This document introduces Apache Cassandra, a distributed column-oriented NoSQL database. It discusses Cassandra's architecture, data model, query language (CQL), and how to install and run Cassandra. Key points covered include Cassandra's linear scalability, high availability and fault tolerance. The document also demonstrates how to use the nodetool utility and provides guidance on backing up and restoring Cassandra data.
Cassandra is a distributed, column-oriented database that scales horizontally and is optimized for writes. It uses consistent hashing to distribute data across nodes and achieve high availability even when nodes join or leave the cluster. Cassandra offers flexible consistency options and tunable replication to balance availability and durability for read and write operations across the distributed database.
This document provides an agenda and introduction for a presentation on Apache Cassandra and DataStax Enterprise. The presentation covers an introduction to Cassandra and NoSQL, the CAP theorem, Apache Cassandra features and architecture including replication, consistency levels and failure handling. It also discusses the Cassandra Query Language, data modeling for time series data, and new features in DataStax Enterprise like Spark integration and secondary indexes on collections. The presentation concludes with recommendations for getting started with Cassandra in production environments.
Apache Cassandra is a free, distributed, open source, and highly scalable NoSQL database that is designed to handle large amounts of data across many commodity servers. It provides high availability with no single point of failure, linear scalability, and tunable consistency. Cassandra's architecture allows it to spread data across a cluster of servers and replicate across multiple data centers for fault tolerance. It is used by many large companies for applications that require high performance, scalability, and availability.
Attack monitoring using ElasticSearch Logstash and KibanaPrajal Kulkarni
This document discusses using the ELK stack (Elasticsearch, Logstash, Kibana) for attack monitoring. It provides an overview of each component, describes how to set up ELK and configure Logstash for log collection and parsing. It also demonstrates log forwarding using Logstash Forwarder, and shows how to configure alerts and dashboards in Kibana for attack monitoring. Examples are given for parsing Apache logs and syslog using Grok filters in Logstash.
HTTP Analytics for 6M requests per second using ClickHouse, by Alexander Boc...Altinity Ltd
This document summarizes Cloudflare's use of ClickHouse to analyze over 6 million HTTP requests per second. Some key points:
- Cloudflare previously used PostgreSQL, Citus, and Flink but these did not scale sufficiently.
- ClickHouse was chosen as it is fast, scalable, fault tolerant, and Cloudflare had existing expertise in it.
- Cloudflare designed ClickHouse schemas to aggregate HTTP data into totals, breakdowns by category, and unique counts into two tables using different engines.
- Tuning ClickHouse index granularity improved query latency by 50% and throughput by 3x.
- The new ClickHouse pipeline is more scalable, fault tolerant
Understanding ProxySQL internals and then interacting with some common features of ProxySQL such as query rewriting, mirroring, failovers, and ProxySQL Cluster
I don't think it's hyperbole when I say that Facebook, Instagram, Twitter & Netflix now define the dimensions of our social & entertainment universe. But what kind of technology engines purr under the hoods of these social media machines?
Here is a tech student's perspective on making the paradigm shift to "Big Data" using innovative models: alphabet blocks, nesting dolls, & LEGOs!
Get info on:
- What is Cassandra (C*)?
- Installing C* Community Version on Amazon Web Services EC2
- Data Modelling & Database Design in C* using CQL3
- Industry Use Cases
Cassandra is a decentralized structured storage system that was initially developed at Facebook to power their inbox search. It is based on Amazon's Dynamo and Google's BigTable data models. Cassandra provides tunable consistency, high availability with no single points of failure, horizontal scalability and elasticity. It allows data to be distributed across multiple data centers and easily handles the addition or removal of nodes.
This is the presentation I made on JavaDay Kiev 2015 regarding the architecture of Apache Spark. It covers the memory model, the shuffle implementations, data frames and some other high-level staff and can be used as an introduction to Apache Spark
MapReduce is a programming model for processing large datasets in a distributed manner across clusters of machines. It involves two functions - Map and Reduce. The Map function processes input key-value pairs to generate intermediate key-value pairs, and the Reduce function merges all intermediate values associated with the same intermediate key. This allows for distributed processing that hides complexity and provides fault tolerance. An example is counting word frequencies, where the Map function emits word counts and the Reduce function sums the counts for each word.
A look at some of the ways available to deploy Postgres in a Kubernetes cloud environment, either in small scale using simple configurations, or in larger scale using tools such as Helm charts and the Crunchy PostgreSQL Operator. A short introduction to Kubernetes will be given to explain the concepts involved, followed by examples from each deployment method and observations on the key differences.
This document introduces HBase, an open-source, non-relational, distributed database modeled after Google's BigTable. It describes what HBase is, how it can be used, and when it is applicable. Key points include that HBase stores data in columns and rows accessed by row keys, integrates with Hadoop for MapReduce jobs, and is well-suited for large datasets, fast random access, and write-heavy applications. Common use cases involve log analytics, real-time analytics, and messages-centered systems.
Archaic database technologies just don't scale under the always on, distributed demands of modern IOT, mobile and web applications. We'll start this Intro to Cassandra by discussing how its approach is different and why so many awesome companies have migrated from the cold clutches of the relational world into the warm embrace of peer to peer architecture. After this high-level opening discussion, we'll briefly unpack the following:
• Cassandra's internal architecture and distribution model
• Cassandra's Data Model
• Reads and Writes
MongoDB is an open-source, document-oriented database that provides high performance and horizontal scalability. It uses a document-model where data is organized in flexible, JSON-like documents rather than rigidly defined rows and tables. Documents can contain multiple types of nested objects and arrays. MongoDB is best suited for applications that need to store large amounts of unstructured or semi-structured data and benefit from horizontal scalability and high performance.
This presentation shortly describes key features of Apache Cassandra. It was held at the Apache Cassandra Meetup in Vienna in January 2014. You can access the meetup here: http://www.meetup.com/Vienna-Cassandra-Users/
The document provides an introduction and overview of Apache Kafka presented by Jeff Holoman. It begins with an agenda and background on the presenter. It then covers basic Kafka concepts like topics, partitions, producers, consumers and consumer groups. It discusses efficiency and delivery guarantees. Finally, it presents some use cases for Kafka and positioning around when it may or may not be a good fit compared to other technologies.
Cassandra & puppet, scaling data at $15 per monthdaveconnors
Constant Contact shares lessons learned from DevOps approach to implementing Cassandra to manage social media data for over 400k small business customers. Puppet is the critical in our tool chain. Single most important factor was the willingness of Development and Operations to stretch beyond traditional roles and responsibilities.
Exactly-once Stream Processing with Kafka StreamsGuozhang Wang
I will present the recent additions to Kafka to achieve exactly-once semantics (0.11.0) within its Streams API for stream processing use cases. This is achieved by leveraging the underlying idempotent and transactional client features. The main focus will be the specific semantics that Kafka distributed transactions enable in Streams and the underlying mechanics to let Streams scale efficiently.
As cloud computing continues to gather speed, organizations with years’ worth of data stored on legacy on-premise technologies are facing issues with scale, speed, and complexity. Your customers and business partners are likely eager to get data from you, especially if you can make the process easy and secure.
Challenges with performance are not uncommon and ongoing interventions are required just to “keep the lights on”.
Discover how Snowflake empowers you to meet your analytics needs by unlocking the potential of your data.
Agenda of Webinar :
~Understand Snowflake and its Architecture
~Quickly load data into Snowflake
~Leverage the latest in Snowflake’s unlimited performance and scale to make the data ready for analytics
~Deliver secure and governed access to all data – no more silos
Redis is an open source, in-memory data structure store that can be used as a database, cache, or message broker. It supports data structures like strings, hashes, lists, sets, sorted sets with ranges and pagination. Redis provides high performance due to its in-memory storage and support for different persistence options like snapshots and append-only files. It uses client/server architecture and supports master-slave replication, partitioning, and failover. Redis is useful for caching, queues, and other transient or non-critical data.
The document summarizes Apache Phoenix and its past, present, and future as a SQL interface for HBase. It describes Phoenix's architecture and key features like secondary indexes, joins, aggregations, and transactions. Recent releases added functional indexes, the Phoenix Query Server, and initial transaction support. Future plans include improvements to local indexes, integration with Calcite and Hive, and adding JSON and other SQL features. The document aims to provide an overview of Phoenix's capabilities and roadmap for building a full-featured SQL layer over HBase.
Oracle Real Application Clusters 19c- Best Practices and Internals- EMEA Tour...Sandesh Rao
In this session, I will cover under-the-hood features that power Oracle Real Application Clusters (Oracle RAC) 19c specifically around Cache Fusion and Service management. Improvements in Oracle RAC helps in integration with features such as Multitenant and Data Guard. In fact, these features benefit immensely when used with Oracle RAC. Finally we will talk about changes to the broader Oracle RAC Family of Products stack and the algorithmic changes that helps quickly detect sick/dead nodes/instances and the reconfiguration improvements to ensure that the Oracle RAC Databases continue to function without any disruption
This is a presentation of the popular NoSQL database Apache Cassandra which was created by our team in the context of the module "Business Intelligence and Big Data Analysis".
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...Databricks
Spark SQL is a highly scalable and efficient relational processing engine with ease-to-use APIs and mid-query fault tolerance. It is a core module of Apache Spark. Spark SQL can process, integrate and analyze the data from diverse data sources (e.g., Hive, Cassandra, Kafka and Oracle) and file formats (e.g., Parquet, ORC, CSV, and JSON). This talk will dive into the technical details of SparkSQL spanning the entire lifecycle of a query execution. The audience will get a deeper understanding of Spark SQL and understand how to tune Spark SQL performance.
Trivadis TechEvent 2016 Big Data Cassandra, wieso brauche ich das? by Jan OttTrivadis
First Steps of an Oracle-expert in the Big Data World. Everyone speaks about Big Data. But what does it mean? This speech focuses on one animal of the Big Data Zoo - Cassandra and answers the following questions:
- Why another database?
- There is Impala and Spark. Why would I need Cassandra?
- New database - do I need to learn a new language?
- How do I get the data in?
- Can I use SQL?
- Is it part of a distribution, for example Cloudera?
Demos will explain the theory.
This document provides an overview of Cassandra, a decentralized, distributed database management system. It discusses why the author's company chose Cassandra over other options like HBase and MySQL for their real-time data needs. The document then covers Cassandra's data model, architecture, data partitioning, replication, and other key aspects like writes, reads, deletes, and compaction. It also notes some limitations of Cassandra and provides additional resource links.
Understanding ProxySQL internals and then interacting with some common features of ProxySQL such as query rewriting, mirroring, failovers, and ProxySQL Cluster
I don't think it's hyperbole when I say that Facebook, Instagram, Twitter & Netflix now define the dimensions of our social & entertainment universe. But what kind of technology engines purr under the hoods of these social media machines?
Here is a tech student's perspective on making the paradigm shift to "Big Data" using innovative models: alphabet blocks, nesting dolls, & LEGOs!
Get info on:
- What is Cassandra (C*)?
- Installing C* Community Version on Amazon Web Services EC2
- Data Modelling & Database Design in C* using CQL3
- Industry Use Cases
Cassandra is a decentralized structured storage system that was initially developed at Facebook to power their inbox search. It is based on Amazon's Dynamo and Google's BigTable data models. Cassandra provides tunable consistency, high availability with no single points of failure, horizontal scalability and elasticity. It allows data to be distributed across multiple data centers and easily handles the addition or removal of nodes.
This is the presentation I made on JavaDay Kiev 2015 regarding the architecture of Apache Spark. It covers the memory model, the shuffle implementations, data frames and some other high-level staff and can be used as an introduction to Apache Spark
MapReduce is a programming model for processing large datasets in a distributed manner across clusters of machines. It involves two functions - Map and Reduce. The Map function processes input key-value pairs to generate intermediate key-value pairs, and the Reduce function merges all intermediate values associated with the same intermediate key. This allows for distributed processing that hides complexity and provides fault tolerance. An example is counting word frequencies, where the Map function emits word counts and the Reduce function sums the counts for each word.
A look at some of the ways available to deploy Postgres in a Kubernetes cloud environment, either in small scale using simple configurations, or in larger scale using tools such as Helm charts and the Crunchy PostgreSQL Operator. A short introduction to Kubernetes will be given to explain the concepts involved, followed by examples from each deployment method and observations on the key differences.
This document introduces HBase, an open-source, non-relational, distributed database modeled after Google's BigTable. It describes what HBase is, how it can be used, and when it is applicable. Key points include that HBase stores data in columns and rows accessed by row keys, integrates with Hadoop for MapReduce jobs, and is well-suited for large datasets, fast random access, and write-heavy applications. Common use cases involve log analytics, real-time analytics, and messages-centered systems.
Archaic database technologies just don't scale under the always on, distributed demands of modern IOT, mobile and web applications. We'll start this Intro to Cassandra by discussing how its approach is different and why so many awesome companies have migrated from the cold clutches of the relational world into the warm embrace of peer to peer architecture. After this high-level opening discussion, we'll briefly unpack the following:
• Cassandra's internal architecture and distribution model
• Cassandra's Data Model
• Reads and Writes
MongoDB is an open-source, document-oriented database that provides high performance and horizontal scalability. It uses a document-model where data is organized in flexible, JSON-like documents rather than rigidly defined rows and tables. Documents can contain multiple types of nested objects and arrays. MongoDB is best suited for applications that need to store large amounts of unstructured or semi-structured data and benefit from horizontal scalability and high performance.
This presentation shortly describes key features of Apache Cassandra. It was held at the Apache Cassandra Meetup in Vienna in January 2014. You can access the meetup here: http://www.meetup.com/Vienna-Cassandra-Users/
The document provides an introduction and overview of Apache Kafka presented by Jeff Holoman. It begins with an agenda and background on the presenter. It then covers basic Kafka concepts like topics, partitions, producers, consumers and consumer groups. It discusses efficiency and delivery guarantees. Finally, it presents some use cases for Kafka and positioning around when it may or may not be a good fit compared to other technologies.
Cassandra & puppet, scaling data at $15 per monthdaveconnors
Constant Contact shares lessons learned from DevOps approach to implementing Cassandra to manage social media data for over 400k small business customers. Puppet is the critical in our tool chain. Single most important factor was the willingness of Development and Operations to stretch beyond traditional roles and responsibilities.
Exactly-once Stream Processing with Kafka StreamsGuozhang Wang
I will present the recent additions to Kafka to achieve exactly-once semantics (0.11.0) within its Streams API for stream processing use cases. This is achieved by leveraging the underlying idempotent and transactional client features. The main focus will be the specific semantics that Kafka distributed transactions enable in Streams and the underlying mechanics to let Streams scale efficiently.
As cloud computing continues to gather speed, organizations with years’ worth of data stored on legacy on-premise technologies are facing issues with scale, speed, and complexity. Your customers and business partners are likely eager to get data from you, especially if you can make the process easy and secure.
Challenges with performance are not uncommon and ongoing interventions are required just to “keep the lights on”.
Discover how Snowflake empowers you to meet your analytics needs by unlocking the potential of your data.
Agenda of Webinar :
~Understand Snowflake and its Architecture
~Quickly load data into Snowflake
~Leverage the latest in Snowflake’s unlimited performance and scale to make the data ready for analytics
~Deliver secure and governed access to all data – no more silos
Redis is an open source, in-memory data structure store that can be used as a database, cache, or message broker. It supports data structures like strings, hashes, lists, sets, sorted sets with ranges and pagination. Redis provides high performance due to its in-memory storage and support for different persistence options like snapshots and append-only files. It uses client/server architecture and supports master-slave replication, partitioning, and failover. Redis is useful for caching, queues, and other transient or non-critical data.
The document summarizes Apache Phoenix and its past, present, and future as a SQL interface for HBase. It describes Phoenix's architecture and key features like secondary indexes, joins, aggregations, and transactions. Recent releases added functional indexes, the Phoenix Query Server, and initial transaction support. Future plans include improvements to local indexes, integration with Calcite and Hive, and adding JSON and other SQL features. The document aims to provide an overview of Phoenix's capabilities and roadmap for building a full-featured SQL layer over HBase.
Oracle Real Application Clusters 19c- Best Practices and Internals- EMEA Tour...Sandesh Rao
In this session, I will cover under-the-hood features that power Oracle Real Application Clusters (Oracle RAC) 19c specifically around Cache Fusion and Service management. Improvements in Oracle RAC helps in integration with features such as Multitenant and Data Guard. In fact, these features benefit immensely when used with Oracle RAC. Finally we will talk about changes to the broader Oracle RAC Family of Products stack and the algorithmic changes that helps quickly detect sick/dead nodes/instances and the reconfiguration improvements to ensure that the Oracle RAC Databases continue to function without any disruption
This is a presentation of the popular NoSQL database Apache Cassandra which was created by our team in the context of the module "Business Intelligence and Big Data Analysis".
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...Databricks
Spark SQL is a highly scalable and efficient relational processing engine with ease-to-use APIs and mid-query fault tolerance. It is a core module of Apache Spark. Spark SQL can process, integrate and analyze the data from diverse data sources (e.g., Hive, Cassandra, Kafka and Oracle) and file formats (e.g., Parquet, ORC, CSV, and JSON). This talk will dive into the technical details of SparkSQL spanning the entire lifecycle of a query execution. The audience will get a deeper understanding of Spark SQL and understand how to tune Spark SQL performance.
Trivadis TechEvent 2016 Big Data Cassandra, wieso brauche ich das? by Jan OttTrivadis
First Steps of an Oracle-expert in the Big Data World. Everyone speaks about Big Data. But what does it mean? This speech focuses on one animal of the Big Data Zoo - Cassandra and answers the following questions:
- Why another database?
- There is Impala and Spark. Why would I need Cassandra?
- New database - do I need to learn a new language?
- How do I get the data in?
- Can I use SQL?
- Is it part of a distribution, for example Cloudera?
Demos will explain the theory.
This document provides an overview of Cassandra, a decentralized, distributed database management system. It discusses why the author's company chose Cassandra over other options like HBase and MySQL for their real-time data needs. The document then covers Cassandra's data model, architecture, data partitioning, replication, and other key aspects like writes, reads, deletes, and compaction. It also notes some limitations of Cassandra and provides additional resource links.
This document discusses Apache Cassandra, a distributed database management system designed to handle large amounts of data across many commodity servers. It summarizes Cassandra's origins from Amazon Dynamo and Google Bigtable, describes its data model and client APIs. The document also provides examples of using Cassandra and discusses considerations around operations and performance.
- Cassandra is an open source, distributed database management system designed to handle large amounts of data across many commodity servers. It was originally developed at Facebook in 2008 and is now an Apache project.
- Cassandra provides high availability with no single point of failure, linear scalability and performance of tens of thousands of queries per second. It is used by many large companies including Netflix, Twitter and eBay.
- Data is organized into tables within keyspaces. Tables must have a primary key which determines how data is partitioned and indexed. Cassandra uses a decentralized architecture with no single point of failure and automatic data distribution across nodes.
Use Your MySQL Knowledge to Become an Instant Cassandra GuruTim Callaghan
This document discusses how to leverage MySQL knowledge when working with Cassandra. It explains that while CQL is similar to SQL, Cassandra does not support features like joins, foreign keys, and complex secondary indexes. It recommends focusing on schema design and modeling data around query patterns. The document provides examples of creating tables, handling relationships, and time series data. It also covers topics like transactions, replication, partitioning, and conflict resolution in Cassandra. The overall recommendation is to rethink data modeling for Cassandra and use this knowledge as a starting point rather than trying to port MySQL applications directly.
This document provides an overview of Apache Cassandra, a distributed database designed for managing large amounts of structured data across commodity servers. It discusses Cassandra's data model, which is based on Dynamo and Bigtable, as well as its client API and operational benefits like easy scaling and high availability. The document uses a Twitter-like application called StatusApp to illustrate Cassandra's data model and provide examples of common operations.
Cassandra is an open source, distributed database management system designed to handle large amounts of data across many commodity servers. It provides high availability with no single point of failure, linear scalability and performance, as well as flexibility in schemas. Cassandra finds use in large companies like Facebook, Netflix and eBay due to its abilities to scale and perform well under heavy loads. However, it may not be suited for applications requiring many joins, transactions or strong consistency guarantees.
Christian Johannsen presents on evaluating Apache Cassandra as a cloud database. Cassandra is optimized for cloud infrastructure with features like transparent elasticity, scalability, high availability, easy data distribution and redundancy. It supports multiple data types, is easy to manage, low cost, supports multiple infrastructures and has security features. A demo of DataStax OpsCenter and Apache Spark on Cassandra is shown.
This document provides an agenda and slides for a presentation titled "5 Developer Pitfalls With Apache Cassandra". The presentation will cover common pitfalls developers face when working with Cassandra, including issues with data modeling, query language usage, consistency levels, and more. It will be delivered by Cédrick Lunven on September 20th at the Cassandra Days conference, which is sponsored by Clunven.
Performance Testing: Scylla vs. Cassandra vs. DatastaxScyllaDB
Ticketmaster is part of Live Nation Entertainment, the world's leading live entertainment company. Learn why they went with Scylla after conducting performance testing between Scylla, Apache Cassandra and DataStax Enterprise.
Pythian: My First 100 days with a Cassandra ClusterDataStax Academy
With Apache Cassandra being a massively scalable open source NoSQL database and with the amount of data that we create and copy annually which is doubling in size every two years, it is expected to reach 44 zettabytes, or 44 trillion gigabytes, we can assume that sooner or later a DBA will be handling a Cassandra database in their shop. This beginner/intermediate-level session will take you through my journey of an Oracle DBA and my first 100 days of starting to administer a Cassandra Cluster, show several demos and all the roadblocks and the success I had along this path.
From Postgres to Cassandra (Rimas Silkaitis, Heroku) | C* Summit 2016DataStax
Most web applications start out with a Postgres database and it serves the application very well for an extended period of time. Based on type of application, the data model of the app will have a table that tracks some kind of state for either objects in the system or the users of the application. Names for this table include logs, messages or events. The growth in the number of rows in this table is not linear as the traffic to the app increases, it's typically exponential.
Over time, the state table will increasingly become the bulk of the data volume in Postgres, think terabytes, and become increasingly hard to query. This use case can be characterized as the one-big-table problem. In this situation, it makes sense to move that table out of Postgres and into Cassandra. This talk will walk through the conceptual differences between the two systems, a bit of data modeling, as well as advice on making the conversion.
About the Speaker
Rimas Silkaitis Product Manager, Heroku
Rimas currently runs Product for Heroku Postgres and Heroku Redis but the common thread throughout his career is data. From data analysis, building data warehouses and ultimately building data products, he's held various positions that have allowed him to see the challenges of working with data at all levels of an organization. This experience spans the smallest of startups to the biggest enterprises.
MySQL Cluster Scaling to a Billion QueriesBernd Ocklin
MySQL Cluster is a distributed database that provides extreme scalability, high availability, and real-time performance. It uses an auto-sharding and auto-replicating architecture to distribute data across multiple low-cost servers. Key benefits include scaling reads and writes, 99.999% availability through its shared-nothing design with no single point of failure, and real-time responsiveness. It supports both SQL and NoSQL interfaces to enable complex queries as well as high-performance key-value access.
Pollfish is a survey platform which provides access to millions of targeted users. Pollfish allows easy distribution and targeting of surveys through existing mobile apps. (https://www.pollfish.com/). At pollfish we use Cassandra for difference use cases, eg. for application data store to maximize write throughput when appropriate and for our analytics project to find insights in application generated data. As a medium to accomplish our success so far, we use the Datastax's DSE 4.6 environment which integrates Appache Cassadra, Spark and a hadoop compatible file system (CFS). We will discuss how we started, how the journey was and the impressions gained so far along with some tips learned the hard way. This is a result of joint work of an excellent team here at Pollfish.
This presentation will investigate how using micro-batching for submitting writes to Cassandra can improve throughput and reduce client application CPU load.
Micro-batching combines writes for the same partition key into a single network request and ensures they hit the "fast path" for writes on a Cassandra node.
About the Speaker
Adam Zegelin Technical Co-founder, Instaclustr
As Instaclustrs founding software engineer, Adam provides the foundation knowledge of our capability and engineering environment. He delivers business-focused value to our code-base and overall capability architecture. Adam is also focused on providing Instaclustr's contribution to the broader open source community on which our products and services rely, including Apache Cassandra, Apache Spark and other technologies such as CoreOS and Docker.
- Micro-batching involves grouping statements into small batches to improve throughput and reduce network overhead when writing to Cassandra.
- A benchmark was conducted to compare individual statements, regular batches, and partition-aware batches when inserting 1 million rows into Cassandra.
- The results showed that partition-aware batches had shorter runtime, lower client and cluster CPU usage, and was more performant overall compared to individual statements and regular batches. However, it may have higher latency which is better suited for bulk data processing rather than real-time workloads.
This document provides an agenda and overview of Big Data Analytics using Spark and Cassandra. It discusses Cassandra as a distributed database and Spark as a data processing framework. It covers connecting Spark and Cassandra, reading and writing Cassandra tables as Spark RDDs, and using Spark SQL, Spark Streaming, and Spark MLLib with Cassandra data. Key capabilities of each technology are highlighted such as Cassandra's tunable consistency and Spark's fault tolerance through RDD lineage. Examples demonstrate basic operations like filtering, aggregating, and joining Cassandra data with Spark.
This document provides an overview of the Cassandra NoSQL database. It begins with definitions of Cassandra and discusses its history and origins from projects like Bigtable and Dynamo. The document outlines Cassandra's architecture including its peer-to-peer distributed design, data partitioning, replication, and use of gossip protocols for cluster management. It provides examples of key features like tunable consistency levels and flexible schema design. Finally, it discusses companies that use Cassandra like Facebook and provides performance comparisons with MySQL.
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?steaveroggers
Migrating from Lotus Notes to Outlook can be a complex and time-consuming task, especially when dealing with large volumes of NSF emails. This presentation provides a complete guide on how to batch export Lotus Notes NSF emails to Outlook PST format quickly and securely. It highlights the challenges of manual methods, the benefits of using an automated tool, and introduces eSoftTools NSF to PST Converter Software — a reliable solution designed to handle bulk email migrations efficiently. Learn about the software’s key features, step-by-step export process, system requirements, and how it ensures 100% data accuracy and folder structure preservation during migration. Make your email transition smoother, safer, and faster with the right approach.
Read More:- https://www.esofttools.com/nsf-to-pst-converter.html
Who Watches the Watchmen (SciFiDevCon 2025)Allon Mureinik
Tests, especially unit tests, are the developers’ superheroes. They allow us to mess around with our code and keep us safe.
We often trust them with the safety of our codebase, but how do we know that we should? How do we know that this trust is well-deserved?
Enter mutation testing – by intentionally injecting harmful mutations into our code and seeing if they are caught by the tests, we can evaluate the quality of the safety net they provide. By watching the watchmen, we can make sure our tests really protect us, and we aren’t just green-washing our IDEs to a false sense of security.
Talk from SciFiDevCon 2025
https://www.scifidevcon.com/courses/2025-scifidevcon/contents/680efa43ae4f5
Solidworks Crack 2025 latest new + license codeaneelaramzan63
Copy & Paste On Google >>> https://dr-up-community.info/
The two main methods for installing standalone licenses of SOLIDWORKS are clean installation and parallel installation (the process is different ...
Disable your internet connection to prevent the software from performing online checks during installation
Not So Common Memory Leaks in Java WebinarTier1 app
This SlideShare presentation is from our May webinar, “Not So Common Memory Leaks & How to Fix Them?”, where we explored lesser-known memory leak patterns in Java applications. Unlike typical leaks, subtle issues such as thread local misuse, inner class references, uncached collections, and misbehaving frameworks often go undetected and gradually degrade performance. This deck provides in-depth insights into identifying these hidden leaks using advanced heap analysis and profiling techniques, along with real-world case studies and practical solutions. Ideal for developers and performance engineers aiming to deepen their understanding of Java memory management and improve application stability.
Designing AI-Powered APIs on Azure: Best Practices& ConsiderationsDinusha Kumarasiri
AI is transforming APIs, enabling smarter automation, enhanced decision-making, and seamless integrations. This presentation explores key design principles for AI-infused APIs on Azure, covering performance optimization, security best practices, scalability strategies, and responsible AI governance. Learn how to leverage Azure API Management, machine learning models, and cloud-native architectures to build robust, efficient, and intelligent API solutions
WinRAR Crack for Windows (100% Working 2025)sh607827
copy and past on google ➤ ➤➤ https://hdlicense.org/ddl/
WinRAR Crack Free Download is a powerful archive manager that provides full support for RAR and ZIP archives and decompresses CAB, ARJ, LZH, TAR, GZ, ACE, UUE, .
Explaining GitHub Actions Failures with Large Language Models Challenges, In...ssuserb14185
GitHub Actions (GA) has become the de facto tool that developers use to automate software workflows, seamlessly building, testing, and deploying code. Yet when GA fails, it disrupts development, causing delays and driving up costs. Diagnosing failures becomes especially challenging because error logs are often long, complex and unstructured. Given these difficulties, this study explores the potential of large language models (LLMs) to generate correct, clear, concise, and actionable contextual descriptions (or summaries) for GA failures, focusing on developers’ perceptions of their feasibility and usefulness. Our results show that over 80% of developers rated LLM explanations positively in terms of correctness for simpler/small logs. Overall, our findings suggest that LLMs can feasibly assist developers in understanding common GA errors, thus, potentially reducing manual analysis. However, we also found that improved reasoning abilities are needed to support more complex CI/CD scenarios. For instance, less experienced developers tend to be more positive on the described context, while seasoned developers prefer concise summaries. Overall, our work offers key insights for researchers enhancing LLM reasoning, particularly in adapting explanations to user expertise.
https://arxiv.org/abs/2501.16495
How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...Egor Kaleynik
This case study explores how we partnered with a mid-sized U.S. healthcare SaaS provider to help them scale from a successful pilot phase to supporting over 10,000 users—while meeting strict HIPAA compliance requirements.
Faced with slow, manual testing cycles, frequent regression bugs, and looming audit risks, their growth was at risk. Their existing QA processes couldn’t keep up with the complexity of real-time biometric data handling, and earlier automation attempts had failed due to unreliable tools and fragmented workflows.
We stepped in to deliver a full QA and DevOps transformation. Our team replaced their fragile legacy tests with Testim’s self-healing automation, integrated Postman and OWASP ZAP into Jenkins pipelines for continuous API and security validation, and leveraged AWS Device Farm for real-device, region-specific compliance testing. Custom deployment scripts gave them control over rollouts without relying on heavy CI/CD infrastructure.
The result? Test cycle times were reduced from 3 days to just 8 hours, regression bugs dropped by 40%, and they passed their first HIPAA audit without issue—unlocking faster contract signings and enabling them to expand confidently. More than just a technical upgrade, this project embedded compliance into every phase of development, proving that SaaS providers in regulated industries can scale fast and stay secure.
🌍📱👉COPY LINK & PASTE ON GOOGLE http://drfiles.net/ 👈🌍
Adobe Illustrator is a powerful, professional-grade vector graphics software used for creating a wide range of designs, including logos, icons, illustrations, and more. Unlike raster graphics (like photos), which are made of pixels, vector graphics in Illustrator are defined by mathematical equations, allowing them to be scaled up or down infinitely without losing quality.
Here's a more detailed explanation:
Key Features and Capabilities:
Vector-Based Design:
Illustrator's foundation is its use of vector graphics, meaning designs are created using paths, lines, shapes, and curves defined mathematically.
Scalability:
This vector-based approach allows for designs to be resized without any loss of resolution or quality, making it suitable for various print and digital applications.
Design Creation:
Illustrator is used for a wide variety of design purposes, including:
Logos and Brand Identity: Creating logos, icons, and other brand assets.
Illustrations: Designing detailed illustrations for books, magazines, web pages, and more.
Marketing Materials: Creating posters, flyers, banners, and other marketing visuals.
Web Design: Designing web graphics, including icons, buttons, and layouts.
Text Handling:
Illustrator offers sophisticated typography tools for manipulating and designing text within your graphics.
Brushes and Effects:
It provides a range of brushes and effects for adding artistic touches and visual styles to your designs.
Integration with Other Adobe Software:
Illustrator integrates seamlessly with other Adobe Creative Cloud apps like Photoshop, InDesign, and Dreamweaver, facilitating a smooth workflow.
Why Use Illustrator?
Professional-Grade Features:
Illustrator offers a comprehensive set of tools and features for professional design work.
Versatility:
It can be used for a wide range of design tasks and applications, making it a versatile tool for designers.
Industry Standard:
Illustrator is a widely used and recognized software in the graphic design industry.
Creative Freedom:
It empowers designers to create detailed, high-quality graphics with a high degree of control and precision.
Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...Ranjan Baisak
As software complexity grows, traditional static analysis tools struggle to detect vulnerabilities with both precision and context—often triggering high false positive rates and developer fatigue. This article explores how Graph Neural Networks (GNNs), when applied to source code representations like Abstract Syntax Trees (ASTs), Control Flow Graphs (CFGs), and Data Flow Graphs (DFGs), can revolutionize vulnerability detection. We break down how GNNs model code semantics more effectively than flat token sequences, and how techniques like attention mechanisms, hybrid graph construction, and feedback loops significantly reduce false positives. With insights from real-world datasets and recent research, this guide shows how to build more reliable, proactive, and interpretable vulnerability detection systems using GNNs.
Join Ajay Sarpal and Miray Vu to learn about key Marketo Engage enhancements. Discover improved in-app Salesforce CRM connector statistics for easy monitoring of sync health and throughput. Explore new Salesforce CRM Synch Dashboards providing up-to-date insights into weekly activity usage, thresholds, and limits with drill-down capabilities. Learn about proactive notifications for both Salesforce CRM sync and product usage overages. Get an update on improved Salesforce CRM synch scale and reliability coming in Q2 2025.
Key Takeaways:
Improved Salesforce CRM User Experience: Learn how self-service visibility enhances satisfaction.
Utilize Salesforce CRM Synch Dashboards: Explore real-time weekly activity data.
Monitor Performance Against Limits: See threshold limits for each product level.
Get Usage Over-Limit Alerts: Receive notifications for exceeding thresholds.
Learn About Improved Salesforce CRM Scale: Understand upcoming cloud-based incremental sync.
AgentExchange is Salesforce’s latest innovation, expanding upon the foundation of AppExchange by offering a centralized marketplace for AI-powered digital labor. Designed for Agentblazers, developers, and Salesforce admins, this platform enables the rapid development and deployment of AI agents across industries.
Email: [email protected]
Phone: +1(630) 349 2411
Website: https://www.fexle.com/blogs/agentexchange-an-ultimate-guide-for-salesforce-consultants-businesses/?utm_source=slideshare&utm_medium=pptNg
This presentation explores code comprehension challenges in scientific programming based on a survey of 57 research scientists. It reveals that 57.9% of scientists have no formal training in writing readable code. Key findings highlight a "documentation paradox" where documentation is both the most common readability practice and the biggest challenge scientists face. The study identifies critical issues with naming conventions and code organization, noting that 100% of scientists agree readable code is essential for reproducible research. The research concludes with four key recommendations: expanding programming education for scientists, conducting targeted research on scientific code quality, developing specialized tools, and establishing clearer documentation guidelines for scientific software.
Presented at: The 33rd International Conference on Program Comprehension (ICPC '25)
Date of Conference: April 2025
Conference Location: Ottawa, Ontario, Canada
Preprint: https://arxiv.org/abs/2501.10037
Download Wondershare Filmora Crack [2025] With Latesttahirabibi60507
Copy & Past Link 👉👉
http://drfiles.net/
Wondershare Filmora is a video editing software and app designed for both beginners and experienced users. It's known for its user-friendly interface, drag-and-drop functionality, and a wide range of tools and features for creating and editing videos. Filmora is available on Windows, macOS, iOS (iPhone/iPad), and Android platforms.
Avast Premium Security Crack FREE Latest Version 2025mu394968
🌍📱👉COPY LINK & PASTE ON GOOGLE https://dr-kain-geera.info/👈🌍
Avast Premium Security is a paid subscription service that provides comprehensive online security and privacy protection for multiple devices. It includes features like antivirus, firewall, ransomware protection, and website scanning, all designed to safeguard against a wide range of online threats, according to Avast.
Key features of Avast Premium Security:
Antivirus: Protects against viruses, malware, and other malicious software, according to Avast.
Firewall: Controls network traffic and blocks unauthorized access to your devices, as noted by All About Cookies.
Ransomware protection: Helps prevent ransomware attacks, which can encrypt your files and hold them hostage.
Website scanning: Checks websites for malicious content before you visit them, according to Avast.
Email Guardian: Scans your emails for suspicious attachments and phishing attempts.
Multi-device protection: Covers up to 10 devices, including Windows, Mac, Android, and iOS, as stated by 2GO Software.
Privacy features: Helps protect your personal data and online privacy.
In essence, Avast Premium Security provides a robust suite of tools to keep your devices and online activity safe and secure, according to Avast.
Why Orangescrum Is a Game Changer for Construction Companies in 2025Orangescrum
Orangescrum revolutionizes construction project management in 2025 with real-time collaboration, resource planning, task tracking, and workflow automation, boosting efficiency, transparency, and on-time project delivery.
Societal challenges of AI: biases, multilinguism and sustainabilityJordi Cabot
Towards a fairer, inclusive and sustainable AI that works for everybody.
Reviewing the state of the art on these challenges and what we're doing at LIST to test current LLMs and help you select the one that works best for you
2. What is Cassandra?
● Cassandra is a non-relational, partitioned row store.
● Rows are organized into column families (tables) with a
required primary key.
● Data is distributed across multiple master-less, nodes in
an application-transparent manner.
● DataStax oversees the development of the Apache
Cassandra open-source project, provides support to
companies using Cassandra, and provides an enterprise-ready
version of Cassandra.
3. $ whoami
Aaron Ploetz
@APloetz
● Lead Database Engineer
● B.S.-MCS UW-Whitewater
● M.S.-SED Regis University
● Using Cassandra since version 0.8
● Contributor to the Casandra tag on StackOverflow
● Contributor to the Apache Cassandra project
● 2014/15 DataStax MVP for Apache Cassandra
4. (short) History of Cassandra and
DataStax
● Developed at , open sourced in 2008.
● Design influenced by Google BigTable and Amazon Dynamo.
● Graduated to Apache “Top-Level Project” status in Feb 2010.
● DataStax founded by Jonathan Ellis and Matt Pfeil in late 2010,
offering enterprise Cassandra support.
● Secured $190 million in VC funding.
● Started with eight people, now employs more than 350.
● 400+ Customers, including 25 of the Fortune 100.
5. Key Features
● Current release is Cassandra 2.1 (Sept 10).
● Distributed, decentralized storage; no SPOF.
● Scalable.
● High-availability, Fault-tolerance.
● Tunable Consistency.
● High-performance.
● Data center awareness.
6. Distributed, Decentralized
Storage DC1 DC2
● Peer-to-peer, master-less replication.
● Any node can handle a read or write operation.
● Supports local read/write ops via “logical” data centers.
● Gossip protocol allows nodes to be aware of each other.
● Snitch ensures that data is replicated appropriately.
7. Scalability
● Cassandra allows you to easily add nodes to scale your
application back-end.
● Benchmark from 2011:
– 48 node cluster could handle 174,373 writes/sec.
– 288 node cluster could handle 1,099,837 writes/sec.
– Indicates that Cassandra scales linearly.
● Throughput of N nodes = T.
● Throughput of Nx2 nodes = Tx2.
8. High Availability
DC1 DC2
X
● Cassandra was designed under the premise that
hardware failures can and do occur.
9. High Availability
DC1 DC2
X
X
● Cassandra was designed under the premise that
hardware failures can and do occur.
10. High Availability
DC1 DC2
X
X X
X
X
X X
●Gossip Protocol keeps live nodes informed of failures.
●Cassandra 2.0.2 implemented Rapid Read Protection which
redirects read operations to live nodes.
11. Tunable Consistency
● Cassandra allows you alter your consistency level on a
per-operation basis.
● Also allows configuration for data center locality:
ALL QUORUM ONE
Strong
Consistency
High Availability /
Eventual
Consistency
Quorum ==
(nodes / 2) + 1
12. Eventual Consistency != Hopeful
Consistency
● experiment on consistency :
– Created two data centers with C* 1.1.7 Cluster of 48 nodes in
each data center.
– Wrote 1,000,000 records at CL1 in one data center.
– Read same 1,000,000 records at CL1 in other data center.
– All records read successfully!
– “Eventually consistent does not mean a day, minute or
even a second from now… in most cases, it is
milliseconds!”- Christos Kalantzis
13. High Performance
● Cassandra is optimized from the ground up for
performance:
Source: DataStax.com
14. High Performance
● All disk writes are sequential, append-only
operations.
● No reading before writing.
● Cassandra is optimized for threading with multi-core/
processor machines.
15. Potential Drawbacks?
● Some use cases are not appropriate (transient data
or delete-heavy patterns).
● Developer learning curve: CQL != SQL
● Simple queries only. No JOINs or sub-queries.
● Optimal performance is achieved through de-normalizaiton
and query-based data modeling.
16. Cassandra moves beyond disco-era
data modeling
●Everything MUST be normalized!!!
●Redundant data == “bad”
●Relational Database theory originated when disk space was expensive. In
1975 some vendors were selling disk space at $11k per MB.
●By 1980 prices “dropped” so that you could finally buy 1GB of storage for
under $1 Million.
●Today I can buy a 1TB disk for $60.
19. Cassandra Secondary Indexes
● Does allow secondary indexes.
CREATE INDEX myIndex ON myTable(myNonKeyColumn)
● Designed for query convenience, not for performance.
● Does not perform well on high-cardinality columns, because you filter a
huge volume of records for a small number of results. Extremely low
cardinality is also not a good idea (ex: customer address [state == good,
phone == bad, gender == bad]).
● Works best on a table having many rows that contain the indexed value;
middle-of-the-road cardinality.
20. Serenity “crew”
● Create a table to store data for the crew of “Serenity” from “Firefly.”
CREATE TABLE crew (
crewname TEXT,
firstname TEXT,
lastname TEXT,
phone TEXT,
PRIMARY KEY (crewname));
crewname | firstname | lastname | phone
Mal
| Malcolm | Reynolds | 1115551234
Jayne | Jayne | Cobb | 1115553464
Sheppard | Derial | Book | 1115552349
Simon | Simon | Tam | 1115558899
26. Cassandra Large Deployments
● 100+ nodes. 250TB of data, cluster sizes vary from 6 to 32
nodes.
● 2,500+ nodes, 420TB of data, 4 DCs, handles 1 trillion
operations per day.
● 75,000+ nodes, 10s of PB of data, largest cluster 1000+ nodes.
27. Additional Reading
● Amazon Dynamo paper
● Facebook Cassandra paper
● Harvest, Yield, and Scalable, Tolerant Systems - Brewer, Fox, 1999
● DataStax grabs $106M to achieve big-dog status in database country
● http://techblog.netflix.com/2011/11/benchmarking-cassandra-scalability-on.html
● http://planetcassandra.org/blog/a-netflix-experiment-eventual-consistency-hopeful-consistency-● DataStax Documentation
● KillrVideo.com
28. Getting Started
● Community site: http://planetcassandra.org
● http://datastax.com
● DataStax community edition:
http://planetcassandra.org/cassandra
● DataStax startup program:
http://www.datastax.com/what-we-offer/products-services/datastax-enterprise/● Apache Cassandra project site:
http://cassandra.apache.org/