SlideShare a Scribd company logo
Intro	
  to	
  Graph	
  Databases	
  	
  
in	
  a	
  NOSQL	
  world	
  
19th	
  of	
  May	
  2015	
  
Agenda	
  
•  About	
  Graphs	
  
•  About	
  Graph	
  Databases	
  
–  About	
  Neo4j	
  
•  Graph	
  Querying	
  
–  Short	
  demonstra:on	
  
•  Case	
  Studies	
  
•  Q&A	
  
Introduc.on:	
  about	
  Graphs	
  
Intro to Graphs for Fedict
Meet	
  	
  
Leonhard	
  Euler	
  
(again?)	
  
•  Swiss	
  mathema:cian	
  
•  Inventor	
  of	
  Graph	
  
Theory	
  (1736)	
  
Königsberg	
  (Prussia)	
  -­‐	
  1736	
  
A	
  
B	
  
D	
  
C	
  
A	
  
B	
  
D	
  
C	
  
1
2
3
4
7
6
5
About	
  Graph	
  Databases	
  
Complemen.ng	
  	
  
Relational Databases
VOLUME	
   COMPLEXITY	
  
NOT	
  ONLY	
  SQL	
  
RDBMS	
  
Living	
  in	
  a	
  NOSQL	
  World	
  
Complexity	
  
Column	
  
Family	
  
Size	
  
Key-­‐Value	
  
Store	
  
Document	
  
Databases	
  
Graph	
  
Databases	
  
90%	
  of	
  Use	
  
cases	
  
Rela:onal	
  
Databases	
  
Naviga:onal	
  
Databases	
  
So	
  what	
  is	
  a	
  graph	
  database?	
  
•  OLTP	
  database	
  
•  “end-­‐user”	
  transac:ons	
  
•  Model,	
  store,	
  manage	
  data	
  as	
  a	
  graph	
  
What	
  is	
  a	
  graph?	
  
Vertex	
  
Edge	
  
What	
  is	
  a	
  graph?	
  
Node	
  
Rela:onship	
  
Contrast	
  with	
  Rela.onal	
  
Graphs	
  are	
  o]en	
  referred	
  to	
  as	
  “Whiteboard	
  Friendly”.	
  The	
  data	
  model	
  reflects	
  the	
  way	
  a	
  
domain	
  expert	
  would	
  naturally	
  draw	
  their	
  data	
  on	
  a	
  whiteboard	
  
“The	
  schema	
  is	
  the	
  data”.	
  Schema	
  flexibility	
  allows	
  the	
  system	
  to	
  change	
  in	
  response	
  to	
  a	
  
changing	
  environment	
  
Neo4j	
  is	
  a	
  Graph	
  Database	
  
•  JVM	
  based	
  
•  ACID	
  transac:ons	
  
•  Rich	
  Java	
  APIs	
  
•  Query	
  language	
  
•  Using	
  the	
  Labeled	
  	
  
Property	
  Graph	
  
model	
  
Cypher:	
  THE	
  graph	
  query	
  language	
  
•  Learning	
  from	
  RDBMS’	
  evolu:on	
  
•  Introduc:on	
  of	
  SQL!	
  
•  Key	
  characteris:cs	
  
•  Declara:ve:	
  tell	
  it	
  what	
  you	
  want,	
  not	
  how	
  to	
  get	
  it	
  
•  Expressive:	
  Op:mize	
  for	
  reading	
  
•  Pagern	
  matching:	
  easy	
  on	
  your	
  brain!	
  
•  Idempotent:	
  state	
  change	
  expressed	
  idempotently	
  
Labeled	
  Property	
  Graph	
  Model	
  
Author
Book
Reader
Reader
Author
Book
Author
Labeled	
  Property	
  Graph	
  Summary	
  
•  Nodes	
  
•  Containers	
  for	
  proper:es	
  
•  Grouped	
  together	
  in	
  subgraphs	
  by	
  “Labels”	
  
•  Proper:es	
  
•  Key-­‐value	
  pairs	
  
•  Primi:ve	
  and	
  array	
  values	
  
•  Rela:onships	
  
•  Name	
  
•  Direc:on	
  
•  May	
  also	
  contain	
  proper:es	
  
•  Rela:onships	
  (ctd.)	
  
•  Must	
  have	
  a	
  start	
  node	
  and	
  an	
  end	
  node	
  
(no	
  dangling	
  rela:onships)	
  
•  Start	
  node	
  and	
  end	
  node	
  can	
  be	
  the	
  same	
  
(e.g.	
  ‘self’	
  rela:onships)	
  
•  Nodes	
  can	
  be	
  connected	
  by	
  more	
  than	
  one	
  
rela:onship	
  
What	
  are	
  graphs	
  good	
  for?	
  
Complexity	
  
Data	
  Complexity	
  
complexity = f(size, semi-structure, connectedness)
complexity = f(size, semi-structure, connectedness)
The	
  Real	
  Complexity	
  
Semi-­‐Structure	
  
Semi-­‐Structure	
  
Email:	
  rik@neotechnology.com	
  
Email:	
  rik@vanbruggen.be	
  
Twiger:	
  @rvanbruggen	
  
Skype:	
  rvanbruggen	
  
USER	
  
CONTACT	
  
CONTACT_TYPE	
  
FIRST_NAME	
   LAST_NAME	
  USER_ID	
   EMAIL_1	
   EMAIL_2	
   TWITTER	
  FACEBOOK	
   SKYPE	
  
Rik	
   Van	
  Bruggen	
  315	
   rik@neotechnology.com	
   rik@vanbruggen.be	
   @rvanbruggen	
  NULL	
   rvanbruggen	
  
complexity = f(size, semi-structure, connectedness)
The	
  Real	
  Complexity	
  
Examples	
  of	
  Connectedness	
  
When	
  Should	
  I	
  Use	
  Graph	
  Databases??	
  
•  Densely-­‐connected,	
  semi-­‐structured	
  domains	
  
•  Lots	
  of	
  join	
  tables?	
  Connectedness	
  
•  Lots	
  of	
  sparse	
  tables?	
  Semi-­‐structure	
  
•  Data	
  Model	
  Vola:lity	
  
•  Easy	
  to	
  evolve	
  
•  “Graphy”	
  Query	
  pagerns	
  
•  Deeps	
  Join	
  Complexity	
  and	
  Performance	
  
•  Pathfinding	
  opera:ons	
  
•  Millions	
  of	
  ‘joins’	
  per	
  second	
  
•  Consistent	
  query	
  :mes	
  as	
  dataset	
  grows	
  
Graph	
  Querying	
  
Querying	
  a	
  Graph	
  
•  “Graph	
  local”	
  vs	
  “Graph	
  global”	
  
•  Contextualized	
  “ego-­‐centric”	
  queries	
  
•  “Parachute”	
  into	
  graph	
  
•  Start	
  node(s)	
  
•  Found	
  through	
  Index	
  lookups	
  
•  Crawl	
  the	
  surrounding	
  graph	
  
•  2	
  million+	
  joins	
  per	
  second	
  
•  No	
  more	
  Index	
  lookups:	
  	
  
Index-­‐free	
  adjacency	
  
Queries:	
  Paern	
  Matching	
  
Pagern	
  
Short	
  demo	
  
Case	
  Studies	
  
www.neo4j.com	
  
	
  
www.meetup.com/graphdb-­‐belgium	
  
	
  
rik@neotechnology.com	
  or	
  +32	
  478	
  686800	
  
Q&A,	
  Conclusion,	
  Next	
  Steps	
  
Ad

More Related Content

What's hot (19)

Micro-Servicing Linked Data
Micro-Servicing Linked DataMicro-Servicing Linked Data
Micro-Servicing Linked Data
openCypher
 
GraphDb in XPages
GraphDb in XPagesGraphDb in XPages
GraphDb in XPages
Oliver Busse
 
Drupal and the Semantic Web - ESIP Webinar
Drupal and the Semantic Web - ESIP WebinarDrupal and the Semantic Web - ESIP Webinar
Drupal and the Semantic Web - ESIP Webinar
scorlosquet
 
Nosql databases for the .net developer
Nosql databases for the .net developerNosql databases for the .net developer
Nosql databases for the .net developer
Jesus Rodriguez
 
Big Graph Data with Titan DB
Big Graph Data with Titan DBBig Graph Data with Titan DB
Big Graph Data with Titan DB
Faculty of Technical Sciences, University of Novi Sad
 
Data Visulalization
Data VisulalizationData Visulalization
Data Visulalization
Girish Khanzode
 
Graph Databases for SQL Server Professionals
Graph Databases for SQL Server ProfessionalsGraph Databases for SQL Server Professionals
Graph Databases for SQL Server Professionals
Stéphane Fréchette
 
MongoDB vs OrientDB
MongoDB vs OrientDBMongoDB vs OrientDB
MongoDB vs OrientDB
Stefano Campese
 
Graph basedrdf storeforapachecassandra
Graph basedrdf storeforapachecassandraGraph basedrdf storeforapachecassandra
Graph basedrdf storeforapachecassandra
Ravindra Ranwala
 
MongoDB - Getting Started
MongoDB  - Getting StartedMongoDB  - Getting Started
MongoDB - Getting Started
Ahmed Helmy
 
balloon Synopsis at ISWC 2014 Developer Worksop
balloon Synopsis at ISWC 2014 Developer Worksopballoon Synopsis at ISWC 2014 Developer Worksop
balloon Synopsis at ISWC 2014 Developer Worksop
Kai Schlegel
 
The Evolution of the Fashion Retail Industry in the Age of AI with Kshitij Ku...
The Evolution of the Fashion Retail Industry in the Age of AI with Kshitij Ku...The Evolution of the Fashion Retail Industry in the Age of AI with Kshitij Ku...
The Evolution of the Fashion Retail Industry in the Age of AI with Kshitij Ku...
Databricks
 
Mindtalk Tech - Behind the scenes
Mindtalk Tech - Behind the scenesMindtalk Tech - Behind the scenes
Mindtalk Tech - Behind the scenes
robin_sy
 
Collo -01 , en
Collo -01 , enCollo -01 , en
Collo -01 , en
지현 이
 
Introduction to Graph Databases wth neo4J
Introduction to Graph Databases wth neo4JIntroduction to Graph Databases wth neo4J
Introduction to Graph Databases wth neo4J
Brant Boehmann
 
Graph Processing with Apache TinkerPop
Graph Processing with Apache TinkerPopGraph Processing with Apache TinkerPop
Graph Processing with Apache TinkerPop
Jason Plurad
 
Logstash, Elasticsearch and Kibana
Logstash, Elasticsearch and KibanaLogstash, Elasticsearch and Kibana
Logstash, Elasticsearch and Kibana
Saroj Panyasrivanit
 
Presto @ Zalando - Big Data Tech Warsaw 2020
Presto @ Zalando - Big Data Tech Warsaw 2020Presto @ Zalando - Big Data Tech Warsaw 2020
Presto @ Zalando - Big Data Tech Warsaw 2020
Piotr Findeisen
 
Infinum Android Talks #04 - CouchBase Lite
Infinum Android Talks #04 - CouchBase LiteInfinum Android Talks #04 - CouchBase Lite
Infinum Android Talks #04 - CouchBase Lite
Denis_infinum
 
Micro-Servicing Linked Data
Micro-Servicing Linked DataMicro-Servicing Linked Data
Micro-Servicing Linked Data
openCypher
 
Drupal and the Semantic Web - ESIP Webinar
Drupal and the Semantic Web - ESIP WebinarDrupal and the Semantic Web - ESIP Webinar
Drupal and the Semantic Web - ESIP Webinar
scorlosquet
 
Nosql databases for the .net developer
Nosql databases for the .net developerNosql databases for the .net developer
Nosql databases for the .net developer
Jesus Rodriguez
 
Graph Databases for SQL Server Professionals
Graph Databases for SQL Server ProfessionalsGraph Databases for SQL Server Professionals
Graph Databases for SQL Server Professionals
Stéphane Fréchette
 
Graph basedrdf storeforapachecassandra
Graph basedrdf storeforapachecassandraGraph basedrdf storeforapachecassandra
Graph basedrdf storeforapachecassandra
Ravindra Ranwala
 
MongoDB - Getting Started
MongoDB  - Getting StartedMongoDB  - Getting Started
MongoDB - Getting Started
Ahmed Helmy
 
balloon Synopsis at ISWC 2014 Developer Worksop
balloon Synopsis at ISWC 2014 Developer Worksopballoon Synopsis at ISWC 2014 Developer Worksop
balloon Synopsis at ISWC 2014 Developer Worksop
Kai Schlegel
 
The Evolution of the Fashion Retail Industry in the Age of AI with Kshitij Ku...
The Evolution of the Fashion Retail Industry in the Age of AI with Kshitij Ku...The Evolution of the Fashion Retail Industry in the Age of AI with Kshitij Ku...
The Evolution of the Fashion Retail Industry in the Age of AI with Kshitij Ku...
Databricks
 
Mindtalk Tech - Behind the scenes
Mindtalk Tech - Behind the scenesMindtalk Tech - Behind the scenes
Mindtalk Tech - Behind the scenes
robin_sy
 
Collo -01 , en
Collo -01 , enCollo -01 , en
Collo -01 , en
지현 이
 
Introduction to Graph Databases wth neo4J
Introduction to Graph Databases wth neo4JIntroduction to Graph Databases wth neo4J
Introduction to Graph Databases wth neo4J
Brant Boehmann
 
Graph Processing with Apache TinkerPop
Graph Processing with Apache TinkerPopGraph Processing with Apache TinkerPop
Graph Processing with Apache TinkerPop
Jason Plurad
 
Logstash, Elasticsearch and Kibana
Logstash, Elasticsearch and KibanaLogstash, Elasticsearch and Kibana
Logstash, Elasticsearch and Kibana
Saroj Panyasrivanit
 
Presto @ Zalando - Big Data Tech Warsaw 2020
Presto @ Zalando - Big Data Tech Warsaw 2020Presto @ Zalando - Big Data Tech Warsaw 2020
Presto @ Zalando - Big Data Tech Warsaw 2020
Piotr Findeisen
 
Infinum Android Talks #04 - CouchBase Lite
Infinum Android Talks #04 - CouchBase LiteInfinum Android Talks #04 - CouchBase Lite
Infinum Android Talks #04 - CouchBase Lite
Denis_infinum
 

Similar to Intro to Graphs for Fedict (20)

NOSQL Databases for the .NET Developer
NOSQL Databases for the .NET DeveloperNOSQL Databases for the .NET Developer
NOSQL Databases for the .NET Developer
Jesus Rodriguez
 
Graph Databases
Graph DatabasesGraph Databases
Graph Databases
Girish Khanzode
 
Spring Data Neo4j Intro SpringOne 2011
Spring Data Neo4j Intro SpringOne 2011Spring Data Neo4j Intro SpringOne 2011
Spring Data Neo4j Intro SpringOne 2011
jexp
 
Betabit - syrwag 2018-03-28
Betabit - syrwag 2018-03-28Betabit - syrwag 2018-03-28
Betabit - syrwag 2018-03-28
Daniël te Winkel
 
Large Scale Graph Analytics with JanusGraph
Large Scale Graph Analytics with JanusGraphLarge Scale Graph Analytics with JanusGraph
Large Scale Graph Analytics with JanusGraph
DataWorks Summit
 
Large Scale Graph Analytics with JanusGraph
Large Scale Graph Analytics with JanusGraphLarge Scale Graph Analytics with JanusGraph
Large Scale Graph Analytics with JanusGraph
P. Taylor Goetz
 
Introduction to Neo4j for the Emirates & Bahrain
Introduction to Neo4j for the Emirates & BahrainIntroduction to Neo4j for the Emirates & Bahrain
Introduction to Neo4j for the Emirates & Bahrain
Neo4j
 
Intro to graphs for HR analytics
Intro to graphs for HR analyticsIntro to graphs for HR analytics
Intro to graphs for HR analytics
Rik Van Bruggen
 
Spring one2gx2010 spring-nonrelational_data
Spring one2gx2010 spring-nonrelational_dataSpring one2gx2010 spring-nonrelational_data
Spring one2gx2010 spring-nonrelational_data
Roger Xia
 
Big Data (NJ SQL Server User Group)
Big Data (NJ SQL Server User Group)Big Data (NJ SQL Server User Group)
Big Data (NJ SQL Server User Group)
Don Demcsak
 
Evolution of the Graph Schema
Evolution of the Graph SchemaEvolution of the Graph Schema
Evolution of the Graph Schema
Joshua Shinavier
 
Jake Mannix, Lead Data Engineer, Lucidworks at MLconf SEA - 5/20/16
Jake Mannix, Lead Data Engineer, Lucidworks at MLconf SEA - 5/20/16Jake Mannix, Lead Data Engineer, Lucidworks at MLconf SEA - 5/20/16
Jake Mannix, Lead Data Engineer, Lucidworks at MLconf SEA - 5/20/16
MLconf
 
Neo4j Training Introduction
Neo4j Training IntroductionNeo4j Training Introduction
Neo4j Training Introduction
Max De Marzi
 
An Introduction to NOSQL, Graph Databases and Neo4j
An Introduction to NOSQL, Graph Databases and Neo4jAn Introduction to NOSQL, Graph Databases and Neo4j
An Introduction to NOSQL, Graph Databases and Neo4j
Debanjan Mahata
 
Combine Spring Data Neo4j and Spring Boot to quickl
Combine Spring Data Neo4j and Spring Boot to quicklCombine Spring Data Neo4j and Spring Boot to quickl
Combine Spring Data Neo4j and Spring Boot to quickl
Neo4j
 
Graph Databases & OrientDB
Graph Databases & OrientDBGraph Databases & OrientDB
Graph Databases & OrientDB
Arpit Poladia
 
Graph Databases
Graph DatabasesGraph Databases
Graph Databases
thai
 
Intro to Big Data and NoSQL
Intro to Big Data and NoSQLIntro to Big Data and NoSQL
Intro to Big Data and NoSQL
Don Demcsak
 
No SQL- The Future Of Data Storage
No SQL- The Future Of Data StorageNo SQL- The Future Of Data Storage
No SQL- The Future Of Data Storage
Bethmi Gunasekara
 
Oracle Week 2016 - Modern Data Architecture
Oracle Week 2016 - Modern Data ArchitectureOracle Week 2016 - Modern Data Architecture
Oracle Week 2016 - Modern Data Architecture
Arthur Gimpel
 
NOSQL Databases for the .NET Developer
NOSQL Databases for the .NET DeveloperNOSQL Databases for the .NET Developer
NOSQL Databases for the .NET Developer
Jesus Rodriguez
 
Spring Data Neo4j Intro SpringOne 2011
Spring Data Neo4j Intro SpringOne 2011Spring Data Neo4j Intro SpringOne 2011
Spring Data Neo4j Intro SpringOne 2011
jexp
 
Large Scale Graph Analytics with JanusGraph
Large Scale Graph Analytics with JanusGraphLarge Scale Graph Analytics with JanusGraph
Large Scale Graph Analytics with JanusGraph
DataWorks Summit
 
Large Scale Graph Analytics with JanusGraph
Large Scale Graph Analytics with JanusGraphLarge Scale Graph Analytics with JanusGraph
Large Scale Graph Analytics with JanusGraph
P. Taylor Goetz
 
Introduction to Neo4j for the Emirates & Bahrain
Introduction to Neo4j for the Emirates & BahrainIntroduction to Neo4j for the Emirates & Bahrain
Introduction to Neo4j for the Emirates & Bahrain
Neo4j
 
Intro to graphs for HR analytics
Intro to graphs for HR analyticsIntro to graphs for HR analytics
Intro to graphs for HR analytics
Rik Van Bruggen
 
Spring one2gx2010 spring-nonrelational_data
Spring one2gx2010 spring-nonrelational_dataSpring one2gx2010 spring-nonrelational_data
Spring one2gx2010 spring-nonrelational_data
Roger Xia
 
Big Data (NJ SQL Server User Group)
Big Data (NJ SQL Server User Group)Big Data (NJ SQL Server User Group)
Big Data (NJ SQL Server User Group)
Don Demcsak
 
Evolution of the Graph Schema
Evolution of the Graph SchemaEvolution of the Graph Schema
Evolution of the Graph Schema
Joshua Shinavier
 
Jake Mannix, Lead Data Engineer, Lucidworks at MLconf SEA - 5/20/16
Jake Mannix, Lead Data Engineer, Lucidworks at MLconf SEA - 5/20/16Jake Mannix, Lead Data Engineer, Lucidworks at MLconf SEA - 5/20/16
Jake Mannix, Lead Data Engineer, Lucidworks at MLconf SEA - 5/20/16
MLconf
 
Neo4j Training Introduction
Neo4j Training IntroductionNeo4j Training Introduction
Neo4j Training Introduction
Max De Marzi
 
An Introduction to NOSQL, Graph Databases and Neo4j
An Introduction to NOSQL, Graph Databases and Neo4jAn Introduction to NOSQL, Graph Databases and Neo4j
An Introduction to NOSQL, Graph Databases and Neo4j
Debanjan Mahata
 
Combine Spring Data Neo4j and Spring Boot to quickl
Combine Spring Data Neo4j and Spring Boot to quicklCombine Spring Data Neo4j and Spring Boot to quickl
Combine Spring Data Neo4j and Spring Boot to quickl
Neo4j
 
Graph Databases & OrientDB
Graph Databases & OrientDBGraph Databases & OrientDB
Graph Databases & OrientDB
Arpit Poladia
 
Graph Databases
Graph DatabasesGraph Databases
Graph Databases
thai
 
Intro to Big Data and NoSQL
Intro to Big Data and NoSQLIntro to Big Data and NoSQL
Intro to Big Data and NoSQL
Don Demcsak
 
No SQL- The Future Of Data Storage
No SQL- The Future Of Data StorageNo SQL- The Future Of Data Storage
No SQL- The Future Of Data Storage
Bethmi Gunasekara
 
Oracle Week 2016 - Modern Data Architecture
Oracle Week 2016 - Modern Data ArchitectureOracle Week 2016 - Modern Data Architecture
Oracle Week 2016 - Modern Data Architecture
Arthur Gimpel
 
Ad

More from Rik Van Bruggen (14)

2 dirk vermeylen - modeling with neo4 j
2   dirk vermeylen - modeling with neo4 j2   dirk vermeylen - modeling with neo4 j
2 dirk vermeylen - modeling with neo4 j
Rik Van Bruggen
 
1 rik van bruggen - intro and state of the graph
1   rik van bruggen - intro and state of the graph1   rik van bruggen - intro and state of the graph
1 rik van bruggen - intro and state of the graph
Rik Van Bruggen
 
3 surya gupta - tabloid proteome
3  surya gupta - tabloid proteome3  surya gupta - tabloid proteome
3 surya gupta - tabloid proteome
Rik Van Bruggen
 
4 tom michiels - graph platform enabler
4   tom michiels - graph platform enabler4   tom michiels - graph platform enabler
4 tom michiels - graph platform enabler
Rik Van Bruggen
 
Reinventing Identity and Access Management with Graph Databases
Reinventing Identity and Access Management with Graph DatabasesReinventing Identity and Access Management with Graph Databases
Reinventing Identity and Access Management with Graph Databases
Rik Van Bruggen
 
Cevora ICT Symposium - Graph Databases
Cevora ICT Symposium - Graph DatabasesCevora ICT Symposium - Graph Databases
Cevora ICT Symposium - Graph Databases
Rik Van Bruggen
 
20150624 Belgian GraphDB meetup at Ordina
20150624 Belgian GraphDB meetup at Ordina20150624 Belgian GraphDB meetup at Ordina
20150624 Belgian GraphDB meetup at Ordina
Rik Van Bruggen
 
20150619 GOTO Amsterdam Conference - What Business can learn from Dating
20150619 GOTO Amsterdam Conference - What Business can learn from Dating20150619 GOTO Amsterdam Conference - What Business can learn from Dating
20150619 GOTO Amsterdam Conference - What Business can learn from Dating
Rik Van Bruggen
 
20150326 data innovation summit IGNITE talk
20150326 data innovation summit IGNITE talk20150326 data innovation summit IGNITE talk
20150326 data innovation summit IGNITE talk
Rik Van Bruggen
 
20150121 wolters kluwer innovation pitch
20150121 wolters kluwer innovation pitch20150121 wolters kluwer innovation pitch
20150121 wolters kluwer innovation pitch
Rik Van Bruggen
 
20141216 graph database prototyping ams meetup
20141216 graph database prototyping ams meetup20141216 graph database prototyping ams meetup
20141216 graph database prototyping ams meetup
Rik Van Bruggen
 
201411203 goto night on graphs for fraud detection
201411203 goto night on graphs for fraud detection201411203 goto night on graphs for fraud detection
201411203 goto night on graphs for fraud detection
Rik Van Bruggen
 
Using graphs for recommendations
Using graphs for recommendationsUsing graphs for recommendations
Using graphs for recommendations
Rik Van Bruggen
 
20141015 how graphs revolutionize access management
20141015 how graphs revolutionize access management20141015 how graphs revolutionize access management
20141015 how graphs revolutionize access management
Rik Van Bruggen
 
2 dirk vermeylen - modeling with neo4 j
2   dirk vermeylen - modeling with neo4 j2   dirk vermeylen - modeling with neo4 j
2 dirk vermeylen - modeling with neo4 j
Rik Van Bruggen
 
1 rik van bruggen - intro and state of the graph
1   rik van bruggen - intro and state of the graph1   rik van bruggen - intro and state of the graph
1 rik van bruggen - intro and state of the graph
Rik Van Bruggen
 
3 surya gupta - tabloid proteome
3  surya gupta - tabloid proteome3  surya gupta - tabloid proteome
3 surya gupta - tabloid proteome
Rik Van Bruggen
 
4 tom michiels - graph platform enabler
4   tom michiels - graph platform enabler4   tom michiels - graph platform enabler
4 tom michiels - graph platform enabler
Rik Van Bruggen
 
Reinventing Identity and Access Management with Graph Databases
Reinventing Identity and Access Management with Graph DatabasesReinventing Identity and Access Management with Graph Databases
Reinventing Identity and Access Management with Graph Databases
Rik Van Bruggen
 
Cevora ICT Symposium - Graph Databases
Cevora ICT Symposium - Graph DatabasesCevora ICT Symposium - Graph Databases
Cevora ICT Symposium - Graph Databases
Rik Van Bruggen
 
20150624 Belgian GraphDB meetup at Ordina
20150624 Belgian GraphDB meetup at Ordina20150624 Belgian GraphDB meetup at Ordina
20150624 Belgian GraphDB meetup at Ordina
Rik Van Bruggen
 
20150619 GOTO Amsterdam Conference - What Business can learn from Dating
20150619 GOTO Amsterdam Conference - What Business can learn from Dating20150619 GOTO Amsterdam Conference - What Business can learn from Dating
20150619 GOTO Amsterdam Conference - What Business can learn from Dating
Rik Van Bruggen
 
20150326 data innovation summit IGNITE talk
20150326 data innovation summit IGNITE talk20150326 data innovation summit IGNITE talk
20150326 data innovation summit IGNITE talk
Rik Van Bruggen
 
20150121 wolters kluwer innovation pitch
20150121 wolters kluwer innovation pitch20150121 wolters kluwer innovation pitch
20150121 wolters kluwer innovation pitch
Rik Van Bruggen
 
20141216 graph database prototyping ams meetup
20141216 graph database prototyping ams meetup20141216 graph database prototyping ams meetup
20141216 graph database prototyping ams meetup
Rik Van Bruggen
 
201411203 goto night on graphs for fraud detection
201411203 goto night on graphs for fraud detection201411203 goto night on graphs for fraud detection
201411203 goto night on graphs for fraud detection
Rik Van Bruggen
 
Using graphs for recommendations
Using graphs for recommendationsUsing graphs for recommendations
Using graphs for recommendations
Rik Van Bruggen
 
20141015 how graphs revolutionize access management
20141015 how graphs revolutionize access management20141015 how graphs revolutionize access management
20141015 how graphs revolutionize access management
Rik Van Bruggen
 
Ad

Recently uploaded (20)

Adobe Master Collection CC Crack Advance Version 2025
Adobe Master Collection CC Crack Advance Version 2025Adobe Master Collection CC Crack Advance Version 2025
Adobe Master Collection CC Crack Advance Version 2025
kashifyounis067
 
Why Orangescrum Is a Game Changer for Construction Companies in 2025
Why Orangescrum Is a Game Changer for Construction Companies in 2025Why Orangescrum Is a Game Changer for Construction Companies in 2025
Why Orangescrum Is a Game Changer for Construction Companies in 2025
Orangescrum
 
Explaining GitHub Actions Failures with Large Language Models Challenges, In...
Explaining GitHub Actions Failures with Large Language Models Challenges, In...Explaining GitHub Actions Failures with Large Language Models Challenges, In...
Explaining GitHub Actions Failures with Large Language Models Challenges, In...
ssuserb14185
 
Not So Common Memory Leaks in Java Webinar
Not So Common Memory Leaks in Java WebinarNot So Common Memory Leaks in Java Webinar
Not So Common Memory Leaks in Java Webinar
Tier1 app
 
How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...
How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...
How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...
Egor Kaleynik
 
Get & Download Wondershare Filmora Crack Latest [2025]
Get & Download Wondershare Filmora Crack Latest [2025]Get & Download Wondershare Filmora Crack Latest [2025]
Get & Download Wondershare Filmora Crack Latest [2025]
saniaaftab72555
 
Pixologic ZBrush Crack Plus Activation Key [Latest 2025] New Version
Pixologic ZBrush Crack Plus Activation Key [Latest 2025] New VersionPixologic ZBrush Crack Plus Activation Key [Latest 2025] New Version
Pixologic ZBrush Crack Plus Activation Key [Latest 2025] New Version
saimabibi60507
 
Download Wondershare Filmora Crack [2025] With Latest
Download Wondershare Filmora Crack [2025] With LatestDownload Wondershare Filmora Crack [2025] With Latest
Download Wondershare Filmora Crack [2025] With Latest
tahirabibi60507
 
How to Optimize Your AWS Environment for Improved Cloud Performance
How to Optimize Your AWS Environment for Improved Cloud PerformanceHow to Optimize Your AWS Environment for Improved Cloud Performance
How to Optimize Your AWS Environment for Improved Cloud Performance
ThousandEyes
 
The Significance of Hardware in Information Systems.pdf
The Significance of Hardware in Information Systems.pdfThe Significance of Hardware in Information Systems.pdf
The Significance of Hardware in Information Systems.pdf
drewplanas10
 
Solidworks Crack 2025 latest new + license code
Solidworks Crack 2025 latest new + license codeSolidworks Crack 2025 latest new + license code
Solidworks Crack 2025 latest new + license code
aneelaramzan63
 
Kubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptxKubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptx
CloudScouts
 
Avast Premium Security Crack FREE Latest Version 2025
Avast Premium Security Crack FREE Latest Version 2025Avast Premium Security Crack FREE Latest Version 2025
Avast Premium Security Crack FREE Latest Version 2025
mu394968
 
F-Secure Freedome VPN 2025 Crack Plus Activation New Version
F-Secure Freedome VPN 2025 Crack Plus Activation  New VersionF-Secure Freedome VPN 2025 Crack Plus Activation  New Version
F-Secure Freedome VPN 2025 Crack Plus Activation New Version
saimabibi60507
 
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
steaveroggers
 
Societal challenges of AI: biases, multilinguism and sustainability
Societal challenges of AI: biases, multilinguism and sustainabilitySocietal challenges of AI: biases, multilinguism and sustainability
Societal challenges of AI: biases, multilinguism and sustainability
Jordi Cabot
 
Salesforce Data Cloud- Hyperscale data platform, built for Salesforce.
Salesforce Data Cloud- Hyperscale data platform, built for Salesforce.Salesforce Data Cloud- Hyperscale data platform, built for Salesforce.
Salesforce Data Cloud- Hyperscale data platform, built for Salesforce.
Dele Amefo
 
How can one start with crypto wallet development.pptx
How can one start with crypto wallet development.pptxHow can one start with crypto wallet development.pptx
How can one start with crypto wallet development.pptx
laravinson24
 
Revolutionizing Residential Wi-Fi PPT.pptx
Revolutionizing Residential Wi-Fi PPT.pptxRevolutionizing Residential Wi-Fi PPT.pptx
Revolutionizing Residential Wi-Fi PPT.pptx
nidhisingh691197
 
Designing AI-Powered APIs on Azure: Best Practices& Considerations
Designing AI-Powered APIs on Azure: Best Practices& ConsiderationsDesigning AI-Powered APIs on Azure: Best Practices& Considerations
Designing AI-Powered APIs on Azure: Best Practices& Considerations
Dinusha Kumarasiri
 
Adobe Master Collection CC Crack Advance Version 2025
Adobe Master Collection CC Crack Advance Version 2025Adobe Master Collection CC Crack Advance Version 2025
Adobe Master Collection CC Crack Advance Version 2025
kashifyounis067
 
Why Orangescrum Is a Game Changer for Construction Companies in 2025
Why Orangescrum Is a Game Changer for Construction Companies in 2025Why Orangescrum Is a Game Changer for Construction Companies in 2025
Why Orangescrum Is a Game Changer for Construction Companies in 2025
Orangescrum
 
Explaining GitHub Actions Failures with Large Language Models Challenges, In...
Explaining GitHub Actions Failures with Large Language Models Challenges, In...Explaining GitHub Actions Failures with Large Language Models Challenges, In...
Explaining GitHub Actions Failures with Large Language Models Challenges, In...
ssuserb14185
 
Not So Common Memory Leaks in Java Webinar
Not So Common Memory Leaks in Java WebinarNot So Common Memory Leaks in Java Webinar
Not So Common Memory Leaks in Java Webinar
Tier1 app
 
How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...
How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...
How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...
Egor Kaleynik
 
Get & Download Wondershare Filmora Crack Latest [2025]
Get & Download Wondershare Filmora Crack Latest [2025]Get & Download Wondershare Filmora Crack Latest [2025]
Get & Download Wondershare Filmora Crack Latest [2025]
saniaaftab72555
 
Pixologic ZBrush Crack Plus Activation Key [Latest 2025] New Version
Pixologic ZBrush Crack Plus Activation Key [Latest 2025] New VersionPixologic ZBrush Crack Plus Activation Key [Latest 2025] New Version
Pixologic ZBrush Crack Plus Activation Key [Latest 2025] New Version
saimabibi60507
 
Download Wondershare Filmora Crack [2025] With Latest
Download Wondershare Filmora Crack [2025] With LatestDownload Wondershare Filmora Crack [2025] With Latest
Download Wondershare Filmora Crack [2025] With Latest
tahirabibi60507
 
How to Optimize Your AWS Environment for Improved Cloud Performance
How to Optimize Your AWS Environment for Improved Cloud PerformanceHow to Optimize Your AWS Environment for Improved Cloud Performance
How to Optimize Your AWS Environment for Improved Cloud Performance
ThousandEyes
 
The Significance of Hardware in Information Systems.pdf
The Significance of Hardware in Information Systems.pdfThe Significance of Hardware in Information Systems.pdf
The Significance of Hardware in Information Systems.pdf
drewplanas10
 
Solidworks Crack 2025 latest new + license code
Solidworks Crack 2025 latest new + license codeSolidworks Crack 2025 latest new + license code
Solidworks Crack 2025 latest new + license code
aneelaramzan63
 
Kubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptxKubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptx
CloudScouts
 
Avast Premium Security Crack FREE Latest Version 2025
Avast Premium Security Crack FREE Latest Version 2025Avast Premium Security Crack FREE Latest Version 2025
Avast Premium Security Crack FREE Latest Version 2025
mu394968
 
F-Secure Freedome VPN 2025 Crack Plus Activation New Version
F-Secure Freedome VPN 2025 Crack Plus Activation  New VersionF-Secure Freedome VPN 2025 Crack Plus Activation  New Version
F-Secure Freedome VPN 2025 Crack Plus Activation New Version
saimabibi60507
 
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
steaveroggers
 
Societal challenges of AI: biases, multilinguism and sustainability
Societal challenges of AI: biases, multilinguism and sustainabilitySocietal challenges of AI: biases, multilinguism and sustainability
Societal challenges of AI: biases, multilinguism and sustainability
Jordi Cabot
 
Salesforce Data Cloud- Hyperscale data platform, built for Salesforce.
Salesforce Data Cloud- Hyperscale data platform, built for Salesforce.Salesforce Data Cloud- Hyperscale data platform, built for Salesforce.
Salesforce Data Cloud- Hyperscale data platform, built for Salesforce.
Dele Amefo
 
How can one start with crypto wallet development.pptx
How can one start with crypto wallet development.pptxHow can one start with crypto wallet development.pptx
How can one start with crypto wallet development.pptx
laravinson24
 
Revolutionizing Residential Wi-Fi PPT.pptx
Revolutionizing Residential Wi-Fi PPT.pptxRevolutionizing Residential Wi-Fi PPT.pptx
Revolutionizing Residential Wi-Fi PPT.pptx
nidhisingh691197
 
Designing AI-Powered APIs on Azure: Best Practices& Considerations
Designing AI-Powered APIs on Azure: Best Practices& ConsiderationsDesigning AI-Powered APIs on Azure: Best Practices& Considerations
Designing AI-Powered APIs on Azure: Best Practices& Considerations
Dinusha Kumarasiri
 

Intro to Graphs for Fedict

  • 1. Intro  to  Graph  Databases     in  a  NOSQL  world   19th  of  May  2015  
  • 2. Agenda   •  About  Graphs   •  About  Graph  Databases   –  About  Neo4j   •  Graph  Querying   –  Short  demonstra:on   •  Case  Studies   •  Q&A  
  • 5. Meet     Leonhard  Euler   (again?)   •  Swiss  mathema:cian   •  Inventor  of  Graph   Theory  (1736)  
  • 7. A   B   D   C  
  • 8. A   B   D   C   1 2 3 4 7 6 5
  • 10. Complemen.ng     Relational Databases VOLUME   COMPLEXITY  
  • 12. RDBMS   Living  in  a  NOSQL  World   Complexity   Column   Family   Size   Key-­‐Value   Store   Document   Databases   Graph   Databases   90%  of  Use   cases   Rela:onal   Databases   Naviga:onal   Databases  
  • 13. So  what  is  a  graph  database?   •  OLTP  database   •  “end-­‐user”  transac:ons   •  Model,  store,  manage  data  as  a  graph  
  • 14. What  is  a  graph?   Vertex   Edge  
  • 15. What  is  a  graph?   Node   Rela:onship  
  • 16. Contrast  with  Rela.onal   Graphs  are  o]en  referred  to  as  “Whiteboard  Friendly”.  The  data  model  reflects  the  way  a   domain  expert  would  naturally  draw  their  data  on  a  whiteboard   “The  schema  is  the  data”.  Schema  flexibility  allows  the  system  to  change  in  response  to  a   changing  environment  
  • 17. Neo4j  is  a  Graph  Database   •  JVM  based   •  ACID  transac:ons   •  Rich  Java  APIs   •  Query  language   •  Using  the  Labeled     Property  Graph   model  
  • 18. Cypher:  THE  graph  query  language   •  Learning  from  RDBMS’  evolu:on   •  Introduc:on  of  SQL!   •  Key  characteris:cs   •  Declara:ve:  tell  it  what  you  want,  not  how  to  get  it   •  Expressive:  Op:mize  for  reading   •  Pagern  matching:  easy  on  your  brain!   •  Idempotent:  state  change  expressed  idempotently  
  • 19. Labeled  Property  Graph  Model   Author Book Reader Reader Author Book Author
  • 20. Labeled  Property  Graph  Summary   •  Nodes   •  Containers  for  proper:es   •  Grouped  together  in  subgraphs  by  “Labels”   •  Proper:es   •  Key-­‐value  pairs   •  Primi:ve  and  array  values   •  Rela:onships   •  Name   •  Direc:on   •  May  also  contain  proper:es   •  Rela:onships  (ctd.)   •  Must  have  a  start  node  and  an  end  node   (no  dangling  rela:onships)   •  Start  node  and  end  node  can  be  the  same   (e.g.  ‘self’  rela:onships)   •  Nodes  can  be  connected  by  more  than  one   rela:onship  
  • 21. What  are  graphs  good  for?   Complexity  
  • 22. Data  Complexity   complexity = f(size, semi-structure, connectedness)
  • 23. complexity = f(size, semi-structure, connectedness) The  Real  Complexity  
  • 25. Semi-­‐Structure   Email:  [email protected]   Email:  [email protected]   Twiger:  @rvanbruggen   Skype:  rvanbruggen   USER   CONTACT   CONTACT_TYPE   FIRST_NAME   LAST_NAME  USER_ID   EMAIL_1   EMAIL_2   TWITTER  FACEBOOK   SKYPE   Rik   Van  Bruggen  315   [email protected]   [email protected]   @rvanbruggen  NULL   rvanbruggen  
  • 26. complexity = f(size, semi-structure, connectedness) The  Real  Complexity  
  • 28. When  Should  I  Use  Graph  Databases??   •  Densely-­‐connected,  semi-­‐structured  domains   •  Lots  of  join  tables?  Connectedness   •  Lots  of  sparse  tables?  Semi-­‐structure   •  Data  Model  Vola:lity   •  Easy  to  evolve   •  “Graphy”  Query  pagerns   •  Deeps  Join  Complexity  and  Performance   •  Pathfinding  opera:ons   •  Millions  of  ‘joins’  per  second   •  Consistent  query  :mes  as  dataset  grows  
  • 30. Querying  a  Graph   •  “Graph  local”  vs  “Graph  global”   •  Contextualized  “ego-­‐centric”  queries   •  “Parachute”  into  graph   •  Start  node(s)   •  Found  through  Index  lookups   •  Crawl  the  surrounding  graph   •  2  million+  joins  per  second   •  No  more  Index  lookups:     Index-­‐free  adjacency  
  • 34. www.neo4j.com     www.meetup.com/graphdb-­‐belgium     [email protected]  or  +32  478  686800   Q&A,  Conclusion,  Next  Steps