash
 
Metamorphosis: Life's Transformative Journey
Metamorphosis: Life's Transformative JourneyMetamorphosis: Life's Transformative Journey
Metamorphosis: Life's Transformative Journey
Arshad Shaikh
 
CBSE - Grade 8 - Science - Chemistry - Metals and Non Metals - Worksheet
CBSE - Grade 8 - Science - Chemistry - Metals and Non Metals - WorksheetCBSE - Grade 8 - Science - Chemistry - Metals and Non Metals - Worksheet
CBSE - Grade 8 - Science - Chemistry - Metals and Non Metals - Worksheet
Sritoma Majumder
 
To study Digestive system of insect.pptx
To study Digestive system of insect.pptxTo study Digestive system of insect.pptx
To study Digestive system of insect.pptx
Arshad Shaikh
 
Phoenix – A Collaborative Renewal of Children’s and Young People’s Services C...
Phoenix – A Collaborative Renewal of Children’s and Young People’s Services C...Phoenix – A Collaborative Renewal of Children’s and Young People’s Services C...
Phoenix – A Collaborative Renewal of Children’s and Young People’s Services C...
Library Association of Ireland
 
Geography Sem II Unit 1C Correlation of Geography with other school subjects
Geography Sem II Unit 1C Correlation of Geography with other school subjectsGeography Sem II Unit 1C Correlation of Geography with other school subjects
Geography Sem II Unit 1C Correlation of Geography with other school subjects
ProfDrShaikhImran
 
How to Subscribe Newsletter From Odoo 18 Website
How to Subscribe Newsletter From Odoo 18 WebsiteHow to Subscribe Newsletter From Odoo 18 Website
How to Subscribe Newsletter From Odoo 18 Website
Celine George
 
Anti-Depressants pharmacology 1slide.pptx
Anti-Depressants pharmacology 1slide.pptxAnti-Depressants pharmacology 1slide.pptx
Anti-Depressants pharmacology 1slide.pptx
Mayuri Chavan
 
New Microsoft PowerPoint Presentation.pptx
New Microsoft PowerPoint Presentation.pptxNew Microsoft PowerPoint Presentation.pptx
New Microsoft PowerPoint Presentation.pptx
milanasargsyan5
 
2541William_McCollough_DigitalDetox.docx
2541William_McCollough_DigitalDetox.docx2541William_McCollough_DigitalDetox.docx
2541William_McCollough_DigitalDetox.docx
contactwilliamm2546
 
Quality Contril Analysis of Containers.pdf
Quality Contril Analysis of Containers.pdfQuality Contril Analysis of Containers.pdf
Quality Contril Analysis of Containers.pdf
Dr. Bindiya Chauhan
 
apa-style-referencing-visual-guide-2025.pdf
apa-style-referencing-visual-guide-2025.pdfapa-style-referencing-visual-guide-2025.pdf
apa-style-referencing-visual-guide-2025.pdf
Ishika Ghosh
 
Presentation on Tourism Product Development By Md Shaifullar Rabbi
Presentation on Tourism Product Development By Md Shaifullar RabbiPresentation on Tourism Product Development By Md Shaifullar Rabbi
Presentation on Tourism Product Development By Md Shaifullar Rabbi
Md Shaifullar Rabbi
 

Integration of Trigonometric Functions

  • 1. Integration of Trigonometric Functions RAYMUND T. DE LA CRUZ MAEd-mathematics
  • 2. Integration by Algebraic Substitution>>> By noting the formulas for differentiating the six trigonometric functions, and the antiderivatives that are found using them, we have the following integration formulas: sin 𝑢 𝑑𝑢 = − cos 𝑢 + 𝐶 cos 𝑢 𝑑𝑢 = sin 𝑢 + 𝐶 sec2 𝑢 𝑑𝑢 = tan 𝑢 + 𝐶 csc2 𝑢 𝑑𝑢 = − cot 𝑢 + 𝐶 sec 𝑢 tan 𝑢 𝑑𝑢 = sec 𝑢 + 𝐶 csc 𝑢 cot 𝑢 𝑑𝑢 = − csc 𝑢 + 𝐶
  • 3. Integration by Algebraic Substitution>>> Example1 Integrate: 𝑥 𝑠𝑒𝑐2 𝑥2 𝑑𝑥. With 𝑢 = 𝑥2 , 𝑑𝑢 = 2𝑥 𝑑𝑥, we have 𝑥 𝑠𝑒𝑐2 𝑥2 𝑑𝑥 = 1 2 (𝑠𝑒𝑐2 𝑥2 (2𝑥 𝑑𝑥) = 1 2 tan 𝑥2 + 𝐶 Example2 Integrate: tan 2𝑥 cos 2𝑥 𝑑𝑥. By using the basic identity sec 𝜃 = 1 cos 𝜃 , we can transform this integral into the form sec2𝑥 tan2𝑥 𝑑𝑥. In this form, 𝑢 = 2𝑥, 𝑑𝑢 = 2 𝑑𝑥. Therefore, tan 2𝑥 cos 2𝑥 𝑑𝑥 = sec2𝑥 tan2𝑥 𝑑𝑥 = 1 2 sec2𝑥 tan2𝑥 2 𝑑𝑥 = 1 2 sec2𝑥 + 𝐶
  • 4. Integration by Algebraic Substitution>>> We also have the following integration formulas: tan 𝑢 𝑑𝑢 = − 𝑙𝑛 cos 𝑢 + 𝐶 cot 𝑢 𝑑𝑢 = ln sin 𝑢 + 𝐶 sec 𝑢 𝑑𝑢 = ln sec 𝑢 + tan 𝑢 + 𝐶 csc 𝑢 𝑑𝑢 = ln csc 𝑢 − cot 𝑢 + 𝐶 Example3 Integrate: tan 4𝜃 𝑑𝜃. Noting that 𝑢 = 4𝜃, 𝑑𝑢 = 4𝑑𝜃, we have tan 4𝜃 𝑑𝜃 = 1 4 tan 4𝜃(4𝑑𝜃) = − 1 4 ln cos 4𝜃 + 𝐶
  • 5. Integration by Algebraic Substitution>>> By use of trigonometric relations, it is possible to transform many integrals involving powers of the trigonometric functions into integrable form. We now show the relationships that are useful for these integrals. 𝑐𝑜𝑠2 𝑥 + 𝑠𝑖𝑛2 𝑥 = 1 1 + 𝑡𝑎𝑛2 𝑥 = 𝑠𝑒𝑐2 𝑥 1 + 𝑐𝑜𝑡2 𝑥 = 𝑐𝑠𝑐2 𝑥 2𝑐𝑜𝑠2 𝑥 = 1 + cos 2𝑥 2𝑠𝑖𝑛2 𝑥 = 1 − cos 2𝑥 Example1 Integration with odd power of sin u Integrate: 𝑠𝑖𝑛3 𝑥 𝑐𝑜𝑠2 𝑥 𝑑𝑥. Because 𝑠𝑖𝑛3 𝑥 = 𝑠𝑖𝑛2 𝑥 sin 𝑥 = 1 − 𝑐𝑜𝑠2 𝑥 sin 𝑥, we can write this integral with powers of cos x along with – sin x, which is the necessary 𝑑𝑢 for this integral. Therefore, 𝑠𝑖𝑛3 𝑥 𝑐𝑜𝑠2 𝑥 𝑑𝑥 = (1 − 𝑐𝑜𝑠2 𝑥)(sin 𝑥) 𝑐𝑜𝑠2 𝑥 𝑑𝑥 = (𝑐𝑜𝑠2 𝑥 − 𝑐𝑜𝑠4 𝑥)(sin 𝑥 𝑑𝑥) =− 𝑐𝑜𝑠2 𝑥(− sin 𝑥 𝑑𝑥) + 𝑐𝑜𝑠4 𝑥(− sin 𝑥 𝑑𝑥) = − 1 3 𝑐𝑜𝑠3 𝑥 + 1 5 𝑐𝑜𝑠5 𝑥 + 𝐶
  • 6. Integration by Algebraic Substitution>>> Example2 Integration with odd power of cos u Integrate: 𝑐𝑜𝑠5 2𝑥 𝑑𝑥. Because 𝑐𝑜𝑠5 2𝑥 = 𝑐𝑜𝑠4 2𝑥 cos 2𝑥 = (1 − 𝑠𝑖𝑛2 2𝑥)2 cos 2𝑥, it is possible to write this integral with powers of sin 2x along with cos 2x dx. Thus, with the introduction of a factor of 2, (cos 2x)(2dx) is the necessary 𝑑𝑢 for this integral. Thus, 𝑐𝑜𝑠5 2𝑥 𝑑𝑥 = (1 − 𝑠𝑖𝑛2 2𝑥)2 cos 2𝑥 𝑑𝑥 = 1 − 2𝑠𝑖𝑛2 2𝑥 + 𝑠𝑖𝑛4 2𝑥 cos 2𝑥 𝑑𝑥 = cos 2𝑥 𝑑𝑥 − 2𝑠𝑖𝑛2 2𝑥 cos 2𝑥 𝑑𝑥 + 𝑠𝑖𝑛4 2𝑥 cos 2𝑥 𝑑𝑥 = 1 2 cos 2𝑥 2𝑑𝑥 − 𝑠𝑖𝑛2 2𝑥 (2cos 2𝑥 𝑑𝑥) + 1 2 𝑠𝑖𝑛4 2𝑥 (2cos 2𝑥 𝑑𝑥) = 1 2 𝑠𝑖𝑛 2𝑥 − 1 3 𝑠𝑖𝑛3 2𝑥 + 1 10 𝑠𝑖𝑛5 2𝑥 + 𝐶
  • 7. Integration by Algebraic Substitution>>> Example4 Integration with power of sec u Integrate: 𝑠𝑒𝑐3 𝑡 tan 𝑡 𝑑𝑡. By writing 𝑠𝑒𝑐3 𝑡 tan 𝑡 as 𝑠𝑒𝑐2 𝑡 (sec 𝑡 tan 𝑡), we can use the sec 𝑡 tan 𝑡 𝑑𝑡 as the 𝑑𝑢 of the integral. Thus, 𝑠𝑒𝑐3 𝑡 tan 𝑡 𝑑𝑡 = 𝑠𝑒𝑐2 𝑡 (sec 𝑡 tan 𝑡 𝑑𝑡) = 1 3 𝑠𝑒𝑐3 𝑡 + 𝐶 Example3 Integration with even power of sin u Integrate: 𝑠𝑖𝑛2 2𝑥 𝑑𝑥. Since 𝑠𝑖𝑛2 2𝑥 = 1 2 (1 − cos 4𝑥), this integral can be transformed into a form that can be integrated. Therefore we write 𝑠𝑖𝑛2 2𝑥 𝑑𝑥 = 1 2 (1 − cos 4𝑥) 𝑑𝑥 = 1 2 𝑑𝑥 − 1 8 cos 4𝑥(4𝑑𝑥) = 𝑥 2 − 1 8 sin 4𝑥 + 𝐶
  • 8. Integration by Algebraic Substitution>>> Example5 Integration with power of tan u Integrate: 𝑡𝑎𝑛5 𝑥 𝑑𝑥. Because 𝑡𝑎𝑛5 𝑥 = 𝑡𝑎𝑛3 𝑥 𝑡𝑎𝑛2 𝑥 = 𝑡𝑎𝑛3 𝑠𝑒𝑐2 − 1 , we can write this integral with powers of tan 𝑥 along with 𝑠𝑒𝑐2 𝑥 𝑑𝑥. Thus, 𝑠𝑒𝑐2 𝑥 𝑑𝑥 becomes the necessary 𝑑𝑢 of the integral. It is necessary to replace 𝑡𝑎𝑛2 𝑥 with 𝑠𝑒𝑐2 𝑥 − 1 twice during the integration. Therefore, 𝑡𝑎𝑛5 𝑥 𝑑𝑥 = 𝑡𝑎𝑛3 𝑠𝑒𝑐2 − 1 𝑑𝑥 = 𝑡𝑎𝑛3 𝑥 (𝑠𝑒𝑐2 𝑥 𝑑𝑥) − 𝑡𝑎𝑛3 𝑥 𝑑𝑥 = 1 4 𝑡𝑎𝑛4 𝑥 − tan 𝑥 𝑠𝑒𝑐2 𝑥 − 1 𝑑𝑥 = 1 4 𝑡𝑎𝑛4 𝑥 − tan 𝑥(𝑠𝑒𝑐2 𝑥 𝑑𝑥) + tan 𝑥 𝑑𝑥 = 1 4 𝑡𝑎𝑛4 𝑥 − 1 2 𝑡𝑎𝑛2 𝑥 − ln cos 𝑥 + 𝐶 P r a c t ic e Ex e r c is e Integrate: 1. sin5𝑥 𝑑𝑥 4. 𝑠𝑖𝑛3 𝑥 𝑑𝑥 2. 6𝑐𝑠𝑐2 3𝑥 𝑑𝑥 5. 𝑠𝑒𝑐4 𝑥 𝑑𝑥 3. 4𝑥 cot 𝑥2 𝑑𝑥
  • 9. Integration by Trigonometric Substitution>>> Substitutions based on trigonometric relations are particularly useful for integrating expressions involving radicals. Example1 For 𝑎2 − 𝑥2, let 𝑥 = 𝑎 sin 𝜃 Integrate: 𝑑𝑥 𝑥2 1−𝑥2 . If we let 𝑥 = sin 𝜃, then 1 − 𝑠𝑖𝑛2 𝜃 = cos 𝜃, and the integral can be transformed into a trigonometric integral. Carefully replacing all factors of the integral with expressions in terms of 𝜃, we have 𝑥 = sin 𝜃, 1 − 𝑥2 = cos 𝜃, and 𝑑𝑥 = cos 𝜃 𝑑𝜃. Therefore, 𝑑𝑥 𝑥2 1−𝑥2 = cos 𝜃 𝑑𝜃 𝑠𝑖𝑛 2 𝜃 1−𝑠𝑖𝑛 2 𝜃 = 𝑐𝑜𝑠𝜃 𝑑𝜃 𝑠𝑖𝑛 2 𝜃 cos 𝜃 = 𝑐𝑠𝑐2 𝜃 𝑑𝜃 = − cot 𝜃 + 𝐶 We have now performed the integration, but the answer we now have is in terms of 𝜃, and we must express the result in terms of x. Making a triangle with an angle 𝜃 such that sin 𝜃 = 𝑥 1 , we may express any of the trigonometric functions in terms of x. Thus, cot 𝜃 = 1−𝑥2 𝑥 Therefore, the result of the integration becomes 𝑑𝑥 𝑥2 1−𝑥2 = − cot 𝜃 + 𝐶 = − 1−𝑥2 𝑥 + 𝐶
  • 10. Integration by Trigonometric Substitution>>> Example2 For 𝑎2 + 𝑥2, let 𝑥 = 𝑎 tan 𝜃 Integrate: 𝑑𝑥 𝑥2+4 . If we let 𝑥 = 2 tan 𝜃, the radical in this integral becomes 𝑥2 + 4 = 4 𝑡𝑎𝑛2 𝜃 + 4 = 2 𝑡𝑎𝑛2 𝜃 + 1 = 2 𝑠𝑒𝑐2 𝜃 = 2 sec 𝜃 Therefore, with 𝑥 = 2 tan 𝜃 and 𝑑𝑥 = 2 𝑠𝑒𝑐2 𝜃 𝑑𝜃, we have 𝑑𝑥 𝑥2+4 = 2 𝑠𝑒𝑐 2 𝜃 𝑑𝜃 4 𝑡𝑎𝑛 2 𝜃+4 = 2 𝑠𝑒𝑐 2 𝜃 𝑑𝜃 2 sec 𝜃 = sec 𝜃 𝑑𝜃 = ln sec 𝜃 + tan 𝜃 + 𝐶 = ln 𝑥2+4 2 + 𝑥 2 + 𝐶 = ln 𝑥2+4+𝑥 2 + 𝐶 This answer is acceptable, but by using the properties of logarithms, we have ln 𝑥2+4+𝑥 2 + 𝐶 = ln 𝑥2 + 4 + 𝑥 + (𝐶 − ln 2) = ln 𝑥2 + 4 + 𝑥 + 𝐶′
  • 11. Integration by Trigonometric Substitution>>> Example3 For 𝑥2 − 𝑎2, let 𝑥 = 𝑎 sec 𝜃 Integrate: 2 𝑑𝑥 𝑥 𝑥2−9 . If we let 𝑥 = 3 sec 𝜃, the radical in this integral becomes 𝑥2 − 9 = 9 𝑠𝑒𝑐2 𝜃 − 9 = 3 𝑠𝑒𝑐2 𝜃 − 1 = 3 𝑡𝑎𝑛2 𝜃 = 3 tan 𝜃 Therefore, with 𝑥 = 3 sec 𝜃 tan 𝜃 𝑑𝜃, we have 2 𝑑𝑥 𝑥 𝑥2−9 = 2 3 sec 𝜃 tan 𝜃 𝑑𝜃 3 sec 𝜃 9𝑠𝑒𝑐 2 𝜃−9 = 2 tan 𝜃 𝑑𝜃 3 tan 𝜃 = 2 3 𝑑𝜃 = 2 3 𝜃 + 𝐶 = 2 3 𝑠𝑒𝑐−1 𝑥 3 + 𝐶 P r a c t ic e Ex e r c is e Integrate: 1. 1−𝑥2 𝑥2 𝑑𝑥 4. 6𝑑𝑧 𝑧2 𝑧2+9 2. 2𝑑𝑥 𝑥2−36 5. 6𝑑𝑥 𝑥 4−𝑥2 3. 𝑥2−25 𝑥 𝑑𝑥