SlideShare a Scribd company logo
Alex Zeltov
An Open Source Platform for the Machine
Learning Lifecycle for On-Prem or in the
Cloud
Introductionto Ml
Alex Zeltov
Big Data Solutions Architect / AI Engineer
Background:
• Sr. Solutions Architect - part of a Global Black Belt Team Big
Data & AI in Microsoft
• Sr. Solutions Engineer at Hortonworks specializing in HDP and
HDF
• Research Scientist at Independent Blue Cross – BigData and
ML
• Sr. Software Engineer at Oracle
Machine Learning E2E Development is Complex!!!
Typical E2E Process
…
Prepare Experiment Deploy
Orchestrate
Result: It is difficult to productionize and share.
Motivation: the Deployment Process
5
Data Engineer
Dev Ops
Pickled Model
What’sPickle?
Data Scientist
ML Development Challenges
• 100s of software tools to leverage
• Hard to track & reproduce results: code, data, params, etc
• Hard to productionize models
• Needs large scale for best results
Custom MLPlatforms
Facebook FBLearner,Uber Michelangelo, Google TFX
+Standardize the data prep /training / deployloop:
if you work with theplatform,you get these!
–Limited to a few algorithms orframeworks
–Tied to one company’sinfrastructure
–Out of luck if you left the company….
Can we provide similar benefits in an open manner?
• Open source platform for the machine learning lifecycle.
• API First:
 Allow submitting runs, models, works with any ML
library & language
 MlFlow APIs are available for the Python, R and Java
 REST API
• Runs the same way anywhere: on-prem or any cloud
• > 3,700 stars on GitHub , 92 contributors from > 40
companies. > 200 companies are now using MlFlow*
Introductionto Ml
* https://www.oreilly.com/ideas/specialized-tools-for-machine-learning-development-and-model-governance-are-becoming-essential
MlFlowComponents
Tracking
Record and query
experiments: code,
data, config, results
Projects
Packaging format
for reproducibleruns
onany platform
Models
General modelformat
that supports diverse
deploymenttools
distinct components: use different components individually based on your needs
Tracking Experiments with MlFlowTracking Server
MLflow Tracking is…
• a logging API specific for machine learning
• agnostic to libraries and environments that do the training
• organized around the concept of runs, which are executions of data
science code
• runs are aggregated into experiments where many runs can be a part
of a given experiment
• An MLflow server can host many experiments
MlFlowTracking Server
Azure Machine
Learning
DatabricksIaaS CloudOn-Premise
pip install mlflow
mlflow.set_tracking_uri(URI)
CDH / HDP
Experiments inTracking Server
Parameters: key-value inputs to your code
Metrics: numeric values (can update over time)
Artifacts: arbitrary files, including models
Tags/Notes: info about a run
Source: what code ran
Version: git version
import mlflow
# log model’s tuning parameters
with mlflow.start_run():
mlflow.log_param("layers", layers)
mlflow.log_param("alpha", alpha)
# log model’s metrics
mlflow.log_metric("mse", model.mse())
mlflow.log_artifact("plot", model.plot(test_df))
mlflow.tensorflow.log_model(model)
Experiments Tracking API
Record and query
experiments: code,
configs, results,etc
Demo MlFlow
Tracking Server
MlFlow Projects
There are a number of different reasons why teams need to package their
machine learning projects:
• Projects have various library dependencies
• shipping a machine learning solution involves the environment in which it was built
• MLflow allows for this environment to be a conda environment or docker container
• This means that teams can easily share and publish their code for others to use
• Machine learning projects become increasingly complex as time goes on
• This includes ETL and featurization steps, machine learning models used for pre-
processing, and finally the model training itself
• Each component of a machine learning pipeline needs to allow for tracing
its lineage
• If there's a failure at some point, tracing the full end-to-end lineage of a model
allows for easier debugging.
MlFlow Projects
Project Spec
Code DataConfig
Local Execution
Remote Execution
Example MlFlowProject
my_project/
├── MLproject
│
│
│
│
│
├── conda.yaml
├── main.py
└── model.py
...
conda_env: conda.yaml
entry_points:
main:
parameters:
training_data: path
lambda: {type: float, default: 0.1}
command: python main.py {training_data} {lambda}
$ mlflow run ml-production/mlflow-model-training/ -P
data_path=airbnb-cleaned-mlflow.csv
$ mlflow run git://https://github.com/mlflow/mlflow-example
mlflow.run(
uri="https://github.com/mlflow/mlflow-example",
parameters={'alpha':0.4}
)
Demo MlFlow Project
MlFlow Models
• Once a model has been trained and bundled with the environment it
was trained in. The next step is to package the model so that it can be
used by a variety of serving tools
• Current deployment options include:
• Container-based REST servers
• Continuous deployment using Spark streaming
• Batch
• Managed cloud platforms such as Azure ML and AWS SageMaker
• Packaging the final model in a platform-agnostic way offers the most
flexibility in deployment options and allows for model reuse across a
number of platforms.
MlFlow Models
MLFrameworks
InferenceCode
Batch &Stream Scoring
Serving ToolsStandard for MLmodels
ModelFormat
mlflow.pyfunc
mlflow.h2o
mlflow.keras
mlflow.pytorch
mlflow.sklearn
mlflow.spark
mlflow.tensorflow
Example MlFlow Model
my_model/
├── MLmodel
│
│
│
│
│
└── estimator/
├── saved_model.pb
└── variables/
...
Usable by tools thatunderstand
TensorFlowmodel format
Usable by any tool that can run
Python (Docker,Spark, etc!)
run_id: 769915006efd4c4bbd662461
time_created: 2018-06-28T12:34
flavors:
tensorflow:
saved_model_dir: estimator
signature_def_key: predict
python_function:
loader_module: mlflow.tensorflow
>>> mlflow.tensorflow.log_model(...)
Demo MlFlow Model
MlFlow +
Azure Machine Learning +
Azure Databricks
https://www.zdnet.com/article/microsoft-to-join-mlflow-
project-add-native-support-to-azure-machine-learning/
What is Azure Machine Learning service?
Set of Azure
Cloud Services
Python
SDK
 Prepare Data
 Build Models
 Train Models
 Manage Models
 Track Experiments
 Deploy Models
That enables
you to:
Machine Learning on Azure
Domain specific pretrained models
To reduce time to market
Azure
Databricks
Machine
Learning VMs
Popular frameworks
To build advanced deep learning solutions
TensorFlowPytorch Onnx
Azure Machine
Learning
LanguageSpeech
…
SearchVision
Productive services
To empower data science and development teams
Powerful infrastructure
To accelerate deep learning
Scikit-Learn
PyCharm Jupyter
Familiar Data Science tools
To simplify model development
Visual Studio Code Command line
CPU GPU FPGA
From the Intelligent Cloud to the Intelligent Edge
Azure ML service
Key Artifacts
Workspace
Azure ML: How to deploy models at scale
Demo MlFlow + AML +
Azure Databricks
https://eastus2.azuredatabricks.net/?o=3336252523001260#n
otebook/2623556200920093/command/2623556200920094
Conclusion + Q & A
• MlFlow can greatly simplify the ML lifecycle
• Simplify lifecycle development
• Lightweight, open platform that integrates easily
• Available APIs: Python, Java &R
• Easy to install and use
• Develop locally and track locally or remotely
• Deploy locally, cloud, on premise…
• Visualize experiments
Learning More AboutMlFlow
• pip install mlflow to get started
• Find docs &examples atmlflow.org
• https://github.com/mlflow/mlflow
• tinyurl.com/mlflow-slack
• https://docs.azuredatabricks.net/applications/mlflow/quick-
start.html
Ad

More Related Content

What's hot (20)

Apply MLOps at Scale by H&M
Apply MLOps at Scale by H&MApply MLOps at Scale by H&M
Apply MLOps at Scale by H&M
Databricks
 
MLOps Using MLflow
MLOps Using MLflowMLOps Using MLflow
MLOps Using MLflow
Databricks
 
MLOps for production-level machine learning
MLOps for production-level machine learningMLOps for production-level machine learning
MLOps for production-level machine learning
cnvrg.io AI OS - Hands-on ML Workshops
 
MLOps - The Assembly Line of ML
MLOps - The Assembly Line of MLMLOps - The Assembly Line of ML
MLOps - The Assembly Line of ML
Jordan Birdsell
 
Ml ops past_present_future
Ml ops past_present_futureMl ops past_present_future
Ml ops past_present_future
Nisha Talagala
 
Simplifying Model Management with MLflow
Simplifying Model Management with MLflowSimplifying Model Management with MLflow
Simplifying Model Management with MLflow
Databricks
 
MLflow: Infrastructure for a Complete Machine Learning Life Cycle with Mani ...
 MLflow: Infrastructure for a Complete Machine Learning Life Cycle with Mani ... MLflow: Infrastructure for a Complete Machine Learning Life Cycle with Mani ...
MLflow: Infrastructure for a Complete Machine Learning Life Cycle with Mani ...
Databricks
 
ML-Ops how to bring your data science to production
ML-Ops  how to bring your data science to productionML-Ops  how to bring your data science to production
ML-Ops how to bring your data science to production
Herman Wu
 
The A-Z of Data: Introduction to MLOps
The A-Z of Data: Introduction to MLOpsThe A-Z of Data: Introduction to MLOps
The A-Z of Data: Introduction to MLOps
DataPhoenix
 
Using MLOps to Bring ML to Production/The Promise of MLOps
Using MLOps to Bring ML to Production/The Promise of MLOpsUsing MLOps to Bring ML to Production/The Promise of MLOps
Using MLOps to Bring ML to Production/The Promise of MLOps
Weaveworks
 
Databricks Overview for MLOps
Databricks Overview for MLOpsDatabricks Overview for MLOps
Databricks Overview for MLOps
Databricks
 
mlflow: Accelerating the End-to-End ML lifecycle
mlflow: Accelerating the End-to-End ML lifecyclemlflow: Accelerating the End-to-End ML lifecycle
mlflow: Accelerating the End-to-End ML lifecycle
Databricks
 
"Managing the Complete Machine Learning Lifecycle with MLflow"
"Managing the Complete Machine Learning Lifecycle with MLflow""Managing the Complete Machine Learning Lifecycle with MLflow"
"Managing the Complete Machine Learning Lifecycle with MLflow"
Databricks
 
MLOps Virtual Event | Building Machine Learning Platforms for the Full Lifecycle
MLOps Virtual Event | Building Machine Learning Platforms for the Full LifecycleMLOps Virtual Event | Building Machine Learning Platforms for the Full Lifecycle
MLOps Virtual Event | Building Machine Learning Platforms for the Full Lifecycle
Databricks
 
MLflow: Infrastructure for a Complete Machine Learning Life Cycle
MLflow: Infrastructure for a Complete Machine Learning Life CycleMLflow: Infrastructure for a Complete Machine Learning Life Cycle
MLflow: Infrastructure for a Complete Machine Learning Life Cycle
Databricks
 
Ml ops intro session
Ml ops   intro sessionMl ops   intro session
Ml ops intro session
Avinash Patil
 
MLOps Bridging the gap between Data Scientists and Ops.
MLOps Bridging the gap between Data Scientists and Ops.MLOps Bridging the gap between Data Scientists and Ops.
MLOps Bridging the gap between Data Scientists and Ops.
Knoldus Inc.
 
What is MLOps
What is MLOpsWhat is MLOps
What is MLOps
Henrik Skogström
 
MLFlow: Platform for Complete Machine Learning Lifecycle
MLFlow: Platform for Complete Machine Learning Lifecycle MLFlow: Platform for Complete Machine Learning Lifecycle
MLFlow: Platform for Complete Machine Learning Lifecycle
Databricks
 
Productionzing ML Model Using MLflow Model Serving
Productionzing ML Model Using MLflow Model ServingProductionzing ML Model Using MLflow Model Serving
Productionzing ML Model Using MLflow Model Serving
Databricks
 
Apply MLOps at Scale by H&M
Apply MLOps at Scale by H&MApply MLOps at Scale by H&M
Apply MLOps at Scale by H&M
Databricks
 
MLOps Using MLflow
MLOps Using MLflowMLOps Using MLflow
MLOps Using MLflow
Databricks
 
MLOps - The Assembly Line of ML
MLOps - The Assembly Line of MLMLOps - The Assembly Line of ML
MLOps - The Assembly Line of ML
Jordan Birdsell
 
Ml ops past_present_future
Ml ops past_present_futureMl ops past_present_future
Ml ops past_present_future
Nisha Talagala
 
Simplifying Model Management with MLflow
Simplifying Model Management with MLflowSimplifying Model Management with MLflow
Simplifying Model Management with MLflow
Databricks
 
MLflow: Infrastructure for a Complete Machine Learning Life Cycle with Mani ...
 MLflow: Infrastructure for a Complete Machine Learning Life Cycle with Mani ... MLflow: Infrastructure for a Complete Machine Learning Life Cycle with Mani ...
MLflow: Infrastructure for a Complete Machine Learning Life Cycle with Mani ...
Databricks
 
ML-Ops how to bring your data science to production
ML-Ops  how to bring your data science to productionML-Ops  how to bring your data science to production
ML-Ops how to bring your data science to production
Herman Wu
 
The A-Z of Data: Introduction to MLOps
The A-Z of Data: Introduction to MLOpsThe A-Z of Data: Introduction to MLOps
The A-Z of Data: Introduction to MLOps
DataPhoenix
 
Using MLOps to Bring ML to Production/The Promise of MLOps
Using MLOps to Bring ML to Production/The Promise of MLOpsUsing MLOps to Bring ML to Production/The Promise of MLOps
Using MLOps to Bring ML to Production/The Promise of MLOps
Weaveworks
 
Databricks Overview for MLOps
Databricks Overview for MLOpsDatabricks Overview for MLOps
Databricks Overview for MLOps
Databricks
 
mlflow: Accelerating the End-to-End ML lifecycle
mlflow: Accelerating the End-to-End ML lifecyclemlflow: Accelerating the End-to-End ML lifecycle
mlflow: Accelerating the End-to-End ML lifecycle
Databricks
 
"Managing the Complete Machine Learning Lifecycle with MLflow"
"Managing the Complete Machine Learning Lifecycle with MLflow""Managing the Complete Machine Learning Lifecycle with MLflow"
"Managing the Complete Machine Learning Lifecycle with MLflow"
Databricks
 
MLOps Virtual Event | Building Machine Learning Platforms for the Full Lifecycle
MLOps Virtual Event | Building Machine Learning Platforms for the Full LifecycleMLOps Virtual Event | Building Machine Learning Platforms for the Full Lifecycle
MLOps Virtual Event | Building Machine Learning Platforms for the Full Lifecycle
Databricks
 
MLflow: Infrastructure for a Complete Machine Learning Life Cycle
MLflow: Infrastructure for a Complete Machine Learning Life CycleMLflow: Infrastructure for a Complete Machine Learning Life Cycle
MLflow: Infrastructure for a Complete Machine Learning Life Cycle
Databricks
 
Ml ops intro session
Ml ops   intro sessionMl ops   intro session
Ml ops intro session
Avinash Patil
 
MLOps Bridging the gap between Data Scientists and Ops.
MLOps Bridging the gap between Data Scientists and Ops.MLOps Bridging the gap between Data Scientists and Ops.
MLOps Bridging the gap between Data Scientists and Ops.
Knoldus Inc.
 
MLFlow: Platform for Complete Machine Learning Lifecycle
MLFlow: Platform for Complete Machine Learning Lifecycle MLFlow: Platform for Complete Machine Learning Lifecycle
MLFlow: Platform for Complete Machine Learning Lifecycle
Databricks
 
Productionzing ML Model Using MLflow Model Serving
Productionzing ML Model Using MLflow Model ServingProductionzing ML Model Using MLflow Model Serving
Productionzing ML Model Using MLflow Model Serving
Databricks
 

Similar to Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycle for On-Prem or in the Cloud (20)

MLflow with Databricks
MLflow with DatabricksMLflow with Databricks
MLflow with Databricks
Liangjun Jiang
 
Mlflow with databricks
Mlflow with databricksMlflow with databricks
Mlflow with databricks
Liangjun Jiang
 
MLFlow 1.0 Meetup
MLFlow 1.0 Meetup MLFlow 1.0 Meetup
MLFlow 1.0 Meetup
Databricks
 
MLOps pipelines using MLFlow - From training to production
MLOps pipelines using MLFlow - From training to productionMLOps pipelines using MLFlow - From training to production
MLOps pipelines using MLFlow - From training to production
Fabian Hadiji
 
ML Ops Tools ML flow and Hugging Face(2).pptx
ML Ops Tools ML flow and Hugging Face(2).pptxML Ops Tools ML flow and Hugging Face(2).pptx
ML Ops Tools ML flow and Hugging Face(2).pptx
MohamedHomoda3
 
Scaling up Machine Learning Development
Scaling up Machine Learning DevelopmentScaling up Machine Learning Development
Scaling up Machine Learning Development
Matei Zaharia
 
Trenowanie i wdrażanie modeli uczenia maszynowego z wykorzystaniem Google Clo...
Trenowanie i wdrażanie modeli uczenia maszynowego z wykorzystaniem Google Clo...Trenowanie i wdrażanie modeli uczenia maszynowego z wykorzystaniem Google Clo...
Trenowanie i wdrażanie modeli uczenia maszynowego z wykorzystaniem Google Clo...
Sotrender
 
MLOps in action
MLOps in actionMLOps in action
MLOps in action
Pieter de Bruin
 
Building a MLOps Platform Around MLflow to Enable Model Productionalization i...
Building a MLOps Platform Around MLflow to Enable Model Productionalization i...Building a MLOps Platform Around MLflow to Enable Model Productionalization i...
Building a MLOps Platform Around MLflow to Enable Model Productionalization i...
Databricks
 
DevOps for Machine Learning overview en-us
DevOps for Machine Learning overview en-usDevOps for Machine Learning overview en-us
DevOps for Machine Learning overview en-us
eltonrodriguez11
 
[DSC Europe 23] Petar Zecevic - ML in Production on Databricks
[DSC Europe 23] Petar Zecevic - ML in Production on Databricks[DSC Europe 23] Petar Zecevic - ML in Production on Databricks
[DSC Europe 23] Petar Zecevic - ML in Production on Databricks
DataScienceConferenc1
 
Utilisation de MLflow pour le cycle de vie des projet Machine learning
Utilisation de MLflow pour le cycle de vie des projet Machine learningUtilisation de MLflow pour le cycle de vie des projet Machine learning
Utilisation de MLflow pour le cycle de vie des projet Machine learning
Paris Data Engineers !
 
DEVOPS AND MACHINE LEARNING
DEVOPS AND MACHINE LEARNINGDEVOPS AND MACHINE LEARNING
DEVOPS AND MACHINE LEARNING
CodeOps Technologies LLP
 
Nasscom ml ops webinar
Nasscom ml ops webinarNasscom ml ops webinar
Nasscom ml ops webinar
Sameer Mahajan
 
Improving the Life of Data Scientists: Automating ML Lifecycle through MLflow
Improving the Life of Data Scientists: Automating ML Lifecycle through MLflowImproving the Life of Data Scientists: Automating ML Lifecycle through MLflow
Improving the Life of Data Scientists: Automating ML Lifecycle through MLflow
Databricks
 
201906 04 Overview of Automated ML June 2019
201906 04 Overview of Automated ML June 2019201906 04 Overview of Automated ML June 2019
201906 04 Overview of Automated ML June 2019
Mark Tabladillo
 
Managing the Complete Machine Learning Lifecycle with MLflow
Managing the Complete Machine Learning Lifecycle with MLflowManaging the Complete Machine Learning Lifecycle with MLflow
Managing the Complete Machine Learning Lifecycle with MLflow
Databricks
 
201908 Overview of Automated ML
201908 Overview of Automated ML201908 Overview of Automated ML
201908 Overview of Automated ML
Mark Tabladillo
 
201906 02 Introduction to AutoML with ML.NET 1.0
201906 02 Introduction to AutoML with ML.NET 1.0201906 02 Introduction to AutoML with ML.NET 1.0
201906 02 Introduction to AutoML with ML.NET 1.0
Mark Tabladillo
 
MLflow: Infrastructure for a Complete Machine Learning Life Cycle
MLflow: Infrastructure for a Complete Machine Learning Life CycleMLflow: Infrastructure for a Complete Machine Learning Life Cycle
MLflow: Infrastructure for a Complete Machine Learning Life Cycle
Databricks
 
MLflow with Databricks
MLflow with DatabricksMLflow with Databricks
MLflow with Databricks
Liangjun Jiang
 
Mlflow with databricks
Mlflow with databricksMlflow with databricks
Mlflow with databricks
Liangjun Jiang
 
MLFlow 1.0 Meetup
MLFlow 1.0 Meetup MLFlow 1.0 Meetup
MLFlow 1.0 Meetup
Databricks
 
MLOps pipelines using MLFlow - From training to production
MLOps pipelines using MLFlow - From training to productionMLOps pipelines using MLFlow - From training to production
MLOps pipelines using MLFlow - From training to production
Fabian Hadiji
 
ML Ops Tools ML flow and Hugging Face(2).pptx
ML Ops Tools ML flow and Hugging Face(2).pptxML Ops Tools ML flow and Hugging Face(2).pptx
ML Ops Tools ML flow and Hugging Face(2).pptx
MohamedHomoda3
 
Scaling up Machine Learning Development
Scaling up Machine Learning DevelopmentScaling up Machine Learning Development
Scaling up Machine Learning Development
Matei Zaharia
 
Trenowanie i wdrażanie modeli uczenia maszynowego z wykorzystaniem Google Clo...
Trenowanie i wdrażanie modeli uczenia maszynowego z wykorzystaniem Google Clo...Trenowanie i wdrażanie modeli uczenia maszynowego z wykorzystaniem Google Clo...
Trenowanie i wdrażanie modeli uczenia maszynowego z wykorzystaniem Google Clo...
Sotrender
 
Building a MLOps Platform Around MLflow to Enable Model Productionalization i...
Building a MLOps Platform Around MLflow to Enable Model Productionalization i...Building a MLOps Platform Around MLflow to Enable Model Productionalization i...
Building a MLOps Platform Around MLflow to Enable Model Productionalization i...
Databricks
 
DevOps for Machine Learning overview en-us
DevOps for Machine Learning overview en-usDevOps for Machine Learning overview en-us
DevOps for Machine Learning overview en-us
eltonrodriguez11
 
[DSC Europe 23] Petar Zecevic - ML in Production on Databricks
[DSC Europe 23] Petar Zecevic - ML in Production on Databricks[DSC Europe 23] Petar Zecevic - ML in Production on Databricks
[DSC Europe 23] Petar Zecevic - ML in Production on Databricks
DataScienceConferenc1
 
Utilisation de MLflow pour le cycle de vie des projet Machine learning
Utilisation de MLflow pour le cycle de vie des projet Machine learningUtilisation de MLflow pour le cycle de vie des projet Machine learning
Utilisation de MLflow pour le cycle de vie des projet Machine learning
Paris Data Engineers !
 
Nasscom ml ops webinar
Nasscom ml ops webinarNasscom ml ops webinar
Nasscom ml ops webinar
Sameer Mahajan
 
Improving the Life of Data Scientists: Automating ML Lifecycle through MLflow
Improving the Life of Data Scientists: Automating ML Lifecycle through MLflowImproving the Life of Data Scientists: Automating ML Lifecycle through MLflow
Improving the Life of Data Scientists: Automating ML Lifecycle through MLflow
Databricks
 
201906 04 Overview of Automated ML June 2019
201906 04 Overview of Automated ML June 2019201906 04 Overview of Automated ML June 2019
201906 04 Overview of Automated ML June 2019
Mark Tabladillo
 
Managing the Complete Machine Learning Lifecycle with MLflow
Managing the Complete Machine Learning Lifecycle with MLflowManaging the Complete Machine Learning Lifecycle with MLflow
Managing the Complete Machine Learning Lifecycle with MLflow
Databricks
 
201908 Overview of Automated ML
201908 Overview of Automated ML201908 Overview of Automated ML
201908 Overview of Automated ML
Mark Tabladillo
 
201906 02 Introduction to AutoML with ML.NET 1.0
201906 02 Introduction to AutoML with ML.NET 1.0201906 02 Introduction to AutoML with ML.NET 1.0
201906 02 Introduction to AutoML with ML.NET 1.0
Mark Tabladillo
 
MLflow: Infrastructure for a Complete Machine Learning Life Cycle
MLflow: Infrastructure for a Complete Machine Learning Life CycleMLflow: Infrastructure for a Complete Machine Learning Life Cycle
MLflow: Infrastructure for a Complete Machine Learning Life Cycle
Databricks
 
Ad

More from DataWorks Summit (20)

Data Science Crash Course
Data Science Crash CourseData Science Crash Course
Data Science Crash Course
DataWorks Summit
 
Floating on a RAFT: HBase Durability with Apache Ratis
Floating on a RAFT: HBase Durability with Apache RatisFloating on a RAFT: HBase Durability with Apache Ratis
Floating on a RAFT: HBase Durability with Apache Ratis
DataWorks Summit
 
Tracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFi
Tracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFiTracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFi
Tracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFi
DataWorks Summit
 
HBase Tales From the Trenches - Short stories about most common HBase operati...
HBase Tales From the Trenches - Short stories about most common HBase operati...HBase Tales From the Trenches - Short stories about most common HBase operati...
HBase Tales From the Trenches - Short stories about most common HBase operati...
DataWorks Summit
 
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
DataWorks Summit
 
Managing the Dewey Decimal System
Managing the Dewey Decimal SystemManaging the Dewey Decimal System
Managing the Dewey Decimal System
DataWorks Summit
 
Practical NoSQL: Accumulo's dirlist Example
Practical NoSQL: Accumulo's dirlist ExamplePractical NoSQL: Accumulo's dirlist Example
Practical NoSQL: Accumulo's dirlist Example
DataWorks Summit
 
HBase Global Indexing to support large-scale data ingestion at Uber
HBase Global Indexing to support large-scale data ingestion at UberHBase Global Indexing to support large-scale data ingestion at Uber
HBase Global Indexing to support large-scale data ingestion at Uber
DataWorks Summit
 
Scaling Cloud-Scale Translytics Workloads with Omid and Phoenix
Scaling Cloud-Scale Translytics Workloads with Omid and PhoenixScaling Cloud-Scale Translytics Workloads with Omid and Phoenix
Scaling Cloud-Scale Translytics Workloads with Omid and Phoenix
DataWorks Summit
 
Building the High Speed Cybersecurity Data Pipeline Using Apache NiFi
Building the High Speed Cybersecurity Data Pipeline Using Apache NiFiBuilding the High Speed Cybersecurity Data Pipeline Using Apache NiFi
Building the High Speed Cybersecurity Data Pipeline Using Apache NiFi
DataWorks Summit
 
Supporting Apache HBase : Troubleshooting and Supportability Improvements
Supporting Apache HBase : Troubleshooting and Supportability ImprovementsSupporting Apache HBase : Troubleshooting and Supportability Improvements
Supporting Apache HBase : Troubleshooting and Supportability Improvements
DataWorks Summit
 
Security Framework for Multitenant Architecture
Security Framework for Multitenant ArchitectureSecurity Framework for Multitenant Architecture
Security Framework for Multitenant Architecture
DataWorks Summit
 
Presto: Optimizing Performance of SQL-on-Anything Engine
Presto: Optimizing Performance of SQL-on-Anything EnginePresto: Optimizing Performance of SQL-on-Anything Engine
Presto: Optimizing Performance of SQL-on-Anything Engine
DataWorks Summit
 
Extending Twitter's Data Platform to Google Cloud
Extending Twitter's Data Platform to Google CloudExtending Twitter's Data Platform to Google Cloud
Extending Twitter's Data Platform to Google Cloud
DataWorks Summit
 
Event-Driven Messaging and Actions using Apache Flink and Apache NiFi
Event-Driven Messaging and Actions using Apache Flink and Apache NiFiEvent-Driven Messaging and Actions using Apache Flink and Apache NiFi
Event-Driven Messaging and Actions using Apache Flink and Apache NiFi
DataWorks Summit
 
Securing Data in Hybrid on-premise and Cloud Environments using Apache Ranger
Securing Data in Hybrid on-premise and Cloud Environments using Apache RangerSecuring Data in Hybrid on-premise and Cloud Environments using Apache Ranger
Securing Data in Hybrid on-premise and Cloud Environments using Apache Ranger
DataWorks Summit
 
Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...
Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...
Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...
DataWorks Summit
 
Computer Vision: Coming to a Store Near You
Computer Vision: Coming to a Store Near YouComputer Vision: Coming to a Store Near You
Computer Vision: Coming to a Store Near You
DataWorks Summit
 
Big Data Genomics: Clustering Billions of DNA Sequences with Apache Spark
Big Data Genomics: Clustering Billions of DNA Sequences with Apache SparkBig Data Genomics: Clustering Billions of DNA Sequences with Apache Spark
Big Data Genomics: Clustering Billions of DNA Sequences with Apache Spark
DataWorks Summit
 
Transforming and Scaling Large Scale Data Analytics: Moving to a Cloud-based ...
Transforming and Scaling Large Scale Data Analytics: Moving to a Cloud-based ...Transforming and Scaling Large Scale Data Analytics: Moving to a Cloud-based ...
Transforming and Scaling Large Scale Data Analytics: Moving to a Cloud-based ...
DataWorks Summit
 
Floating on a RAFT: HBase Durability with Apache Ratis
Floating on a RAFT: HBase Durability with Apache RatisFloating on a RAFT: HBase Durability with Apache Ratis
Floating on a RAFT: HBase Durability with Apache Ratis
DataWorks Summit
 
Tracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFi
Tracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFiTracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFi
Tracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFi
DataWorks Summit
 
HBase Tales From the Trenches - Short stories about most common HBase operati...
HBase Tales From the Trenches - Short stories about most common HBase operati...HBase Tales From the Trenches - Short stories about most common HBase operati...
HBase Tales From the Trenches - Short stories about most common HBase operati...
DataWorks Summit
 
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
DataWorks Summit
 
Managing the Dewey Decimal System
Managing the Dewey Decimal SystemManaging the Dewey Decimal System
Managing the Dewey Decimal System
DataWorks Summit
 
Practical NoSQL: Accumulo's dirlist Example
Practical NoSQL: Accumulo's dirlist ExamplePractical NoSQL: Accumulo's dirlist Example
Practical NoSQL: Accumulo's dirlist Example
DataWorks Summit
 
HBase Global Indexing to support large-scale data ingestion at Uber
HBase Global Indexing to support large-scale data ingestion at UberHBase Global Indexing to support large-scale data ingestion at Uber
HBase Global Indexing to support large-scale data ingestion at Uber
DataWorks Summit
 
Scaling Cloud-Scale Translytics Workloads with Omid and Phoenix
Scaling Cloud-Scale Translytics Workloads with Omid and PhoenixScaling Cloud-Scale Translytics Workloads with Omid and Phoenix
Scaling Cloud-Scale Translytics Workloads with Omid and Phoenix
DataWorks Summit
 
Building the High Speed Cybersecurity Data Pipeline Using Apache NiFi
Building the High Speed Cybersecurity Data Pipeline Using Apache NiFiBuilding the High Speed Cybersecurity Data Pipeline Using Apache NiFi
Building the High Speed Cybersecurity Data Pipeline Using Apache NiFi
DataWorks Summit
 
Supporting Apache HBase : Troubleshooting and Supportability Improvements
Supporting Apache HBase : Troubleshooting and Supportability ImprovementsSupporting Apache HBase : Troubleshooting and Supportability Improvements
Supporting Apache HBase : Troubleshooting and Supportability Improvements
DataWorks Summit
 
Security Framework for Multitenant Architecture
Security Framework for Multitenant ArchitectureSecurity Framework for Multitenant Architecture
Security Framework for Multitenant Architecture
DataWorks Summit
 
Presto: Optimizing Performance of SQL-on-Anything Engine
Presto: Optimizing Performance of SQL-on-Anything EnginePresto: Optimizing Performance of SQL-on-Anything Engine
Presto: Optimizing Performance of SQL-on-Anything Engine
DataWorks Summit
 
Extending Twitter's Data Platform to Google Cloud
Extending Twitter's Data Platform to Google CloudExtending Twitter's Data Platform to Google Cloud
Extending Twitter's Data Platform to Google Cloud
DataWorks Summit
 
Event-Driven Messaging and Actions using Apache Flink and Apache NiFi
Event-Driven Messaging and Actions using Apache Flink and Apache NiFiEvent-Driven Messaging and Actions using Apache Flink and Apache NiFi
Event-Driven Messaging and Actions using Apache Flink and Apache NiFi
DataWorks Summit
 
Securing Data in Hybrid on-premise and Cloud Environments using Apache Ranger
Securing Data in Hybrid on-premise and Cloud Environments using Apache RangerSecuring Data in Hybrid on-premise and Cloud Environments using Apache Ranger
Securing Data in Hybrid on-premise and Cloud Environments using Apache Ranger
DataWorks Summit
 
Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...
Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...
Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...
DataWorks Summit
 
Computer Vision: Coming to a Store Near You
Computer Vision: Coming to a Store Near YouComputer Vision: Coming to a Store Near You
Computer Vision: Coming to a Store Near You
DataWorks Summit
 
Big Data Genomics: Clustering Billions of DNA Sequences with Apache Spark
Big Data Genomics: Clustering Billions of DNA Sequences with Apache SparkBig Data Genomics: Clustering Billions of DNA Sequences with Apache Spark
Big Data Genomics: Clustering Billions of DNA Sequences with Apache Spark
DataWorks Summit
 
Transforming and Scaling Large Scale Data Analytics: Moving to a Cloud-based ...
Transforming and Scaling Large Scale Data Analytics: Moving to a Cloud-based ...Transforming and Scaling Large Scale Data Analytics: Moving to a Cloud-based ...
Transforming and Scaling Large Scale Data Analytics: Moving to a Cloud-based ...
DataWorks Summit
 
Ad

Recently uploaded (20)

Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
"PHP and MySQL CRUD Operations for Student Management System"
"PHP and MySQL CRUD Operations for Student Management System""PHP and MySQL CRUD Operations for Student Management System"
"PHP and MySQL CRUD Operations for Student Management System"
Jainul Musani
 
Datastucture-Unit 4-Linked List Presentation.pptx
Datastucture-Unit 4-Linked List Presentation.pptxDatastucture-Unit 4-Linked List Presentation.pptx
Datastucture-Unit 4-Linked List Presentation.pptx
kaleeswaric3
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
"Client Partnership — the Path to Exponential Growth for Companies Sized 50-5...
"Client Partnership — the Path to Exponential Growth for Companies Sized 50-5..."Client Partnership — the Path to Exponential Growth for Companies Sized 50-5...
"Client Partnership — the Path to Exponential Growth for Companies Sized 50-5...
Fwdays
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Hands On: Create a Lightning Aura Component with force:RecordData
Hands On: Create a Lightning Aura Component with force:RecordDataHands On: Create a Lightning Aura Component with force:RecordData
Hands On: Create a Lightning Aura Component with force:RecordData
Lynda Kane
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Salesforce AI Associate 2 of 2 Certification.docx
Salesforce AI Associate 2 of 2 Certification.docxSalesforce AI Associate 2 of 2 Certification.docx
Salesforce AI Associate 2 of 2 Certification.docx
José Enrique López Rivera
 
Network Security. Different aspects of Network Security.
Network Security. Different aspects of Network Security.Network Security. Different aspects of Network Security.
Network Security. Different aspects of Network Security.
gregtap1
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
"PHP and MySQL CRUD Operations for Student Management System"
"PHP and MySQL CRUD Operations for Student Management System""PHP and MySQL CRUD Operations for Student Management System"
"PHP and MySQL CRUD Operations for Student Management System"
Jainul Musani
 
Datastucture-Unit 4-Linked List Presentation.pptx
Datastucture-Unit 4-Linked List Presentation.pptxDatastucture-Unit 4-Linked List Presentation.pptx
Datastucture-Unit 4-Linked List Presentation.pptx
kaleeswaric3
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
"Client Partnership — the Path to Exponential Growth for Companies Sized 50-5...
"Client Partnership — the Path to Exponential Growth for Companies Sized 50-5..."Client Partnership — the Path to Exponential Growth for Companies Sized 50-5...
"Client Partnership — the Path to Exponential Growth for Companies Sized 50-5...
Fwdays
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Hands On: Create a Lightning Aura Component with force:RecordData
Hands On: Create a Lightning Aura Component with force:RecordDataHands On: Create a Lightning Aura Component with force:RecordData
Hands On: Create a Lightning Aura Component with force:RecordData
Lynda Kane
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Salesforce AI Associate 2 of 2 Certification.docx
Salesforce AI Associate 2 of 2 Certification.docxSalesforce AI Associate 2 of 2 Certification.docx
Salesforce AI Associate 2 of 2 Certification.docx
José Enrique López Rivera
 
Network Security. Different aspects of Network Security.
Network Security. Different aspects of Network Security.Network Security. Different aspects of Network Security.
Network Security. Different aspects of Network Security.
gregtap1
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 

Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycle for On-Prem or in the Cloud

  • 1. Alex Zeltov An Open Source Platform for the Machine Learning Lifecycle for On-Prem or in the Cloud Introductionto Ml
  • 2. Alex Zeltov Big Data Solutions Architect / AI Engineer Background: • Sr. Solutions Architect - part of a Global Black Belt Team Big Data & AI in Microsoft • Sr. Solutions Engineer at Hortonworks specializing in HDP and HDF • Research Scientist at Independent Blue Cross – BigData and ML • Sr. Software Engineer at Oracle
  • 3. Machine Learning E2E Development is Complex!!! Typical E2E Process … Prepare Experiment Deploy Orchestrate Result: It is difficult to productionize and share.
  • 4. Motivation: the Deployment Process 5 Data Engineer Dev Ops Pickled Model What’sPickle? Data Scientist
  • 5. ML Development Challenges • 100s of software tools to leverage • Hard to track & reproduce results: code, data, params, etc • Hard to productionize models • Needs large scale for best results
  • 6. Custom MLPlatforms Facebook FBLearner,Uber Michelangelo, Google TFX +Standardize the data prep /training / deployloop: if you work with theplatform,you get these! –Limited to a few algorithms orframeworks –Tied to one company’sinfrastructure –Out of luck if you left the company…. Can we provide similar benefits in an open manner?
  • 7. • Open source platform for the machine learning lifecycle. • API First:  Allow submitting runs, models, works with any ML library & language  MlFlow APIs are available for the Python, R and Java  REST API • Runs the same way anywhere: on-prem or any cloud • > 3,700 stars on GitHub , 92 contributors from > 40 companies. > 200 companies are now using MlFlow* Introductionto Ml * https://www.oreilly.com/ideas/specialized-tools-for-machine-learning-development-and-model-governance-are-becoming-essential
  • 8. MlFlowComponents Tracking Record and query experiments: code, data, config, results Projects Packaging format for reproducibleruns onany platform Models General modelformat that supports diverse deploymenttools distinct components: use different components individually based on your needs
  • 9. Tracking Experiments with MlFlowTracking Server MLflow Tracking is… • a logging API specific for machine learning • agnostic to libraries and environments that do the training • organized around the concept of runs, which are executions of data science code • runs are aggregated into experiments where many runs can be a part of a given experiment • An MLflow server can host many experiments
  • 10. MlFlowTracking Server Azure Machine Learning DatabricksIaaS CloudOn-Premise pip install mlflow mlflow.set_tracking_uri(URI) CDH / HDP
  • 11. Experiments inTracking Server Parameters: key-value inputs to your code Metrics: numeric values (can update over time) Artifacts: arbitrary files, including models Tags/Notes: info about a run Source: what code ran Version: git version import mlflow # log model’s tuning parameters with mlflow.start_run(): mlflow.log_param("layers", layers) mlflow.log_param("alpha", alpha) # log model’s metrics mlflow.log_metric("mse", model.mse()) mlflow.log_artifact("plot", model.plot(test_df)) mlflow.tensorflow.log_model(model)
  • 12. Experiments Tracking API Record and query experiments: code, configs, results,etc
  • 14. MlFlow Projects There are a number of different reasons why teams need to package their machine learning projects: • Projects have various library dependencies • shipping a machine learning solution involves the environment in which it was built • MLflow allows for this environment to be a conda environment or docker container • This means that teams can easily share and publish their code for others to use • Machine learning projects become increasingly complex as time goes on • This includes ETL and featurization steps, machine learning models used for pre- processing, and finally the model training itself • Each component of a machine learning pipeline needs to allow for tracing its lineage • If there's a failure at some point, tracing the full end-to-end lineage of a model allows for easier debugging.
  • 15. MlFlow Projects Project Spec Code DataConfig Local Execution Remote Execution
  • 16. Example MlFlowProject my_project/ ├── MLproject │ │ │ │ │ ├── conda.yaml ├── main.py └── model.py ... conda_env: conda.yaml entry_points: main: parameters: training_data: path lambda: {type: float, default: 0.1} command: python main.py {training_data} {lambda} $ mlflow run ml-production/mlflow-model-training/ -P data_path=airbnb-cleaned-mlflow.csv $ mlflow run git://https://github.com/mlflow/mlflow-example mlflow.run( uri="https://github.com/mlflow/mlflow-example", parameters={'alpha':0.4} )
  • 18. MlFlow Models • Once a model has been trained and bundled with the environment it was trained in. The next step is to package the model so that it can be used by a variety of serving tools • Current deployment options include: • Container-based REST servers • Continuous deployment using Spark streaming • Batch • Managed cloud platforms such as Azure ML and AWS SageMaker • Packaging the final model in a platform-agnostic way offers the most flexibility in deployment options and allows for model reuse across a number of platforms.
  • 19. MlFlow Models MLFrameworks InferenceCode Batch &Stream Scoring Serving ToolsStandard for MLmodels ModelFormat mlflow.pyfunc mlflow.h2o mlflow.keras mlflow.pytorch mlflow.sklearn mlflow.spark mlflow.tensorflow
  • 20. Example MlFlow Model my_model/ ├── MLmodel │ │ │ │ │ └── estimator/ ├── saved_model.pb └── variables/ ... Usable by tools thatunderstand TensorFlowmodel format Usable by any tool that can run Python (Docker,Spark, etc!) run_id: 769915006efd4c4bbd662461 time_created: 2018-06-28T12:34 flavors: tensorflow: saved_model_dir: estimator signature_def_key: predict python_function: loader_module: mlflow.tensorflow >>> mlflow.tensorflow.log_model(...)
  • 22. MlFlow + Azure Machine Learning + Azure Databricks https://www.zdnet.com/article/microsoft-to-join-mlflow- project-add-native-support-to-azure-machine-learning/
  • 23. What is Azure Machine Learning service? Set of Azure Cloud Services Python SDK  Prepare Data  Build Models  Train Models  Manage Models  Track Experiments  Deploy Models That enables you to:
  • 24. Machine Learning on Azure Domain specific pretrained models To reduce time to market Azure Databricks Machine Learning VMs Popular frameworks To build advanced deep learning solutions TensorFlowPytorch Onnx Azure Machine Learning LanguageSpeech … SearchVision Productive services To empower data science and development teams Powerful infrastructure To accelerate deep learning Scikit-Learn PyCharm Jupyter Familiar Data Science tools To simplify model development Visual Studio Code Command line CPU GPU FPGA From the Intelligent Cloud to the Intelligent Edge
  • 25. Azure ML service Key Artifacts Workspace
  • 26. Azure ML: How to deploy models at scale
  • 27. Demo MlFlow + AML + Azure Databricks https://eastus2.azuredatabricks.net/?o=3336252523001260#n otebook/2623556200920093/command/2623556200920094
  • 28. Conclusion + Q & A • MlFlow can greatly simplify the ML lifecycle • Simplify lifecycle development • Lightweight, open platform that integrates easily • Available APIs: Python, Java &R • Easy to install and use • Develop locally and track locally or remotely • Deploy locally, cloud, on premise… • Visualize experiments
  • 29. Learning More AboutMlFlow • pip install mlflow to get started • Find docs &examples atmlflow.org • https://github.com/mlflow/mlflow • tinyurl.com/mlflow-slack • https://docs.azuredatabricks.net/applications/mlflow/quick- start.html

Editor's Notes

  • #4: The Machine Learning Lifecycle Challenges Building and deploying a machine-learning model can be difficult to accomplish. Enabling other data scientists – or even yourself – to reproduce your pipeline is equally challenging. Moreover, doing so can impact your data science team’s productivity, leading to a significant waste of time and resources. How many times have you or your peers had to discard previous work because it was either not documented properly or, perhaps, too difficult to replicate? Getting models up to speed in the first place is significant enough that it can be easy to overlook long-term management. What does this involve in practice? In essence, we have to compare the results of different versions of ML models to track what’s running where, and to redeploy and rollback updated models as needed. Each of these requires its own specific tools, and it’s these changes that make the ML lifecycle so challenging compared to traditional software development lifecycle (SDLC) management. The Diversity and Number of ML Tools Involved While the traditional software-development process leads to the rationalization and governance of tools and platforms used for developing and managing applications, the ML lifecycle relies on data scientists’ ability to use multiple tools, whether for preparing data and training models, or deploying them for production use. Data scientists will seek the latest algorithms from the most up-to-date ML libraries and frameworks available to compare results and improve performance.
  • #5: This represents a serious shift, and challenges compare to those of a more traditional software-development lifecycle, for the following reasons: The diversity and number of ML tools involved, coupled with a lack of standardization across ML libraries and frameworks The continuous nature of ML development, coupled with a lack of tracking and management tools for machine learning models and experiments The complexity of productionizing ML models, due to the lack of integration between data pipelines, ML environments, and production services
  • #8: Just by adding a few lines of code in the function or script that trains their model, data scientists can log parameters, metrics, artifacts (plots, miscellaneous files, etc.) and a deployable packaging of the ML model. Every time that function or script is run, the results will be logged automatically as a byproduct of those lines of code being added, even if the party doing the training run makes no special effort to record the results. MLflow application programming interfaces (APIs) are available for the Python, R and Java programming languages, and MLflow sports a language-agnostic REST API as well. Over a relatively short time period, MLflow has garnered more than 3,300 stars on GitHub , almost 500,000 monthly downloads and 80 contributors from more than 40 companies. Most significantly, more than 200 companies are now using MLflow.
  • #13: Jupiter: Demo 02 - Experiment Tracking - MlFlow Demo Dataworks Summit Demo 03: CLI Demo : 03 Packaging MlFlow CLI: cd ~/git/mlflowdemo/ python mlflow_exp_tracking.py --n_estimators 8 --max_depth 15 --run_name 'alex 05_14'
  • #14: Jupiter: Demo 02 - Experiment Tracking - MlFlow Demo Dataworks Summit Demo 03: CLI Demo : 03 Packaging MlFlow CLI: cd ~/git/mlflowdemo/ python mlflow_exp_tracking.py --n_estimators 8 --max_depth 15 --run_name 'alex 05_14'
  • #17: http://localhost:8888/notebooks/git/mlflowdemo/03%20Packaging%20MlFlow.ipynb
  • #18: http://localhost:8888/notebooks/git/mlflowdemo/03%20Packaging%20MlFlow.ipynb
  • #20: https://mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#module-mlflow.pyfunc
  • #22: http://localhost:8888/notebooks/git/mlflowdemo/03%20Packaging%20MlFlow.ipynb
  • #23: https://www.zdnet.com/article/microsoft-to-join-mlflow-project-add-native-support-to-azure-machine-learning/
  • #28: https://eastus2.azuredatabricks.net/?o=3336252523001260#notebook/2623556200920093/command/2623556200920094