SlideShare a Scribd company logo
© 2018, Amazon Web Services, Inc. or Its Affiliates. All rights reserved.
Ranju Das()
Director/ Amazon Rekognition / Amazon Web Services
Amazon Rekognition
Put machine
learning in the
hands of every
developer and
data scientist
ML @ AWS:
OUR MISSION
What are some of the
ML capabilities our customers are
asking for?
AWS ML Stack
Vision
Frameworks &
Infrastructure
AWS Deep Learning AMI
GPU
(P3 Instances)
MobileCPU IoT (Greengrass)
Platform
Services
Application
Services
Amazon
SageMaker
AWS
DeepLens
Rekognition
Image
Rekognition
Video
Speech
Polly Transcribe
Language
Translate ComprehendLex
Amazon Machine
Learning
Spark & EMR
Amazon Mechanical
Turk
TensorFlow GluonApache MXNet Cognitive Toolkit Caffe2 & Caffe PyTorch Keras
Customers Running Machine Learning On AWS Today
Frameworks &
Interfaces
GPU (P3 Instances) MobileCPU IoT (Greengrass)
Platform
Services
Application
Services
TensorFlow GluonApache MXNet Cognitive Toolkit Caffe2 & Caffe PyTorch Keras
AWS Deep Learning AMI
AWS ML Stack
Infrastructure
Amazon
SageMaker
AWS
DeepLens
Amazon Machine
Learning
Spark & EMR
Amazon Mechanical
Turk
Vision
Rekognition
Image
Rekognition
Video
Speech
Polly Transcribe
Language
Translate ComprehendLex
Amazon Rekognition Image
Deep learning-based image analysis service
Object and Scene
Detection
Facial
Analysis
Face
Recognition
Text in ImageUnsafe Image
Detection
Celebrity
Recognition
Facial Detection and Analysis
Image Quality
Facial Landmarks
Demographic Data Emotions
General Attributes
Facial Pose
Brightness 23.6%
Sharpness 99.9%
EyeLeft,EyeRight,Nose
RightPupil,LeftPupil
MouthRight,LeftEyeBrowUp
Bounding Box
Age Range 29-45
Gender: Male 96.5%
Happy 83.8%
Surprised 0.65%
Smile:True 23.6%
EyesOpen:True 99.8%
Beard:True 99.5%
Mustache:True 99.9%
Pitch 1.446
Roll 5.725
Yaw 4.383
Facial Detection and Analysis - Crowd
Support 100s of faces
Real-time face search against tens of millions of faces
Face Search
Text in Image Recognition
| 5T6E652 | 96.4%
Amazon Rekognition Video
Features
Amazon Rekognition Video
One solution for all
Stored video
Amazon S3
Video live stream
Amazon Kinesis video stream
Media search index
Unsafe video detection
Investigative analysis
Public safety immediate
response
Home monitoring
Video analysis
Necessity
Improve business operations and productivity
Improve customer experience and grow loyalty
Improve personal and family security
Enhance overall business safety and security
Boat 99.3%
Plant 95.1%
Harbor 94.8%
Yacht 78.1%
Dock 75.7%
City 72.4%
Architecture 71.8%
Urban 63.9%
Building 62.3%
Marina 60.3%
Plaza 51.1%
Spire 50.8%
Neighborhood 50.7%
Flower 50.6%
Waterfront 94.8%
Object and Scene Detection
Blowing a candle Drinking
Amazon Rekognition Video
Object, Scene and Activity Detection
{
"JobStatus": string,
"StatusMessage": string,
"VideoMetadata": {
"Format": string,
"Codec": string,
"DurationMillis": number,
"FrameRate": float,
"FrameWidth": number,
"FrameHeight": number
},
"NextToken": string,
"Labels": [
{
"Timestamp": number,
"Label":
{
"Name": string,
"Confidence": float
}
}
],
...
GetLabelDetection
StartLabelDetection
Amazon Rekognition Video
Object, Scene and Activity Detection
Amazon Rekognition Video
Person Tracking
"Persons": [
{
"Timestamp": number,
"Person":
{
"Index": number,
"BoundingBox":
{
"Width": number,
"Top": number,
"Height": number,
"Left": number
},
"Face":
{
"BoundingBox": { ... },
"Landmarks": { ... },
"Pose": { ... },
"Quality": { ... },
"Confidence": number
}
},
...
GetPersonTracking
StartPersonTracking
Amazon Rekognition Video
Person Tracking
Amazon Rekognition Video
Face Search
StartStreamProcessor
CreateStreamProcessor
Amazon Rekognition Video
Face Search – Live Stream
StopStreamProcessor
”InputInformation": {
”KinesisVideo": {
"StreamArn": "string"
"FragmentNumber": "string",
"ServerTimestamp": number,
"ProducerTimestamp": number,
"Frameoffser": number
},
"StreamProcessorInformation":{
"Status": "string"
}
"FaceSearchResponse":[
{
"DetectedFace":{},
"MatchedFaces": [
{
"Similarity":float
"FaceId":"string",
"ExternalImageId":"string",
"Confidence":float
}
]
}
]
"Persons": [
{
"Timestamp": number,
"Person":
{
"Index": number,
"BoundingBox": { ... },
"Face":
{
"BoundingBox": { ... },
"Landmarks": { ... },
"Pose": { ... },
"Quality": { ... },
"Confidence": number
}
},
"FaceMatches": [
{
"Face":
{
"BoundingBox": { ... },
"FaceId": string,
"ImageId": string,
"ExternalImageId": string,
"Confidence": number
},
"Similarity": number
...
GetFaceSearch
StartFaceSearch
Amazon Rekognition Video
Face Search
Amazon Rekognition Video
Celebrity Rekognition
"Celebrities": [
{
"Id": string,
"Timestamp": number,
"BoundingBox": { ... }
"Urls": [],
"Celebrity":
{
"Confidence": number
"Name": string,
"Face":
{
"BoundingBox": { ... },
"Landmarks": { ... },
"Pose": { ... },
"Quality": { ... },
"Confidence": number
}
}
},
…
GetCelebrityRecognition
StartCelebrityRecognition
Amazon Rekognition Video
Celebrity Recognition
Amazon Rekognition Video
Unsafe Video Detection
Suggestive Content
Female Swimwear
"ModerationLabels":[
{
"Timestamp":number,
"ModerationLabel":
{
"Name":"string",
"ParentName": "string",
"Confidence":float
}
},
...
GetContentModeration
StartContentModeration
Amazon Rekognition Video
Unsafe Video Detection
Amazon Rekognition Video
Media and entertainment
Create metadata for celebrities, emotions,
key topics in video with time segments for search
Recommendation engines, ad placement
Automatically detect inappropriate
content, based on market requirements
Extract data in streaming mode to enhance user engagement
Amazon Rekognition Video
Use case : Video Search Index
Video Amazon S3 AWS Lambda Amazon Rekognition Video
Amazon Elasticsearch Amazon DynamoDB
1. Video is uploaded
and stored to S3
2. Rekognition Video creates metadata
for celebrities, emotions, key topics in
video with time segments for search
4. Lambda also pushes
the metadata and confidence scores
into Elasticsearch
3. The output is persisted as
metadata into DynamoDB to
ensure durability
D y n a m i c s e a r c h i n d e x i n g
Amazon Rekognition Video
Public safety
Recognize a person of interest across a collection
of millions in real time across hundreds of cameras
Track a person of interest across a video
Create alerts by detecting objects and activities
of interest, such as car, license plate, running, etc.
Amazon Rekognition Video
Use case : Public Safety Immediate Response
Live Street Camera Amazon Kinesis Video Streams Amazon Rekognition Video Face collection
1. Camera-captured video
streams are processed by Kinesis
Video Streams
2. Rekognition Video analyses the video
and searches faces on screen against a
collection of millions of faces
L i v e r e c o g n i t i o n o f P e r s o n s o f I n t e r e s t
End User
3. End user is notified
in case of face matches
Amazon SNS AWS Lambda Amazon Kinesis
Streams
Amazon Rekognition Video
Use case : Face Search
Videos Amazon S3 Face collectionAmazon Rekognition Video
1. New videos are stored 2. Rekognition Video searches
for face matches to identify
Persons of Interest
R e c o g n i t i o n a n d t r a c k i n g o f p e r s o n s o f i n t e r e s t
3. Mapped faces with
timestamp on video
Amazon Rekognition Video
Home Monitoring
Face recognition for door-bell cameras
Detect Activities from home cameras
Amazon Rekognition Video
Other applications
Photo-sharing apps can power smart searches
and quickly find memories, such as weddings or sunsets
Store cameras can begin extracting data such
as person count, flow direction, flow velocity, etc.
Factories can use cameras for safety
management, operational efficiency, etc.
DEMO - Public Safety – Video Analysis
AWS 기반 인공지능 비디오 분석 서비스 소개::Ranju Das::AWS Summit Seoul 2018
DEMO – Home Monitoring – Live Stream Face Recognition
AWS 기반 인공지능 비디오 분석 서비스 소개::Ranju Das::AWS Summit Seoul 2018
DEMO – Media & Entertainment – Search Index
AWS 기반 인공지능 비디오 분석 서비스 소개::Ranju Das::AWS Summit Seoul 2018
Face Search - Public Safety
300,000+ images of previous offenders indexed in 2 days
Match time reduced from multiple days to seconds
Face Search - Public Safety
Face Search - Media and Entertainment
A u t o m a t i n g F o o t a g e
T a g g i n g w i t h A m a z o n
R e k o g n i t i o n
Indexed 99,000 people
Saves ~9,000 hours a year in labor
Amazon Rekognition
Customers
Broadest & Easiest to Use ML Platform
Data Lake Storage
Amazon S3
Security
Access Control
Encryption
Compute
Powerful GPU & CPU Instances
AWS Lambda
Analytics
Amazon Athena
Amazon EMR
Amazon Redshift & Redshift Spectrum
Data Lake Storage
Amazon S3
Security
Access Control
Encryption
Compute
Powerful GPU & CPU Instances
AWS Lambda
Analytics
Amazon Athena
Amazon EMR
Amazon Redshift & Redshift Spectrum
Broadest & Easiest to Use ML Platform
Data Lake Storage
Amazon S3
Security
Access Control
Encryption
Compute
Powerful GPU & CPU Instances
AWS Lambda
Analytics
Amazon Athena
Amazon EMR
Amazon Redshift & Redshift Spectrum
Broadest & Easiest to Use ML Platform with the Most Customers
© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.
© 2018, Amazon Web Services, Inc. or Its Affiliates. All rights reserved.
AWS Summit 모바일 앱과 QR코드를
통해 강연 평가 및 설문 조사에 참여해
주시기 바랍니다.
내년 Summit을 만들 여러분의 소중한
의견 부탁 드립니다.
#AWSSummit 해시태그로 소셜 미디어에 여러분의 행사
소감을 올려주세요.
발표 자료 및 녹화 동영상은 AWS Korea 공식 소셜 채널로
공유될 예정입니다.
여러분의 피드백을 기다립니다!
© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.
감사합니다
Ad

More Related Content

What's hot (16)

Kotlin, AWS와 함께라면 육군훈련소도 외롭지 않아
Kotlin, AWS와 함께라면 육군훈련소도 외롭지 않아Kotlin, AWS와 함께라면 육군훈련소도 외롭지 않아
Kotlin, AWS와 함께라면 육군훈련소도 외롭지 않아
Sunghoon Kang
 
AWS의 새로운 언어, 음성, 텍스트 처리 인공지능 서비스::Vikram Anbazhagan::AWS Summit Seoul 2018
AWS의 새로운 언어, 음성, 텍스트 처리 인공지능 서비스::Vikram Anbazhagan::AWS Summit Seoul 2018AWS의 새로운 언어, 음성, 텍스트 처리 인공지능 서비스::Vikram Anbazhagan::AWS Summit Seoul 2018
AWS의 새로운 언어, 음성, 텍스트 처리 인공지능 서비스::Vikram Anbazhagan::AWS Summit Seoul 2018
Amazon Web Services Korea
 
AWS Media Day- AWS 인공 지능 서비스를 활용한 미디어 서비스 개발화 (김기완 솔루션즈 아키텍트)
AWS Media Day- AWS 인공 지능 서비스를 활용한 미디어 서비스 개발화 (김기완 솔루션즈 아키텍트)AWS Media Day- AWS 인공 지능 서비스를 활용한 미디어 서비스 개발화 (김기완 솔루션즈 아키텍트)
AWS Media Day- AWS 인공 지능 서비스를 활용한 미디어 서비스 개발화 (김기완 솔루션즈 아키텍트)
Amazon Web Services Korea
 
AWS 기반 Microservice 운영을 위한 데브옵스 사례와 Spinnaker 소개::김영욱::AWS Summit Seoul 2018
AWS 기반 Microservice 운영을 위한 데브옵스 사례와 Spinnaker 소개::김영욱::AWS Summit Seoul 2018AWS 기반 Microservice 운영을 위한 데브옵스 사례와 Spinnaker 소개::김영욱::AWS Summit Seoul 2018
AWS 기반 Microservice 운영을 위한 데브옵스 사례와 Spinnaker 소개::김영욱::AWS Summit Seoul 2018
Amazon Web Services Korea
 
Serverless 개발에서의 인증 완벽 가이드::박선용::AWS Summit Seoul 2018
Serverless 개발에서의 인증 완벽 가이드::박선용::AWS Summit Seoul 2018Serverless 개발에서의 인증 완벽 가이드::박선용::AWS Summit Seoul 2018
Serverless 개발에서의 인증 완벽 가이드::박선용::AWS Summit Seoul 2018
Amazon Web Services Korea
 
국내 미디어 고객사의 AWS 활용 사례 - POOQ 서비스, 콘텐츠연합플랫폼::조휘열::AWS Summit Seoul 2018
국내 미디어 고객사의 AWS 활용 사례 - POOQ 서비스, 콘텐츠연합플랫폼::조휘열::AWS Summit Seoul 2018국내 미디어 고객사의 AWS 활용 사례 - POOQ 서비스, 콘텐츠연합플랫폼::조휘열::AWS Summit Seoul 2018
국내 미디어 고객사의 AWS 활용 사례 - POOQ 서비스, 콘텐츠연합플랫폼::조휘열::AWS Summit Seoul 2018
Amazon Web Services Korea
 
글로벌 미디어 고객사의 AWS 활용 사례-워싱턴 포스트 ::지정아::AWS Summit Seoul 2018
글로벌 미디어 고객사의 AWS 활용 사례-워싱턴 포스트 ::지정아::AWS Summit Seoul 2018글로벌 미디어 고객사의 AWS 활용 사례-워싱턴 포스트 ::지정아::AWS Summit Seoul 2018
글로벌 미디어 고객사의 AWS 활용 사례-워싱턴 포스트 ::지정아::AWS Summit Seoul 2018
Amazon Web Services Korea
 
AWS의 블록체인 서비스 활용 방법 - 박혜영 솔루션즈 아키텍트, AWS / 박선준 솔루션즈 아키텍트, AWS :: AWS Summit S...
AWS의 블록체인 서비스 활용 방법 - 박혜영 솔루션즈 아키텍트, AWS / 박선준 솔루션즈 아키텍트, AWS :: AWS Summit S...AWS의 블록체인 서비스 활용 방법 - 박혜영 솔루션즈 아키텍트, AWS / 박선준 솔루션즈 아키텍트, AWS :: AWS Summit S...
AWS의 블록체인 서비스 활용 방법 - 박혜영 솔루션즈 아키텍트, AWS / 박선준 솔루션즈 아키텍트, AWS :: AWS Summit S...
Amazon Web Services Korea
 
Firecracker, 서버리스 컴퓨팅을 위한 오픈소스 microVM 기술 :: 류한진 - AWS ...
Firecracker, 서버리스 컴퓨팅을 위한 오픈소스 microVM 기술 :: 류한진 - AWS ...Firecracker, 서버리스 컴퓨팅을 위한 오픈소스 microVM 기술 :: 류한진 - AWS ...
Firecracker, 서버리스 컴퓨팅을 위한 오픈소스 microVM 기술 :: 류한진 - AWS ...
AWSKRUG - AWS한국사용자모임
 
AWS Serverless 활용 네트워크 보안 아키텍처::함인용 실장, 이성현 매니저, 솔트웨어::AWS Summit Seoul 2018
AWS Serverless 활용 네트워크 보안 아키텍처::함인용 실장, 이성현 매니저, 솔트웨어::AWS Summit Seoul 2018AWS Serverless 활용 네트워크 보안 아키텍처::함인용 실장, 이성현 매니저, 솔트웨어::AWS Summit Seoul 2018
AWS Serverless 활용 네트워크 보안 아키텍처::함인용 실장, 이성현 매니저, 솔트웨어::AWS Summit Seoul 2018
Amazon Web Services Korea
 
Amazon Rekognition
Amazon RekognitionAmazon Rekognition
Amazon Rekognition
Amazon Web Services Japan
 
Service Mesh, 좀 더 쉽게 - AWS App Mesh :: 안주은 - AWS Community Day 2019
Service Mesh, 좀 더 쉽게 - AWS App Mesh :: 안주은 - AWS Community Day 2019Service Mesh, 좀 더 쉽게 - AWS App Mesh :: 안주은 - AWS Community Day 2019
Service Mesh, 좀 더 쉽게 - AWS App Mesh :: 안주은 - AWS Community Day 2019
AWSKRUG - AWS한국사용자모임
 
20190318 Amazon EC2 スポットインスタンス再入門
20190318 Amazon EC2 スポットインスタンス再入門20190318 Amazon EC2 スポットインスタンス再入門
20190318 Amazon EC2 スポットインスタンス再入門
Amazon Web Services Japan
 
AWS Smart Factory - 이세현, 조이정, 정현아, 김대근, 정창호, 김지선, AWS 솔루션즈 아키텍트 :: AWS Summit...
AWS Smart Factory - 이세현, 조이정, 정현아, 김대근, 정창호, 김지선, AWS 솔루션즈 아키텍트 :: AWS Summit...AWS Smart Factory - 이세현, 조이정, 정현아, 김대근, 정창호, 김지선, AWS 솔루션즈 아키텍트 :: AWS Summit...
AWS Smart Factory - 이세현, 조이정, 정현아, 김대근, 정창호, 김지선, AWS 솔루션즈 아키텍트 :: AWS Summit...
Amazon Web Services Korea
 
re:Invent 2018 Recap Digital Advertising (Japanese)
re:Invent 2018 Recap Digital Advertising (Japanese)re:Invent 2018 Recap Digital Advertising (Japanese)
re:Invent 2018 Recap Digital Advertising (Japanese)
Amazon Web Services Japan
 
Perfecting the Media Workflow Experience on AWS - Ben Masek, 월드와이드 미디어 사업개발 헤...
Perfecting the Media Workflow Experience on AWS - Ben Masek, 월드와이드 미디어 사업개발 헤...Perfecting the Media Workflow Experience on AWS - Ben Masek, 월드와이드 미디어 사업개발 헤...
Perfecting the Media Workflow Experience on AWS - Ben Masek, 월드와이드 미디어 사업개발 헤...
Amazon Web Services Korea
 
Kotlin, AWS와 함께라면 육군훈련소도 외롭지 않아
Kotlin, AWS와 함께라면 육군훈련소도 외롭지 않아Kotlin, AWS와 함께라면 육군훈련소도 외롭지 않아
Kotlin, AWS와 함께라면 육군훈련소도 외롭지 않아
Sunghoon Kang
 
AWS의 새로운 언어, 음성, 텍스트 처리 인공지능 서비스::Vikram Anbazhagan::AWS Summit Seoul 2018
AWS의 새로운 언어, 음성, 텍스트 처리 인공지능 서비스::Vikram Anbazhagan::AWS Summit Seoul 2018AWS의 새로운 언어, 음성, 텍스트 처리 인공지능 서비스::Vikram Anbazhagan::AWS Summit Seoul 2018
AWS의 새로운 언어, 음성, 텍스트 처리 인공지능 서비스::Vikram Anbazhagan::AWS Summit Seoul 2018
Amazon Web Services Korea
 
AWS Media Day- AWS 인공 지능 서비스를 활용한 미디어 서비스 개발화 (김기완 솔루션즈 아키텍트)
AWS Media Day- AWS 인공 지능 서비스를 활용한 미디어 서비스 개발화 (김기완 솔루션즈 아키텍트)AWS Media Day- AWS 인공 지능 서비스를 활용한 미디어 서비스 개발화 (김기완 솔루션즈 아키텍트)
AWS Media Day- AWS 인공 지능 서비스를 활용한 미디어 서비스 개발화 (김기완 솔루션즈 아키텍트)
Amazon Web Services Korea
 
AWS 기반 Microservice 운영을 위한 데브옵스 사례와 Spinnaker 소개::김영욱::AWS Summit Seoul 2018
AWS 기반 Microservice 운영을 위한 데브옵스 사례와 Spinnaker 소개::김영욱::AWS Summit Seoul 2018AWS 기반 Microservice 운영을 위한 데브옵스 사례와 Spinnaker 소개::김영욱::AWS Summit Seoul 2018
AWS 기반 Microservice 운영을 위한 데브옵스 사례와 Spinnaker 소개::김영욱::AWS Summit Seoul 2018
Amazon Web Services Korea
 
Serverless 개발에서의 인증 완벽 가이드::박선용::AWS Summit Seoul 2018
Serverless 개발에서의 인증 완벽 가이드::박선용::AWS Summit Seoul 2018Serverless 개발에서의 인증 완벽 가이드::박선용::AWS Summit Seoul 2018
Serverless 개발에서의 인증 완벽 가이드::박선용::AWS Summit Seoul 2018
Amazon Web Services Korea
 
국내 미디어 고객사의 AWS 활용 사례 - POOQ 서비스, 콘텐츠연합플랫폼::조휘열::AWS Summit Seoul 2018
국내 미디어 고객사의 AWS 활용 사례 - POOQ 서비스, 콘텐츠연합플랫폼::조휘열::AWS Summit Seoul 2018국내 미디어 고객사의 AWS 활용 사례 - POOQ 서비스, 콘텐츠연합플랫폼::조휘열::AWS Summit Seoul 2018
국내 미디어 고객사의 AWS 활용 사례 - POOQ 서비스, 콘텐츠연합플랫폼::조휘열::AWS Summit Seoul 2018
Amazon Web Services Korea
 
글로벌 미디어 고객사의 AWS 활용 사례-워싱턴 포스트 ::지정아::AWS Summit Seoul 2018
글로벌 미디어 고객사의 AWS 활용 사례-워싱턴 포스트 ::지정아::AWS Summit Seoul 2018글로벌 미디어 고객사의 AWS 활용 사례-워싱턴 포스트 ::지정아::AWS Summit Seoul 2018
글로벌 미디어 고객사의 AWS 활용 사례-워싱턴 포스트 ::지정아::AWS Summit Seoul 2018
Amazon Web Services Korea
 
AWS의 블록체인 서비스 활용 방법 - 박혜영 솔루션즈 아키텍트, AWS / 박선준 솔루션즈 아키텍트, AWS :: AWS Summit S...
AWS의 블록체인 서비스 활용 방법 - 박혜영 솔루션즈 아키텍트, AWS / 박선준 솔루션즈 아키텍트, AWS :: AWS Summit S...AWS의 블록체인 서비스 활용 방법 - 박혜영 솔루션즈 아키텍트, AWS / 박선준 솔루션즈 아키텍트, AWS :: AWS Summit S...
AWS의 블록체인 서비스 활용 방법 - 박혜영 솔루션즈 아키텍트, AWS / 박선준 솔루션즈 아키텍트, AWS :: AWS Summit S...
Amazon Web Services Korea
 
Firecracker, 서버리스 컴퓨팅을 위한 오픈소스 microVM 기술 :: 류한진 - AWS ...
Firecracker, 서버리스 컴퓨팅을 위한 오픈소스 microVM 기술 :: 류한진 - AWS ...Firecracker, 서버리스 컴퓨팅을 위한 오픈소스 microVM 기술 :: 류한진 - AWS ...
Firecracker, 서버리스 컴퓨팅을 위한 오픈소스 microVM 기술 :: 류한진 - AWS ...
AWSKRUG - AWS한국사용자모임
 
AWS Serverless 활용 네트워크 보안 아키텍처::함인용 실장, 이성현 매니저, 솔트웨어::AWS Summit Seoul 2018
AWS Serverless 활용 네트워크 보안 아키텍처::함인용 실장, 이성현 매니저, 솔트웨어::AWS Summit Seoul 2018AWS Serverless 활용 네트워크 보안 아키텍처::함인용 실장, 이성현 매니저, 솔트웨어::AWS Summit Seoul 2018
AWS Serverless 활용 네트워크 보안 아키텍처::함인용 실장, 이성현 매니저, 솔트웨어::AWS Summit Seoul 2018
Amazon Web Services Korea
 
Service Mesh, 좀 더 쉽게 - AWS App Mesh :: 안주은 - AWS Community Day 2019
Service Mesh, 좀 더 쉽게 - AWS App Mesh :: 안주은 - AWS Community Day 2019Service Mesh, 좀 더 쉽게 - AWS App Mesh :: 안주은 - AWS Community Day 2019
Service Mesh, 좀 더 쉽게 - AWS App Mesh :: 안주은 - AWS Community Day 2019
AWSKRUG - AWS한국사용자모임
 
20190318 Amazon EC2 スポットインスタンス再入門
20190318 Amazon EC2 スポットインスタンス再入門20190318 Amazon EC2 スポットインスタンス再入門
20190318 Amazon EC2 スポットインスタンス再入門
Amazon Web Services Japan
 
AWS Smart Factory - 이세현, 조이정, 정현아, 김대근, 정창호, 김지선, AWS 솔루션즈 아키텍트 :: AWS Summit...
AWS Smart Factory - 이세현, 조이정, 정현아, 김대근, 정창호, 김지선, AWS 솔루션즈 아키텍트 :: AWS Summit...AWS Smart Factory - 이세현, 조이정, 정현아, 김대근, 정창호, 김지선, AWS 솔루션즈 아키텍트 :: AWS Summit...
AWS Smart Factory - 이세현, 조이정, 정현아, 김대근, 정창호, 김지선, AWS 솔루션즈 아키텍트 :: AWS Summit...
Amazon Web Services Korea
 
re:Invent 2018 Recap Digital Advertising (Japanese)
re:Invent 2018 Recap Digital Advertising (Japanese)re:Invent 2018 Recap Digital Advertising (Japanese)
re:Invent 2018 Recap Digital Advertising (Japanese)
Amazon Web Services Japan
 
Perfecting the Media Workflow Experience on AWS - Ben Masek, 월드와이드 미디어 사업개발 헤...
Perfecting the Media Workflow Experience on AWS - Ben Masek, 월드와이드 미디어 사업개발 헤...Perfecting the Media Workflow Experience on AWS - Ben Masek, 월드와이드 미디어 사업개발 헤...
Perfecting the Media Workflow Experience on AWS - Ben Masek, 월드와이드 미디어 사업개발 헤...
Amazon Web Services Korea
 

Similar to AWS 기반 인공지능 비디오 분석 서비스 소개::Ranju Das::AWS Summit Seoul 2018 (7)

Adding Image and Video Analysis to your Applications (May 2018)
Adding Image and Video Analysis to your Applications (May 2018)Adding Image and Video Analysis to your Applications (May 2018)
Adding Image and Video Analysis to your Applications (May 2018)
Julien SIMON
 
Build Computer Vision Applications with Amazon Rekognition and SageMaker
Build Computer Vision Applications with Amazon Rekognition and SageMakerBuild Computer Vision Applications with Amazon Rekognition and SageMaker
Build Computer Vision Applications with Amazon Rekognition and SageMaker
Sungmin Kim
 
Gaming on AWS - 8. 서버 없이 게임 만들기 - Serverless Architecture
Gaming on AWS - 8. 서버 없이 게임 만들기 - Serverless ArchitectureGaming on AWS - 8. 서버 없이 게임 만들기 - Serverless Architecture
Gaming on AWS - 8. 서버 없이 게임 만들기 - Serverless Architecture
Amazon Web Services Korea
 
Artificial Intelligence on the AWS Platform
Artificial Intelligence on the AWS PlatformArtificial Intelligence on the AWS Platform
Artificial Intelligence on the AWS Platform
Adrian Hornsby
 
Integrando Machine Learning - da ingestão à persistência - AWS
Integrando Machine Learning - da ingestão à persistência - AWS Integrando Machine Learning - da ingestão à persistência - AWS
Integrando Machine Learning - da ingestão à persistência - AWS
Hugo Rozestraten
 
Amazon AI (October 2017)
Amazon AI (October 2017)Amazon AI (October 2017)
Amazon AI (October 2017)
Julien SIMON
 
AI and Innovations on AWS
AI and Innovations on AWSAI and Innovations on AWS
AI and Innovations on AWS
Adrian Hornsby
 
Adding Image and Video Analysis to your Applications (May 2018)
Adding Image and Video Analysis to your Applications (May 2018)Adding Image and Video Analysis to your Applications (May 2018)
Adding Image and Video Analysis to your Applications (May 2018)
Julien SIMON
 
Build Computer Vision Applications with Amazon Rekognition and SageMaker
Build Computer Vision Applications with Amazon Rekognition and SageMakerBuild Computer Vision Applications with Amazon Rekognition and SageMaker
Build Computer Vision Applications with Amazon Rekognition and SageMaker
Sungmin Kim
 
Gaming on AWS - 8. 서버 없이 게임 만들기 - Serverless Architecture
Gaming on AWS - 8. 서버 없이 게임 만들기 - Serverless ArchitectureGaming on AWS - 8. 서버 없이 게임 만들기 - Serverless Architecture
Gaming on AWS - 8. 서버 없이 게임 만들기 - Serverless Architecture
Amazon Web Services Korea
 
Artificial Intelligence on the AWS Platform
Artificial Intelligence on the AWS PlatformArtificial Intelligence on the AWS Platform
Artificial Intelligence on the AWS Platform
Adrian Hornsby
 
Integrando Machine Learning - da ingestão à persistência - AWS
Integrando Machine Learning - da ingestão à persistência - AWS Integrando Machine Learning - da ingestão à persistência - AWS
Integrando Machine Learning - da ingestão à persistência - AWS
Hugo Rozestraten
 
Amazon AI (October 2017)
Amazon AI (October 2017)Amazon AI (October 2017)
Amazon AI (October 2017)
Julien SIMON
 
AI and Innovations on AWS
AI and Innovations on AWSAI and Innovations on AWS
AI and Innovations on AWS
Adrian Hornsby
 
Ad

More from Amazon Web Services Korea (20)

[D3T1S01] Gen AI를 위한 Amazon Aurora 활용 사례 방법
[D3T1S01] Gen AI를 위한 Amazon Aurora  활용 사례 방법[D3T1S01] Gen AI를 위한 Amazon Aurora  활용 사례 방법
[D3T1S01] Gen AI를 위한 Amazon Aurora 활용 사례 방법
Amazon Web Services Korea
 
[D3T1S06] Neptune Analytics with Vector Similarity Search
[D3T1S06] Neptune Analytics with Vector Similarity Search[D3T1S06] Neptune Analytics with Vector Similarity Search
[D3T1S06] Neptune Analytics with Vector Similarity Search
Amazon Web Services Korea
 
[D3T1S03] Amazon DynamoDB design puzzlers
[D3T1S03] Amazon DynamoDB design puzzlers[D3T1S03] Amazon DynamoDB design puzzlers
[D3T1S03] Amazon DynamoDB design puzzlers
Amazon Web Services Korea
 
[D3T1S04] Aurora PostgreSQL performance monitoring and troubleshooting by use...
[D3T1S04] Aurora PostgreSQL performance monitoring and troubleshooting by use...[D3T1S04] Aurora PostgreSQL performance monitoring and troubleshooting by use...
[D3T1S04] Aurora PostgreSQL performance monitoring and troubleshooting by use...
Amazon Web Services Korea
 
[D3T1S07] AWS S3 - 클라우드 환경에서 데이터베이스 보호하기
[D3T1S07] AWS S3 - 클라우드 환경에서 데이터베이스 보호하기[D3T1S07] AWS S3 - 클라우드 환경에서 데이터베이스 보호하기
[D3T1S07] AWS S3 - 클라우드 환경에서 데이터베이스 보호하기
Amazon Web Services Korea
 
[D3T1S05] Aurora 혼합 구성 아키텍처를 사용하여 예상치 못한 트래픽 급증 대응하기
[D3T1S05] Aurora 혼합 구성 아키텍처를 사용하여 예상치 못한 트래픽 급증 대응하기[D3T1S05] Aurora 혼합 구성 아키텍처를 사용하여 예상치 못한 트래픽 급증 대응하기
[D3T1S05] Aurora 혼합 구성 아키텍처를 사용하여 예상치 못한 트래픽 급증 대응하기
Amazon Web Services Korea
 
[D3T1S02] Aurora Limitless Database Introduction
[D3T1S02] Aurora Limitless Database Introduction[D3T1S02] Aurora Limitless Database Introduction
[D3T1S02] Aurora Limitless Database Introduction
Amazon Web Services Korea
 
[D3T2S01] Amazon Aurora MySQL 메이저 버전 업그레이드 및 Amazon B/G Deployments 실습
[D3T2S01] Amazon Aurora MySQL 메이저 버전 업그레이드 및 Amazon B/G Deployments 실습[D3T2S01] Amazon Aurora MySQL 메이저 버전 업그레이드 및 Amazon B/G Deployments 실습
[D3T2S01] Amazon Aurora MySQL 메이저 버전 업그레이드 및 Amazon B/G Deployments 실습
Amazon Web Services Korea
 
[D3T2S03] Data&AI Roadshow 2024 - Amazon DocumentDB 실습
[D3T2S03] Data&AI Roadshow 2024 - Amazon DocumentDB 실습[D3T2S03] Data&AI Roadshow 2024 - Amazon DocumentDB 실습
[D3T2S03] Data&AI Roadshow 2024 - Amazon DocumentDB 실습
Amazon Web Services Korea
 
AWS Modern Infra with Storage Roadshow 2023 - Day 2
AWS Modern Infra with Storage Roadshow 2023 - Day 2AWS Modern Infra with Storage Roadshow 2023 - Day 2
AWS Modern Infra with Storage Roadshow 2023 - Day 2
Amazon Web Services Korea
 
AWS Modern Infra with Storage Roadshow 2023 - Day 1
AWS Modern Infra with Storage Roadshow 2023 - Day 1AWS Modern Infra with Storage Roadshow 2023 - Day 1
AWS Modern Infra with Storage Roadshow 2023 - Day 1
Amazon Web Services Korea
 
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
Amazon Web Services Korea
 
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
Amazon Web Services Korea
 
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
Amazon Web Services Korea
 
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
Amazon Web Services Korea
 
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
Amazon Web Services Korea
 
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
Amazon Web Services Korea
 
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
Amazon Web Services Korea
 
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
Amazon Web Services Korea
 
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
Amazon Web Services Korea
 
[D3T1S01] Gen AI를 위한 Amazon Aurora 활용 사례 방법
[D3T1S01] Gen AI를 위한 Amazon Aurora  활용 사례 방법[D3T1S01] Gen AI를 위한 Amazon Aurora  활용 사례 방법
[D3T1S01] Gen AI를 위한 Amazon Aurora 활용 사례 방법
Amazon Web Services Korea
 
[D3T1S06] Neptune Analytics with Vector Similarity Search
[D3T1S06] Neptune Analytics with Vector Similarity Search[D3T1S06] Neptune Analytics with Vector Similarity Search
[D3T1S06] Neptune Analytics with Vector Similarity Search
Amazon Web Services Korea
 
[D3T1S04] Aurora PostgreSQL performance monitoring and troubleshooting by use...
[D3T1S04] Aurora PostgreSQL performance monitoring and troubleshooting by use...[D3T1S04] Aurora PostgreSQL performance monitoring and troubleshooting by use...
[D3T1S04] Aurora PostgreSQL performance monitoring and troubleshooting by use...
Amazon Web Services Korea
 
[D3T1S07] AWS S3 - 클라우드 환경에서 데이터베이스 보호하기
[D3T1S07] AWS S3 - 클라우드 환경에서 데이터베이스 보호하기[D3T1S07] AWS S3 - 클라우드 환경에서 데이터베이스 보호하기
[D3T1S07] AWS S3 - 클라우드 환경에서 데이터베이스 보호하기
Amazon Web Services Korea
 
[D3T1S05] Aurora 혼합 구성 아키텍처를 사용하여 예상치 못한 트래픽 급증 대응하기
[D3T1S05] Aurora 혼합 구성 아키텍처를 사용하여 예상치 못한 트래픽 급증 대응하기[D3T1S05] Aurora 혼합 구성 아키텍처를 사용하여 예상치 못한 트래픽 급증 대응하기
[D3T1S05] Aurora 혼합 구성 아키텍처를 사용하여 예상치 못한 트래픽 급증 대응하기
Amazon Web Services Korea
 
[D3T1S02] Aurora Limitless Database Introduction
[D3T1S02] Aurora Limitless Database Introduction[D3T1S02] Aurora Limitless Database Introduction
[D3T1S02] Aurora Limitless Database Introduction
Amazon Web Services Korea
 
[D3T2S01] Amazon Aurora MySQL 메이저 버전 업그레이드 및 Amazon B/G Deployments 실습
[D3T2S01] Amazon Aurora MySQL 메이저 버전 업그레이드 및 Amazon B/G Deployments 실습[D3T2S01] Amazon Aurora MySQL 메이저 버전 업그레이드 및 Amazon B/G Deployments 실습
[D3T2S01] Amazon Aurora MySQL 메이저 버전 업그레이드 및 Amazon B/G Deployments 실습
Amazon Web Services Korea
 
[D3T2S03] Data&AI Roadshow 2024 - Amazon DocumentDB 실습
[D3T2S03] Data&AI Roadshow 2024 - Amazon DocumentDB 실습[D3T2S03] Data&AI Roadshow 2024 - Amazon DocumentDB 실습
[D3T2S03] Data&AI Roadshow 2024 - Amazon DocumentDB 실습
Amazon Web Services Korea
 
AWS Modern Infra with Storage Roadshow 2023 - Day 2
AWS Modern Infra with Storage Roadshow 2023 - Day 2AWS Modern Infra with Storage Roadshow 2023 - Day 2
AWS Modern Infra with Storage Roadshow 2023 - Day 2
Amazon Web Services Korea
 
AWS Modern Infra with Storage Roadshow 2023 - Day 1
AWS Modern Infra with Storage Roadshow 2023 - Day 1AWS Modern Infra with Storage Roadshow 2023 - Day 1
AWS Modern Infra with Storage Roadshow 2023 - Day 1
Amazon Web Services Korea
 
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
Amazon Web Services Korea
 
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
Amazon Web Services Korea
 
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
Amazon Web Services Korea
 
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
Amazon Web Services Korea
 
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
Amazon Web Services Korea
 
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
Amazon Web Services Korea
 
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
Amazon Web Services Korea
 
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
Amazon Web Services Korea
 
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
Amazon Web Services Korea
 
Ad

Recently uploaded (20)

Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 

AWS 기반 인공지능 비디오 분석 서비스 소개::Ranju Das::AWS Summit Seoul 2018

  • 1. © 2018, Amazon Web Services, Inc. or Its Affiliates. All rights reserved. Ranju Das() Director/ Amazon Rekognition / Amazon Web Services Amazon Rekognition
  • 2. Put machine learning in the hands of every developer and data scientist ML @ AWS: OUR MISSION
  • 3. What are some of the ML capabilities our customers are asking for?
  • 4. AWS ML Stack Vision Frameworks & Infrastructure AWS Deep Learning AMI GPU (P3 Instances) MobileCPU IoT (Greengrass) Platform Services Application Services Amazon SageMaker AWS DeepLens Rekognition Image Rekognition Video Speech Polly Transcribe Language Translate ComprehendLex Amazon Machine Learning Spark & EMR Amazon Mechanical Turk TensorFlow GluonApache MXNet Cognitive Toolkit Caffe2 & Caffe PyTorch Keras
  • 5. Customers Running Machine Learning On AWS Today
  • 6. Frameworks & Interfaces GPU (P3 Instances) MobileCPU IoT (Greengrass) Platform Services Application Services TensorFlow GluonApache MXNet Cognitive Toolkit Caffe2 & Caffe PyTorch Keras AWS Deep Learning AMI AWS ML Stack Infrastructure Amazon SageMaker AWS DeepLens Amazon Machine Learning Spark & EMR Amazon Mechanical Turk Vision Rekognition Image Rekognition Video Speech Polly Transcribe Language Translate ComprehendLex
  • 7. Amazon Rekognition Image Deep learning-based image analysis service Object and Scene Detection Facial Analysis Face Recognition Text in ImageUnsafe Image Detection Celebrity Recognition
  • 8. Facial Detection and Analysis Image Quality Facial Landmarks Demographic Data Emotions General Attributes Facial Pose Brightness 23.6% Sharpness 99.9% EyeLeft,EyeRight,Nose RightPupil,LeftPupil MouthRight,LeftEyeBrowUp Bounding Box Age Range 29-45 Gender: Male 96.5% Happy 83.8% Surprised 0.65% Smile:True 23.6% EyesOpen:True 99.8% Beard:True 99.5% Mustache:True 99.9% Pitch 1.446 Roll 5.725 Yaw 4.383
  • 9. Facial Detection and Analysis - Crowd Support 100s of faces
  • 10. Real-time face search against tens of millions of faces Face Search
  • 11. Text in Image Recognition | 5T6E652 | 96.4%
  • 13. Amazon Rekognition Video One solution for all Stored video Amazon S3 Video live stream Amazon Kinesis video stream Media search index Unsafe video detection Investigative analysis Public safety immediate response Home monitoring
  • 14. Video analysis Necessity Improve business operations and productivity Improve customer experience and grow loyalty Improve personal and family security Enhance overall business safety and security
  • 15. Boat 99.3% Plant 95.1% Harbor 94.8% Yacht 78.1% Dock 75.7% City 72.4% Architecture 71.8% Urban 63.9% Building 62.3% Marina 60.3% Plaza 51.1% Spire 50.8% Neighborhood 50.7% Flower 50.6% Waterfront 94.8% Object and Scene Detection
  • 16. Blowing a candle Drinking Amazon Rekognition Video Object, Scene and Activity Detection
  • 17. { "JobStatus": string, "StatusMessage": string, "VideoMetadata": { "Format": string, "Codec": string, "DurationMillis": number, "FrameRate": float, "FrameWidth": number, "FrameHeight": number }, "NextToken": string, "Labels": [ { "Timestamp": number, "Label": { "Name": string, "Confidence": float } } ], ... GetLabelDetection StartLabelDetection Amazon Rekognition Video Object, Scene and Activity Detection
  • 19. "Persons": [ { "Timestamp": number, "Person": { "Index": number, "BoundingBox": { "Width": number, "Top": number, "Height": number, "Left": number }, "Face": { "BoundingBox": { ... }, "Landmarks": { ... }, "Pose": { ... }, "Quality": { ... }, "Confidence": number } }, ... GetPersonTracking StartPersonTracking Amazon Rekognition Video Person Tracking
  • 21. StartStreamProcessor CreateStreamProcessor Amazon Rekognition Video Face Search – Live Stream StopStreamProcessor ”InputInformation": { ”KinesisVideo": { "StreamArn": "string" "FragmentNumber": "string", "ServerTimestamp": number, "ProducerTimestamp": number, "Frameoffser": number }, "StreamProcessorInformation":{ "Status": "string" } "FaceSearchResponse":[ { "DetectedFace":{}, "MatchedFaces": [ { "Similarity":float "FaceId":"string", "ExternalImageId":"string", "Confidence":float } ] } ]
  • 22. "Persons": [ { "Timestamp": number, "Person": { "Index": number, "BoundingBox": { ... }, "Face": { "BoundingBox": { ... }, "Landmarks": { ... }, "Pose": { ... }, "Quality": { ... }, "Confidence": number } }, "FaceMatches": [ { "Face": { "BoundingBox": { ... }, "FaceId": string, "ImageId": string, "ExternalImageId": string, "Confidence": number }, "Similarity": number ... GetFaceSearch StartFaceSearch Amazon Rekognition Video Face Search
  • 24. "Celebrities": [ { "Id": string, "Timestamp": number, "BoundingBox": { ... } "Urls": [], "Celebrity": { "Confidence": number "Name": string, "Face": { "BoundingBox": { ... }, "Landmarks": { ... }, "Pose": { ... }, "Quality": { ... }, "Confidence": number } } }, … GetCelebrityRecognition StartCelebrityRecognition Amazon Rekognition Video Celebrity Recognition
  • 25. Amazon Rekognition Video Unsafe Video Detection Suggestive Content Female Swimwear
  • 27. Amazon Rekognition Video Media and entertainment Create metadata for celebrities, emotions, key topics in video with time segments for search Recommendation engines, ad placement Automatically detect inappropriate content, based on market requirements Extract data in streaming mode to enhance user engagement
  • 28. Amazon Rekognition Video Use case : Video Search Index Video Amazon S3 AWS Lambda Amazon Rekognition Video Amazon Elasticsearch Amazon DynamoDB 1. Video is uploaded and stored to S3 2. Rekognition Video creates metadata for celebrities, emotions, key topics in video with time segments for search 4. Lambda also pushes the metadata and confidence scores into Elasticsearch 3. The output is persisted as metadata into DynamoDB to ensure durability D y n a m i c s e a r c h i n d e x i n g
  • 29. Amazon Rekognition Video Public safety Recognize a person of interest across a collection of millions in real time across hundreds of cameras Track a person of interest across a video Create alerts by detecting objects and activities of interest, such as car, license plate, running, etc.
  • 30. Amazon Rekognition Video Use case : Public Safety Immediate Response Live Street Camera Amazon Kinesis Video Streams Amazon Rekognition Video Face collection 1. Camera-captured video streams are processed by Kinesis Video Streams 2. Rekognition Video analyses the video and searches faces on screen against a collection of millions of faces L i v e r e c o g n i t i o n o f P e r s o n s o f I n t e r e s t End User 3. End user is notified in case of face matches Amazon SNS AWS Lambda Amazon Kinesis Streams
  • 31. Amazon Rekognition Video Use case : Face Search Videos Amazon S3 Face collectionAmazon Rekognition Video 1. New videos are stored 2. Rekognition Video searches for face matches to identify Persons of Interest R e c o g n i t i o n a n d t r a c k i n g o f p e r s o n s o f i n t e r e s t 3. Mapped faces with timestamp on video
  • 32. Amazon Rekognition Video Home Monitoring Face recognition for door-bell cameras Detect Activities from home cameras
  • 33. Amazon Rekognition Video Other applications Photo-sharing apps can power smart searches and quickly find memories, such as weddings or sunsets Store cameras can begin extracting data such as person count, flow direction, flow velocity, etc. Factories can use cameras for safety management, operational efficiency, etc.
  • 34. DEMO - Public Safety – Video Analysis
  • 36. DEMO – Home Monitoring – Live Stream Face Recognition
  • 38. DEMO – Media & Entertainment – Search Index
  • 40. Face Search - Public Safety 300,000+ images of previous offenders indexed in 2 days Match time reduced from multiple days to seconds
  • 41. Face Search - Public Safety
  • 42. Face Search - Media and Entertainment A u t o m a t i n g F o o t a g e T a g g i n g w i t h A m a z o n R e k o g n i t i o n Indexed 99,000 people Saves ~9,000 hours a year in labor
  • 44. Broadest & Easiest to Use ML Platform Data Lake Storage Amazon S3 Security Access Control Encryption Compute Powerful GPU & CPU Instances AWS Lambda Analytics Amazon Athena Amazon EMR Amazon Redshift & Redshift Spectrum
  • 45. Data Lake Storage Amazon S3 Security Access Control Encryption Compute Powerful GPU & CPU Instances AWS Lambda Analytics Amazon Athena Amazon EMR Amazon Redshift & Redshift Spectrum Broadest & Easiest to Use ML Platform
  • 46. Data Lake Storage Amazon S3 Security Access Control Encryption Compute Powerful GPU & CPU Instances AWS Lambda Analytics Amazon Athena Amazon EMR Amazon Redshift & Redshift Spectrum Broadest & Easiest to Use ML Platform with the Most Customers
  • 47. © 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved. © 2018, Amazon Web Services, Inc. or Its Affiliates. All rights reserved. AWS Summit 모바일 앱과 QR코드를 통해 강연 평가 및 설문 조사에 참여해 주시기 바랍니다. 내년 Summit을 만들 여러분의 소중한 의견 부탁 드립니다. #AWSSummit 해시태그로 소셜 미디어에 여러분의 행사 소감을 올려주세요. 발표 자료 및 녹화 동영상은 AWS Korea 공식 소셜 채널로 공유될 예정입니다. 여러분의 피드백을 기다립니다!
  • 48. © 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved. 감사합니다