SlideShare a Scribd company logo
1
Approximating functions, polynomial interpolation
(Lagrange and Newton’s divided differences)
formulas, error approximations
2
Introduction to Interpolation
Introduction
Interpolation Problem
Existence and Uniqueness
Linear and Quadratic Interpolation
Newton’s Divided Difference Method
Properties of Divided Differences
3
Introduction
Interpolation was used for
long time to provide an
estimate of a tabulated
function at values that are
not available in the table.
What is sin (0.15)?
x sin(x)
0 0.0000
0.1 0.0998
0.2 0.1987
0.3 0.2955
0.4 0.3894
Using Linear Interpolation sin (0.15) ≈ 0.1493
True value (4 decimal digits) sin (0.15) = 0.1494
4
The Interpolation Problem
Given a set of n+1 points,
Find an nth
order polynomial
that passes through all points, such that:
     
)
(
,
....,
,
)
(
,
,
)
(
, 1
1
0
0 n
n x
f
x
x
f
x
x
f
x
)
(x
fn
n
i
for
x
f
x
f i
i
n ,...,
2
,
1
,
0
)
(
)
( 

5
Example
An experiment is used to determine
the viscosity of water as a function
of temperature. The following table
is generated:
Problem: Estimate the viscosity
when the temperature is 8 degrees.
Temperature
(degree)
Viscosity
0 1.792
5 1.519
10 1.308
15 1.140
6
Interpolation Problem
Find a polynomial that fits the data
points exactly.
)
V(T
V
T
a
V(T)
i
i
n
k
k
k



0
ts
coefficien
Polynomial
:
e
Temperatur
:
Viscosity
:
k
a
T
V
Linear Interpolation: V(T)= 1.73 − 0.0422 T
V(8)= 1.3924
7
Existence and Uniqueness
Given a set of n+1 points:
Assumption: are distinct
Theorem:
There is a unique polynomial fn(x) of order ≤ n
such that:
,...,n
,
i
for
x
f
x
f i
i
n 1
0
)
(
)
( 

n
x
x
x ,...,
, 1
0
     
)
(
,
....,
,
)
(
,
,
)
(
, 1
1
0
0 n
n x
f
x
x
f
x
x
f
x
8
Examples of Polynomial Interpolation
Linear Interpolation
 Given any two points,
there is one polynomial of
order ≤ 1 that passes
through the two points.
Quadratic Interpolation
Given any three points there
is one polynomial of order ≤
2 that passes through the
three points.
9
Linear Interpolation
Given any two points,
The line that interpolates the two points is:
Example :
Find a polynomial that interpolates (1,2) and (2,4).
   
)
(
,
,
)
(
, 1
1
0
0 x
f
x
x
f
x
 
0
0
1
0
1
0
1
)
(
)
(
)
(
)
( x
x
x
x
x
f
x
f
x
f
x
f 




  x
x
x
f 2
1
1
2
2
4
2
)
(
1 





10
Quadratic Interpolation
 Given any three points:
 The polynomial that interpolates the three points is:
     
)
(
,
,
)
(
,
,
)
(
, 2
2
1
1
0
0 x
f
x
and
x
f
x
x
f
x
    
0
2
0
1
0
1
1
2
1
2
2
1
0
2
0
1
0
1
1
0
1
0
0
1
0
2
0
1
0
2
)
(
)
(
)
(
)
(
]
,
,
[
)
(
)
(
]
,
[
)
(
:
)
(
x
x
x
x
x
f
x
f
x
x
x
f
x
f
x
x
x
f
b
x
x
x
f
x
f
x
x
f
b
x
f
b
where
x
x
x
x
b
x
x
b
b
x
f



















11
General nth
Order Interpolation
Given any n+1 points:
The polynomial that interpolates all points is:
     
)
(
,
...,
,
)
(
,
,
)
(
, 1
1
0
0 n
n x
f
x
x
f
x
x
f
x
        
]
,
...
,
,
[
....
]
,
[
)
(
...
...
)
(
1
0
1
0
1
0
0
1
0
1
0
2
0
1
0
n
n
n
n
n
x
x
x
f
b
x
x
f
b
x
f
b
x
x
x
x
b
x
x
x
x
b
x
x
b
b
x
f












 
12
Divided Differences
0
1
1
0
2
1
1
0
0
2
1
0
2
1
2
1
0
0
1
0
1
1
0
]
,...,
,
[
]
,...,
,
[
]
,...,
,
[
......
..
.
.
.
.
DD
order
Second
]
,
[
]
,
[
]
,
,
[
DD
order
First
]
[
]
[
]
,
[
DD
order
Zeroth
)
(
]
[
x
x
x
x
x
f
x
x
x
f
x
x
x
f
x
x
x
x
f
x
x
f
x
x
x
f
x
x
x
f
x
f
x
x
f
x
f
x
f
k
k
k
k
k
k











13
Divided Difference Table
x F[ ] F[ , ] F[ , , ] F[ , , ,]
x0 F[x0] F[x0,x1] F[x0,x1,x2] F[x0,x1,x2,x3]
x1 F[x1] F[x1,x2] F[x1,x2,x3]
x2 F[x2] F[x2,x3]
x3 F[x3]
 
 


 







n
i
i
j
j
i
n x
x
x
x
x
F
x
f
0
1
0
1
0 ]
,...,
,
[
)
(
14
Divided Difference Table
f(xi)
0 -5
1 -3
-1 -15
i
x
x F[ ] F[ , ] F[ , , ]
0 -5 2 -4
1 -3 6
-1 -15
Entries of the divided difference
table are obtained from the data
table using simple operations.
15
Divided Difference Table
f(xi)
0 -5
1 -3
-1 -15
i
x
x F[ ] F[ , ] F[ , , ]
0 -5 2 -4
1 -3 6
-1 -15
The first two column of the
table are the data columns.
Third column: First order differences.
Fourth column: Second order differences.
16
Divided Difference Table
0 -5
1 -3
-1 -15
i
y
i
x
x F[ ] F[ , ] F[ , , ]
0 -5 2 -4
1 -3 6
-1 -15
2
0
1
)
5
(
3





0
1
0
1
1
0
]
[
]
[
]
,
[
x
x
x
f
x
f
x
x
f



17
Divided Difference Table
0 -5
1 -3
-1 -15
i
y
i
x
x F[ ] F[ , ] F[ , , ]
0 -5 2 -4
1 -3 6
-1 -15
6
1
1
)
3
(
15






1
2
1
2
2
1
]
[
]
[
]
,
[
x
x
x
f
x
f
x
x
f



18
Divided Difference Table
0 -5
1 -3
-1 -15
i
y
i
x
x F[ ] F[ , ] F[ , , ]
0 -5 2 -4
1 -3 6
-1 -15
4
)
0
(
1
)
2
(
6





0
2
1
0
2
1
2
1
0
]
,
[
]
,
[
]
,
,
[
x
x
x
x
f
x
x
f
x
x
x
f



19
Divided Difference Table
0 -5
1 -3
-1 -15
i
y
i
x
x F[ ] F[ , ] F[ , , ]
0 -5 2 -4
1 -3 6
-1 -15
)
1
)(
0
(
4
)
0
(
2
5
)
(
2 





 x
x
x
x
f
f2(x)= F[x0]+F[x0,x1] (x-x0)+F[x0,x1,x2] (x-x0)(x-x1)
20
Two Examples
x y
1 0
2 3
3 8
Obtain the interpolating polynomials for the two examples:
x y
2 3
1 0
3 8
What do you observe?
21
Two Examples
1
)
2
)(
1
(
1
)
1
(
3
0
)
(
2
2








x
x
x
x
x
P
x Y
1 0 3 1
2 3 5
3 8
x Y
2 3 3 1
1 0 4
3 8
1
)
1
)(
2
(
1
)
2
(
3
3
)
(
2
2








x
x
x
x
x
P
Ordering the points should not affect the interpolating polynomial.
22
Properties of Divided Difference
]
,
,
[
]
,
,
[
]
,
,
[ 0
1
2
0
2
1
2
1
0 x
x
x
f
x
x
x
f
x
x
x
f 

Ordering the points should not affect the divided difference:
23
Example
 Find a polynomial to
interpolate the data.
x f(x)
2 3
4 5
5 1
6 6
7 9
24
Example
x f(x) f[ , ] f[ , , ] f[ , , , ] f[ , , , , ]
2 3 1 -1.6667 1.5417 -0.6750
4 5 -4 4.5 -1.8333
5 1 5 -1
6 6 3
7 9
)
6
)(
5
)(
4
)(
2
(
6750
.
0
)
5
)(
4
)(
2
(
5417
.
1
)
4
)(
2
(
6667
.
1
)
2
(
1
3
4















x
x
x
x
x
x
x
x
x
x
f
25
Summary
.
polynomial
ing
interpolat
affect the
not
should
points
the
Ordering
methods
Other
-
2]
18.
[Section
ion
Interpolat
Lagrange
-
]
18.1
[Section
Difference
Divided
Newton
-
it
obtain
to
used
be
can
methods
Different
*
unique.
is
Polynomial
ing
interpolat
The
*
...,
,
2
,
1
,
0
)
(
)
(
:
Condition
ing
Interpolat n
i
for
x
f
x
f i
n
i 

26
Lagrange Interpolation
27
The Interpolation Problem
Given a set of n+1 points:
Find an nth
order polynomial:
that passes through all points, such that:
     
)
(
,
....,
,
)
(
,
,
)
(
, 1
1
0
0 n
n x
f
x
x
f
x
x
f
x
)
(x
fn
n
i
for
x
f
x
f i
i
n ,...,
2
,
1
,
0
)
(
)
( 

28
Lagrange Interpolation
Problem:
Given
Find the polynomial of least order such that:
Lagrange Interpolation Formula:
n
i
for
x
f
x
f i
i
n ,...,
1
,
0
)
(
)
( 

)
(x
fn
….
….
1
x n
x
0
y 1
y n
y
i
x
i
y
 
 
 









n
i
j
j j
i
j
i
n
i
i
i
n
x
x
x
x
x
x
x
f
x
f
,
0
0
)
(
)
(
)
(


0
x
29
Lagrange Interpolation






j
i
j
i
x
x
j
i
th
i
1
0
)
(
:
s
polynomial
order
n
are
cardinals
The
cardinals.
the
called
are
)
(


30
Lagrange Interpolation Example
x 1/3 1/4 1
y 2 -1 7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
)
4
/
1
)(
3
/
1
(
2
7
)
1
)(
3
/
1
(
16
1
)
1
)(
4
/
1
(
18
2
)
(
4
/
1
1
4
/
1
3
/
1
1
3
/
1
)
(
1
4
/
1
1
3
/
1
4
/
1
3
/
1
)
(
1
3
/
1
1
4
/
1
3
/
1
4
/
1
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
2
1
2
1
0
2
0
2
2
1
2
0
1
0
1
2
0
2
1
0
1
0
2
2
1
1
0
0
2











































x
x
x
x
x
x
x
P
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
f
x
x
f
x
x
f
x
P






31
Example
Find a polynomial to interpolate:
Both Newton’s interpolation
method and Lagrange
interpolation method must
give the same answer.
x y
0 1
1 3
2 2
3 5
4 4
32
Newton’s Interpolation Method
0 1 2 -3/2 7/6 -5/8
1 3 -1 2 -4/3
2 2 3 -2
3 5 -1
4 4
33
Interpolating Polynomial
4
3
2
4
4
8
5
12
59
8
95
12
115
1
)
(
)
3
)(
2
)(
1
(
8
5
)
2
)(
1
(
6
7
)
1
(
2
3
)
(
2
1
)
(
x
x
x
x
x
f
x
x
x
x
x
x
x
x
x
x
x
f
















34
Interpolating Polynomial Using
Lagrange Interpolation Method
24
)
3
)(
2
)(
1
(
)
3
4
(
)
3
(
)
2
4
(
)
2
(
)
1
4
(
)
1
(
)
0
4
(
)
0
(
6
)
4
)(
2
)(
1
(
)
4
3
(
)
4
(
)
2
3
(
)
2
(
)
1
3
(
)
1
(
)
0
3
(
)
0
(
4
)
4
)(
3
)(
1
(
)
4
2
(
)
4
(
)
3
2
(
)
3
(
)
1
2
(
)
1
(
)
0
2
(
)
0
(
6
)
4
)(
3
)(
2
(
)
4
1
(
)
4
(
)
3
1
(
)
3
(
)
2
1
(
)
2
(
)
0
1
(
)
0
(
24
)
4
)(
3
)(
2
)(
1
(
)
4
0
(
)
4
(
)
3
0
(
)
3
(
)
2
0
(
)
2
(
)
1
0
(
)
1
(
4
5
2
3
)
(
)
(
4
3
2
1
0
4
3
2
1
0
4
0
4












































































x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
f
x
f
i
i
i











35
Inverse Interpolation
Error in Polynomial Interpolation
36
Inverse Interpolation
given
is
where
,
)
(
:
that
such
Find
values
of
a table
Given
:
Problem
k
k y
y
x
f
x 
….
….
1
x n
x
0
y 1
y n
y
i
x
i
y
One approach:
Use polynomial interpolation to obtain fn(x) to interpolate the
data then use Newton’s method to find a solution to x
k
n y
x
f 
)
(
0
x
37
Inverse Interpolation
….
….
1
x n
x
0
y 1
y n
y
i
x
i
y
Inverse interpolation:
1. Exchange the roles
of x and y.
2. Perform polynomial
Interpolation on the
new table.
3. Evaluate
)
( k
n y
f
x 
….
….
i
y 0
y 1
y n
y
i
x 0
x 1
x n
x
0
x
38
Inverse Interpolation
x
y
y
x
39
Inverse Interpolation
Question:
What is the limitation of inverse interpolation?
• The original function has an inverse.
• y1, y2, …, yn must be distinct.
40
Inverse Interpolation
Example
5
.
2
)
(
that
such
Find
table.
the
Given
:
Problem

x
f
x
x 1 2 3
y 3.2 2.0 1.6
3.2 1 -.8333 1.0417
2.0 2 -2.5
1.6 3
2187
.
1
)
5
.
0
)(
7
.
0
(
0417
.
1
)
7
.
0
(
8333
.
0
1
)
5
.
2
(
)
2
)(
2
.
3
(
0417
.
1
)
2
.
3
(
8333
.
0
1
)
(
2
2














f
x
y
y
y
y
f
x
41
Errors in polynomial Interpolation
 Polynomial interpolation may lead to large
errors (especially for high order polynomials).
BE CAREFUL
 When an nth
order interpolating polynomial is
used, the error is related to the (n+1)th
order
derivative.
42
-5 -4 -3 -2 -1 0 1 2 3 4 5
-0.5
0
0.5
1
1.5
2
true function
10 th order interpolating polynomial
10th
Order Polynomial Interpolation
43
1
)
1
(
)
1
(
)
1
(
4
)
(
)
(
:
Then
points).
end
the
(including
b]
[a,
in
points
spaced
equally
1
at
es
interpolat
that
n
degree
of
polynomial
any
be
Let
.
)
(
and
b],
[a,
on
continuous
is
)
(
:
that
such
function
a
be
)
(
Let








 





n
n
n
n
a
b
n
M
x
-P
x
f
n
f
P(x)
M
x
f
x
f
x
f
Errors in polynomial Interpolation
Theorem
44
Example
9
10
1
)
1
(
th
10
34
.
1
9
6875
.
1
)
10
(
4
1
)
1
(
4
9
,
1
0
1
.
[0,1.6875]
interval
in the
points)
spaced
equally
0
1
(using
f(x)
e
interpolat
to
polynomial
order
9
use
want to
We
sin

















 







f(x)-P(x)
n
a
b
n
M
f(x)-P(x)
n
M
n
for
f
(x)
f(x)
n
n
45
Summary
 The interpolating polynomial is unique.
 Different methods can be used to obtain it.
 Newton’s divided difference
 Lagrange interpolation
 Others
 Polynomial interpolation can be sensitive to
data.
 BE CAREFUL when high order polynomials
are used.
Ad

More Related Content

Similar to interpolacrcrdcrdrcrdctctfct frfctfction.ppt (20)

Existence of positive solutions for fractional q-difference equations involvi...
Existence of positive solutions for fractional q-difference equations involvi...Existence of positive solutions for fractional q-difference equations involvi...
Existence of positive solutions for fractional q-difference equations involvi...
IJRTEMJOURNAL
 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
nihaiqbal1
 
maths ppt.pdf
maths ppt.pdfmaths ppt.pdf
maths ppt.pdf
nihaiqbal1
 
D04302031042
D04302031042D04302031042
D04302031042
ijceronline
 
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
IOSR Journals
 
Matlab lab manual
Matlab lab manualMatlab lab manual
Matlab lab manual
nmahi96
 
The fourier series signals and systems by R ismail
The fourier series signals and systems by R ismailThe fourier series signals and systems by R ismail
The fourier series signals and systems by R ismail
Rumaisa35
 
Estadistica U4
Estadistica U4Estadistica U4
Estadistica U4
FacundoOrtiz18
 
Fuzzy calculation
Fuzzy calculationFuzzy calculation
Fuzzy calculation
Amir Rafati
 
Teoria Matematica de Numeros Derivadas e Integrales
Teoria Matematica de Numeros Derivadas e IntegralesTeoria Matematica de Numeros Derivadas e Integrales
Teoria Matematica de Numeros Derivadas e Integrales
JuanAndresOsorioAria
 
Sub1567
Sub1567Sub1567
Sub1567
International Journal of Science and Research (IJSR)
 
Unit 1 Operation on signals
Unit 1  Operation on signalsUnit 1  Operation on signals
Unit 1 Operation on signals
Dr.SHANTHI K.G
 
05_AJMS_332_21.pdf
05_AJMS_332_21.pdf05_AJMS_332_21.pdf
05_AJMS_332_21.pdf
BRNSS Publication Hub
 
Probability-1.pptx
Probability-1.pptxProbability-1.pptx
Probability-1.pptx
MuskanKhan320706
 
Introduction to MatLab programming
Introduction to MatLab programmingIntroduction to MatLab programming
Introduction to MatLab programming
Damian T. Gordon
 
Maths iii quick review by Dr Asish K Mukhopadhyay
Maths iii quick review by Dr Asish K MukhopadhyayMaths iii quick review by Dr Asish K Mukhopadhyay
Maths iii quick review by Dr Asish K Mukhopadhyay
Dr. Asish K Mukhopadhyay
 
Adaline and Madaline.ppt
Adaline and Madaline.pptAdaline and Madaline.ppt
Adaline and Madaline.ppt
neelamsanjeevkumar
 
Maths Topic on spline interpolation methods
Maths Topic on spline interpolation methodsMaths Topic on spline interpolation methods
Maths Topic on spline interpolation methods
ayanabhkumarsaikia
 
Randomized algorithms ver 1.0
Randomized algorithms ver 1.0Randomized algorithms ver 1.0
Randomized algorithms ver 1.0
Dr. C.V. Suresh Babu
 
Ah unit 1 differentiation
Ah unit 1 differentiationAh unit 1 differentiation
Ah unit 1 differentiation
sjamaths
 
Existence of positive solutions for fractional q-difference equations involvi...
Existence of positive solutions for fractional q-difference equations involvi...Existence of positive solutions for fractional q-difference equations involvi...
Existence of positive solutions for fractional q-difference equations involvi...
IJRTEMJOURNAL
 
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
A Convergence Theorem Associated With a Pair of Second Order Differential Equ...
IOSR Journals
 
Matlab lab manual
Matlab lab manualMatlab lab manual
Matlab lab manual
nmahi96
 
The fourier series signals and systems by R ismail
The fourier series signals and systems by R ismailThe fourier series signals and systems by R ismail
The fourier series signals and systems by R ismail
Rumaisa35
 
Fuzzy calculation
Fuzzy calculationFuzzy calculation
Fuzzy calculation
Amir Rafati
 
Teoria Matematica de Numeros Derivadas e Integrales
Teoria Matematica de Numeros Derivadas e IntegralesTeoria Matematica de Numeros Derivadas e Integrales
Teoria Matematica de Numeros Derivadas e Integrales
JuanAndresOsorioAria
 
Unit 1 Operation on signals
Unit 1  Operation on signalsUnit 1  Operation on signals
Unit 1 Operation on signals
Dr.SHANTHI K.G
 
Introduction to MatLab programming
Introduction to MatLab programmingIntroduction to MatLab programming
Introduction to MatLab programming
Damian T. Gordon
 
Maths iii quick review by Dr Asish K Mukhopadhyay
Maths iii quick review by Dr Asish K MukhopadhyayMaths iii quick review by Dr Asish K Mukhopadhyay
Maths iii quick review by Dr Asish K Mukhopadhyay
Dr. Asish K Mukhopadhyay
 
Maths Topic on spline interpolation methods
Maths Topic on spline interpolation methodsMaths Topic on spline interpolation methods
Maths Topic on spline interpolation methods
ayanabhkumarsaikia
 
Ah unit 1 differentiation
Ah unit 1 differentiationAh unit 1 differentiation
Ah unit 1 differentiation
sjamaths
 

Recently uploaded (20)

4K Video Downloader Crack (2025) + License Key Free
4K Video Downloader Crack (2025) + License Key Free4K Video Downloader Crack (2025) + License Key Free
4K Video Downloader Crack (2025) + License Key Free
Designer
 
mid-term all revisions g11 s1.pmdzs,zxptx
mid-term all revisions g11 s1.pmdzs,zxptxmid-term all revisions g11 s1.pmdzs,zxptx
mid-term all revisions g11 s1.pmdzs,zxptx
omar164646
 
Lori Vanzant Portfolio. Take a look! ty.
Lori Vanzant Portfolio. Take a look! ty.Lori Vanzant Portfolio. Take a look! ty.
Lori Vanzant Portfolio. Take a look! ty.
vanzan01
 
Modern Gradient Startup Pitch Deck PowerPoint Presentation and Google Slides ...
Modern Gradient Startup Pitch Deck PowerPoint Presentation and Google Slides ...Modern Gradient Startup Pitch Deck PowerPoint Presentation and Google Slides ...
Modern Gradient Startup Pitch Deck PowerPoint Presentation and Google Slides ...
SlidesBrain
 
Minimalist Pitch Deck by slide Slidesgo.pptx
Minimalist Pitch Deck by slide Slidesgo.pptxMinimalist Pitch Deck by slide Slidesgo.pptx
Minimalist Pitch Deck by slide Slidesgo.pptx
ESTEFANOANDREYGARCIA
 
Halstead’s_Software_Science_&_Putnam’s_Model[1].pptx
Halstead’s_Software_Science_&_Putnam’s_Model[1].pptxHalstead’s_Software_Science_&_Putnam’s_Model[1].pptx
Halstead’s_Software_Science_&_Putnam’s_Model[1].pptx
prachiikumarii1
 
Presentation for Schoool Management System
Presentation for Schoool Management SystemPresentation for Schoool Management System
Presentation for Schoool Management System
kolay922013
 
19 Best B,u,y Verified Cash App Accounts
19 Best B,u,y Verified Cash App Accounts19 Best B,u,y Verified Cash App Accounts
19 Best B,u,y Verified Cash App Accounts
https://sellsusa.com/product/buy-verified-cash-app-accounts/
 
Doodle Table of Contents Infographics by Slidesgo.pptx
Doodle Table of Contents Infographics by Slidesgo.pptxDoodle Table of Contents Infographics by Slidesgo.pptx
Doodle Table of Contents Infographics by Slidesgo.pptx
binhyennghlu
 
EEE178-PPT-Theme iasodhajsdkjashdlaskdjbaksdkashdlkasdlkja;dj;kdada.pptx.pdf
EEE178-PPT-Theme iasodhajsdkjashdlaskdjbaksdkashdlkasdlkja;dj;kdada.pptx.pdfEEE178-PPT-Theme iasodhajsdkjashdlaskdjbaksdkashdlkasdlkja;dj;kdada.pptx.pdf
EEE178-PPT-Theme iasodhajsdkjashdlaskdjbaksdkashdlkasdlkja;dj;kdada.pptx.pdf
CastroAngeloReoD
 
AR.AKSHAYA PAMBALATH-PORTFOLIOFINAL_.pdf
AR.AKSHAYA PAMBALATH-PORTFOLIOFINAL_.pdfAR.AKSHAYA PAMBALATH-PORTFOLIOFINAL_.pdf
AR.AKSHAYA PAMBALATH-PORTFOLIOFINAL_.pdf
akshayap23
 
An updated content measurement model - Elle Geraghty Content Strategy.pdf
An updated content measurement model - Elle Geraghty Content Strategy.pdfAn updated content measurement model - Elle Geraghty Content Strategy.pdf
An updated content measurement model - Elle Geraghty Content Strategy.pdf
Elle Geraghty
 
Minimalist Business Slides XL by Slidesgo.pptx
Minimalist Business Slides XL by Slidesgo.pptxMinimalist Business Slides XL by Slidesgo.pptx
Minimalist Business Slides XL by Slidesgo.pptx
karenalavamoran
 
DOC-20250121-WA0008._20250121_105938_0000.pptx
DOC-20250121-WA0008._20250121_105938_0000.pptxDOC-20250121-WA0008._20250121_105938_0000.pptx
DOC-20250121-WA0008._20250121_105938_0000.pptx
laugolac31
 
MOCCAE SUSTAINABLE TROPHY 2025 Presentation.pdf
MOCCAE SUSTAINABLE TROPHY 2025 Presentation.pdfMOCCAE SUSTAINABLE TROPHY 2025 Presentation.pdf
MOCCAE SUSTAINABLE TROPHY 2025 Presentation.pdf
asfianoor1
 
Lori Vanzant Online Presence. Take a look!
Lori Vanzant Online Presence. Take a look!Lori Vanzant Online Presence. Take a look!
Lori Vanzant Online Presence. Take a look!
vanzan01
 
PPT UNTUK ISU STRATEGIS (1).pptx PPT UNTUK ISU STRATEGIS (1).pptx
PPT UNTUK ISU STRATEGIS (1).pptx PPT UNTUK ISU STRATEGIS (1).pptxPPT UNTUK ISU STRATEGIS (1).pptx PPT UNTUK ISU STRATEGIS (1).pptx
PPT UNTUK ISU STRATEGIS (1).pptx PPT UNTUK ISU STRATEGIS (1).pptx
rachmatunnisa29
 
Presentation mockup using lots of animals
Presentation mockup using lots of animalsPresentation mockup using lots of animals
Presentation mockup using lots of animals
ChunChihChenPhD
 
COTTER and KNUCKleeeeeeeeeeeeeeeeeee.pptx
COTTER and  KNUCKleeeeeeeeeeeeeeeeeee.pptxCOTTER and  KNUCKleeeeeeeeeeeeeeeeeee.pptx
COTTER and KNUCKleeeeeeeeeeeeeeeeeee.pptx
ayushjadon04
 
dFdDVWeb_Design_Basics_Presentation.pptx
dFdDVWeb_Design_Basics_Presentation.pptxdFdDVWeb_Design_Basics_Presentation.pptx
dFdDVWeb_Design_Basics_Presentation.pptx
AKSHAYKAMBLE806728
 
4K Video Downloader Crack (2025) + License Key Free
4K Video Downloader Crack (2025) + License Key Free4K Video Downloader Crack (2025) + License Key Free
4K Video Downloader Crack (2025) + License Key Free
Designer
 
mid-term all revisions g11 s1.pmdzs,zxptx
mid-term all revisions g11 s1.pmdzs,zxptxmid-term all revisions g11 s1.pmdzs,zxptx
mid-term all revisions g11 s1.pmdzs,zxptx
omar164646
 
Lori Vanzant Portfolio. Take a look! ty.
Lori Vanzant Portfolio. Take a look! ty.Lori Vanzant Portfolio. Take a look! ty.
Lori Vanzant Portfolio. Take a look! ty.
vanzan01
 
Modern Gradient Startup Pitch Deck PowerPoint Presentation and Google Slides ...
Modern Gradient Startup Pitch Deck PowerPoint Presentation and Google Slides ...Modern Gradient Startup Pitch Deck PowerPoint Presentation and Google Slides ...
Modern Gradient Startup Pitch Deck PowerPoint Presentation and Google Slides ...
SlidesBrain
 
Minimalist Pitch Deck by slide Slidesgo.pptx
Minimalist Pitch Deck by slide Slidesgo.pptxMinimalist Pitch Deck by slide Slidesgo.pptx
Minimalist Pitch Deck by slide Slidesgo.pptx
ESTEFANOANDREYGARCIA
 
Halstead’s_Software_Science_&_Putnam’s_Model[1].pptx
Halstead’s_Software_Science_&_Putnam’s_Model[1].pptxHalstead’s_Software_Science_&_Putnam’s_Model[1].pptx
Halstead’s_Software_Science_&_Putnam’s_Model[1].pptx
prachiikumarii1
 
Presentation for Schoool Management System
Presentation for Schoool Management SystemPresentation for Schoool Management System
Presentation for Schoool Management System
kolay922013
 
Doodle Table of Contents Infographics by Slidesgo.pptx
Doodle Table of Contents Infographics by Slidesgo.pptxDoodle Table of Contents Infographics by Slidesgo.pptx
Doodle Table of Contents Infographics by Slidesgo.pptx
binhyennghlu
 
EEE178-PPT-Theme iasodhajsdkjashdlaskdjbaksdkashdlkasdlkja;dj;kdada.pptx.pdf
EEE178-PPT-Theme iasodhajsdkjashdlaskdjbaksdkashdlkasdlkja;dj;kdada.pptx.pdfEEE178-PPT-Theme iasodhajsdkjashdlaskdjbaksdkashdlkasdlkja;dj;kdada.pptx.pdf
EEE178-PPT-Theme iasodhajsdkjashdlaskdjbaksdkashdlkasdlkja;dj;kdada.pptx.pdf
CastroAngeloReoD
 
AR.AKSHAYA PAMBALATH-PORTFOLIOFINAL_.pdf
AR.AKSHAYA PAMBALATH-PORTFOLIOFINAL_.pdfAR.AKSHAYA PAMBALATH-PORTFOLIOFINAL_.pdf
AR.AKSHAYA PAMBALATH-PORTFOLIOFINAL_.pdf
akshayap23
 
An updated content measurement model - Elle Geraghty Content Strategy.pdf
An updated content measurement model - Elle Geraghty Content Strategy.pdfAn updated content measurement model - Elle Geraghty Content Strategy.pdf
An updated content measurement model - Elle Geraghty Content Strategy.pdf
Elle Geraghty
 
Minimalist Business Slides XL by Slidesgo.pptx
Minimalist Business Slides XL by Slidesgo.pptxMinimalist Business Slides XL by Slidesgo.pptx
Minimalist Business Slides XL by Slidesgo.pptx
karenalavamoran
 
DOC-20250121-WA0008._20250121_105938_0000.pptx
DOC-20250121-WA0008._20250121_105938_0000.pptxDOC-20250121-WA0008._20250121_105938_0000.pptx
DOC-20250121-WA0008._20250121_105938_0000.pptx
laugolac31
 
MOCCAE SUSTAINABLE TROPHY 2025 Presentation.pdf
MOCCAE SUSTAINABLE TROPHY 2025 Presentation.pdfMOCCAE SUSTAINABLE TROPHY 2025 Presentation.pdf
MOCCAE SUSTAINABLE TROPHY 2025 Presentation.pdf
asfianoor1
 
Lori Vanzant Online Presence. Take a look!
Lori Vanzant Online Presence. Take a look!Lori Vanzant Online Presence. Take a look!
Lori Vanzant Online Presence. Take a look!
vanzan01
 
PPT UNTUK ISU STRATEGIS (1).pptx PPT UNTUK ISU STRATEGIS (1).pptx
PPT UNTUK ISU STRATEGIS (1).pptx PPT UNTUK ISU STRATEGIS (1).pptxPPT UNTUK ISU STRATEGIS (1).pptx PPT UNTUK ISU STRATEGIS (1).pptx
PPT UNTUK ISU STRATEGIS (1).pptx PPT UNTUK ISU STRATEGIS (1).pptx
rachmatunnisa29
 
Presentation mockup using lots of animals
Presentation mockup using lots of animalsPresentation mockup using lots of animals
Presentation mockup using lots of animals
ChunChihChenPhD
 
COTTER and KNUCKleeeeeeeeeeeeeeeeeee.pptx
COTTER and  KNUCKleeeeeeeeeeeeeeeeeee.pptxCOTTER and  KNUCKleeeeeeeeeeeeeeeeeee.pptx
COTTER and KNUCKleeeeeeeeeeeeeeeeeee.pptx
ayushjadon04
 
dFdDVWeb_Design_Basics_Presentation.pptx
dFdDVWeb_Design_Basics_Presentation.pptxdFdDVWeb_Design_Basics_Presentation.pptx
dFdDVWeb_Design_Basics_Presentation.pptx
AKSHAYKAMBLE806728
 
Ad

interpolacrcrdcrdrcrdctctfct frfctfction.ppt