SlideShare a Scribd company logo
Introducing workload
analysis
Shane K Johnson
Senior Director of Product Marketing
MariaDB Corporation
1
Workload analysis – why
2
● Gain deeper insights into database usage
● Optimize resource allocation
○ Reduce costs, improve performance
○ Rinse and repeat (e.g., day vs. night, weekday vs. weekend)
● Take proactive measures (vs. reactive)
● Maintain quality of service (QoS)
● Build a foundation for autonomous services
Workload analysis – definition
● Categories
○ Transactional vs. analytical
○ Read vs. write vs. mixed
○ Too simplistic
● Discrete queries
○ Which ones to optimize for?
○ Which ones will be hurt?
○ Too many different queries
Conventional
3
● Resource based
● Database state
● Identifiable
● Time bound
○ Cycles and patterns
○ Evolution
● Statistical
○ Distributions
○ Properties
Modern
Workload analysis – insight
● Is the workload changing?
● Are workload changes getting smaller or bigger?
● Do workload changes justify further resource optimization?
● How are workload changes impacting the business?
4
Workload analysis – application
● Most important metrics
● Define the workload
● Strong correlation
● Change with/to workload
● Learned by WLA
Critical metrics
5
● Time intervals
● Temporal changes
● Trends and spikes
Historical context
Workload analysis – coming next
● Dynamic vs. static
● Per workload vs. global
● Based on change
○ Similarity index
○ Rate, distribution, spread
● No more
○ Manual analysis
○ Needle in a haystack
● Personalized health checks
Proactive monitoring
● Maintaining consistency
● Learned QoS metrics
● Predictive alerts
○ Or, autonomous changes
Quality of Service (QoS)
6
SkySQL workload
analysis application
7
Workload analysis
8
● SkySQL app that lets users
explore database workloads that
were automatically detected by
our Machine Learning platform.
● It gives easy access to interactive
visualizations to help users
understand how database
workloads change over time.
Machine learning pipeline
9
1. Collect database metrics at 5-sec intervals
2. Extract data from Monitor repository, on an hourly basis
3. Preprocess data to reduce ”noise” and strongly correlated metrics
4. Apply Deep Learning to create working tensor
a. 2000+ sample data points, 600+ model steps
b. Approximately 100+ critical features
5. Cluster the matrix into workloads that exhibit similar behavior
6. Visualize via D3
Daily max over time
10
Visualize changes in the daily maximum values of 100+
metrics, making it easy to identify historical trends and
recurring patterns
Correlated metrics
11
Visualize the collective impact of correlated metrics,
identified by deep-learning, on all database workloads
(i.e., metrics that change together).
Distribution impact
12
Visualize the spread and distribution of metrics so DBAs
can anticipate and optimize resources usage like memory
for performance
Metric relationships
13
Ability to pair any of the 100+ critical
features to see how they change relative
to each other.
DEMO
14
Thank you!
Questions?
15

More Related Content

What's hot (20)

PPS
Data Warehouse 101
PanaEk Warawit
 
PPTX
Nosql seminar
Shreyashkumar Nangnurwar
 
PDF
Credit Suisse: Multi-Domain Enterprise Reference Data
Orchestra Networks
 
PDF
Sap basis made_easy321761331053730
K Hari Shankar
 
PDF
Data Warehouse Concepts | Data Warehouse Tutorial | Data Warehousing | Edureka
Edureka!
 
PPTX
How to Implement Snowflake Security Best Practices with Panther
Panther Labs
 
PDF
Business Intelligence: Data Warehouses
Michael Lamont
 
PDF
Difference between star schema and snowflake schema
Umar Ali
 
PPTX
Data Vault and DW2.0
Empowered Holdings, LLC
 
PDF
Data Modeling Best Practices - Business & Technical Approaches
DATAVERSITY
 
PDF
Data migration blueprint legacy to sap
Ajay Kumar Uppal
 
PPTX
Oracle Management Cloud, OMC architecture
Samir El-Nabawy
 
PPTX
SAP Data Services
Geetika
 
PDF
Always on in sql server 2017
Gianluca Hotz
 
DOC
ETL QA
dillip kar
 
PDF
DB Time, Average Active Sessions, and ASH Math - Oracle performance fundamentals
John Beresniewicz
 
PDF
Neo4j GraphTour Santa Monica 2019 - Amundsen Presentation
TamikaTannis
 
PDF
MariaDB Server Performance Tuning & Optimization
MariaDB plc
 
PDF
Introduction to column oriented databases
ArangoDB Database
 
PPTX
What to Expect From Oracle database 19c
Maria Colgan
 
Data Warehouse 101
PanaEk Warawit
 
Credit Suisse: Multi-Domain Enterprise Reference Data
Orchestra Networks
 
Sap basis made_easy321761331053730
K Hari Shankar
 
Data Warehouse Concepts | Data Warehouse Tutorial | Data Warehousing | Edureka
Edureka!
 
How to Implement Snowflake Security Best Practices with Panther
Panther Labs
 
Business Intelligence: Data Warehouses
Michael Lamont
 
Difference between star schema and snowflake schema
Umar Ali
 
Data Vault and DW2.0
Empowered Holdings, LLC
 
Data Modeling Best Practices - Business & Technical Approaches
DATAVERSITY
 
Data migration blueprint legacy to sap
Ajay Kumar Uppal
 
Oracle Management Cloud, OMC architecture
Samir El-Nabawy
 
SAP Data Services
Geetika
 
Always on in sql server 2017
Gianluca Hotz
 
ETL QA
dillip kar
 
DB Time, Average Active Sessions, and ASH Math - Oracle performance fundamentals
John Beresniewicz
 
Neo4j GraphTour Santa Monica 2019 - Amundsen Presentation
TamikaTannis
 
MariaDB Server Performance Tuning & Optimization
MariaDB plc
 
Introduction to column oriented databases
ArangoDB Database
 
What to Expect From Oracle database 19c
Maria Colgan
 

Similar to Introducing workload analysis (20)

PDF
MySQL Enterprise Monitor
Ted Wennmark
 
PDF
Presentation cloud control enterprise manager 12c
xKinAnx
 
PDF
MySQL Enterprise Monitor
Mario Beck
 
PDF
MariaDB AX: Analytics with MariaDB ColumnStore
MariaDB plc
 
PDF
MariaDB AX: Solución analítica con ColumnStore
MariaDB plc
 
PPTX
Advanced Database Administration 10g
Connor McDonald
 
PDF
Fast, Powerful and Scalable Analytics
MariaDB plc
 
PPT
High Performance Mysql
liufabin 66688
 
PDF
MySQL Enterprise Monitor
Mark Swarbrick
 
PDF
MariaDB today and our vision for the future
MariaDB plc
 
PDF
AppSphere 15 - Is the database affecting your critical business transactions?
AppDynamics
 
PDF
Best Laid Plans: Saving Time, Money and Trouble with Optimal Forecasting
Eric Kavanagh
 
PPTX
Oracle database performance tuning
Yogiji Creations
 
PDF
Oracle database performance are database users telling me the truth
Alfredo Krieg
 
PDF
553: Oracle Database Performance: Are Database Users Telling Me The Truth?
Alfredo Krieg
 
PDF
Delivering fast, powerful and scalable analytics #OPEN18
Kangaroot
 
PDF
Hailey_Database_Performance_Made_Easy_through_Graphics.pdf
cookie1969
 
PDF
MariaDB today and our vision for the future
MariaDB plc
 
PPT
Teradata - Architecture of Teradata
Vibrant Technologies & Computers
 
PDF
The DBA 3.0 Upgrade
Sean Scott
 
MySQL Enterprise Monitor
Ted Wennmark
 
Presentation cloud control enterprise manager 12c
xKinAnx
 
MySQL Enterprise Monitor
Mario Beck
 
MariaDB AX: Analytics with MariaDB ColumnStore
MariaDB plc
 
MariaDB AX: Solución analítica con ColumnStore
MariaDB plc
 
Advanced Database Administration 10g
Connor McDonald
 
Fast, Powerful and Scalable Analytics
MariaDB plc
 
High Performance Mysql
liufabin 66688
 
MySQL Enterprise Monitor
Mark Swarbrick
 
MariaDB today and our vision for the future
MariaDB plc
 
AppSphere 15 - Is the database affecting your critical business transactions?
AppDynamics
 
Best Laid Plans: Saving Time, Money and Trouble with Optimal Forecasting
Eric Kavanagh
 
Oracle database performance tuning
Yogiji Creations
 
Oracle database performance are database users telling me the truth
Alfredo Krieg
 
553: Oracle Database Performance: Are Database Users Telling Me The Truth?
Alfredo Krieg
 
Delivering fast, powerful and scalable analytics #OPEN18
Kangaroot
 
Hailey_Database_Performance_Made_Easy_through_Graphics.pdf
cookie1969
 
MariaDB today and our vision for the future
MariaDB plc
 
Teradata - Architecture of Teradata
Vibrant Technologies & Computers
 
The DBA 3.0 Upgrade
Sean Scott
 
Ad

More from MariaDB plc (20)

PDF
MariaDB Berlin Roadshow Slides - 8 April 2025
MariaDB plc
 
PDF
MariaDB München Roadshow - 24 September, 2024
MariaDB plc
 
PDF
MariaDB Paris Roadshow - 19 September 2024
MariaDB plc
 
PDF
MariaDB Amsterdam Roadshow: 19 September, 2024
MariaDB plc
 
PDF
MariaDB Paris Workshop 2023 - MaxScale 23.02.x
MariaDB plc
 
PDF
MariaDB Paris Workshop 2023 - Newpharma
MariaDB plc
 
PDF
MariaDB Paris Workshop 2023 - Cloud
MariaDB plc
 
PDF
MariaDB Paris Workshop 2023 - MariaDB Enterprise
MariaDB plc
 
PDF
MariaDB Paris Workshop 2023 - Performance Optimization
MariaDB plc
 
PDF
MariaDB Paris Workshop 2023 - MaxScale
MariaDB plc
 
PDF
MariaDB Paris Workshop 2023 - novadys presentation
MariaDB plc
 
PDF
MariaDB Paris Workshop 2023 - DARVA presentation
MariaDB plc
 
PDF
MariaDB Tech und Business Update Hamburg 2023 - MariaDB Enterprise Server
MariaDB plc
 
PDF
MariaDB SkySQL Autonome Skalierung, Observability, Cloud-Backup
MariaDB plc
 
PDF
Einführung : MariaDB Tech und Business Update Hamburg 2023
MariaDB plc
 
PDF
Hochverfügbarkeitslösungen mit MariaDB
MariaDB plc
 
PDF
Die Neuheiten in MariaDB Enterprise Server
MariaDB plc
 
PDF
Global Data Replication with Galera for Ansell Guardian®
MariaDB plc
 
PDF
Under the hood: SkySQL monitoring
MariaDB plc
 
PDF
Introducing the R2DBC async Java connector
MariaDB plc
 
MariaDB Berlin Roadshow Slides - 8 April 2025
MariaDB plc
 
MariaDB München Roadshow - 24 September, 2024
MariaDB plc
 
MariaDB Paris Roadshow - 19 September 2024
MariaDB plc
 
MariaDB Amsterdam Roadshow: 19 September, 2024
MariaDB plc
 
MariaDB Paris Workshop 2023 - MaxScale 23.02.x
MariaDB plc
 
MariaDB Paris Workshop 2023 - Newpharma
MariaDB plc
 
MariaDB Paris Workshop 2023 - Cloud
MariaDB plc
 
MariaDB Paris Workshop 2023 - MariaDB Enterprise
MariaDB plc
 
MariaDB Paris Workshop 2023 - Performance Optimization
MariaDB plc
 
MariaDB Paris Workshop 2023 - MaxScale
MariaDB plc
 
MariaDB Paris Workshop 2023 - novadys presentation
MariaDB plc
 
MariaDB Paris Workshop 2023 - DARVA presentation
MariaDB plc
 
MariaDB Tech und Business Update Hamburg 2023 - MariaDB Enterprise Server
MariaDB plc
 
MariaDB SkySQL Autonome Skalierung, Observability, Cloud-Backup
MariaDB plc
 
Einführung : MariaDB Tech und Business Update Hamburg 2023
MariaDB plc
 
Hochverfügbarkeitslösungen mit MariaDB
MariaDB plc
 
Die Neuheiten in MariaDB Enterprise Server
MariaDB plc
 
Global Data Replication with Galera for Ansell Guardian®
MariaDB plc
 
Under the hood: SkySQL monitoring
MariaDB plc
 
Introducing the R2DBC async Java connector
MariaDB plc
 
Ad

Recently uploaded (20)

PDF
Copia de Strategic Roadmap Infographics by Slidesgo.pptx (1).pdf
ssuserd4c6911
 
PPTX
apidays Helsinki & North 2025 - Vero APIs - Experiences of API development in...
apidays
 
PDF
Choosing the Right Database for Indexing.pdf
Tamanna
 
PPTX
Exploring Multilingual Embeddings for Italian Semantic Search: A Pretrained a...
Sease
 
PPTX
apidays Singapore 2025 - Designing for Change, Julie Schiller (Google)
apidays
 
PPTX
apidays Helsinki & North 2025 - APIs at Scale: Designing for Alignment, Trust...
apidays
 
PDF
OPPOTUS - Malaysias on Malaysia 1Q2025.pdf
Oppotus
 
PDF
Web Scraping with Google Gemini 2.0 .pdf
Tamanna
 
PPTX
AI Presentation Tool Pitch Deck Presentation.pptx
ShyamPanthavoor1
 
PPTX
Dr djdjjdsjsjsjsjsjsjjsjdjdjdjdjjd1.pptx
Nandy31
 
PPTX
ER_Model_with_Diagrams_Presentation.pptx
dharaadhvaryu1992
 
PDF
The European Business Wallet: Why It Matters and How It Powers the EUDI Ecosy...
Lal Chandran
 
PDF
apidays Helsinki & North 2025 - APIs in the healthcare sector: hospitals inte...
apidays
 
PPTX
Numbers of a nation: how we estimate population statistics | Accessible slides
Office for National Statistics
 
PDF
apidays Helsinki & North 2025 - API-Powered Journeys: Mobility in an API-Driv...
apidays
 
PPTX
apidays Helsinki & North 2025 - API access control strategies beyond JWT bear...
apidays
 
PPTX
apidays Helsinki & North 2025 - From Chaos to Clarity: Designing (AI-Ready) A...
apidays
 
PDF
How to Connect Your On-Premises Site to AWS Using Site-to-Site VPN.pdf
Tamanna
 
PDF
What does good look like - CRAP Brighton 8 July 2025
Jan Kierzyk
 
PPTX
Advanced_NLP_with_Transformers_PPT_final 50.pptx
Shiwani Gupta
 
Copia de Strategic Roadmap Infographics by Slidesgo.pptx (1).pdf
ssuserd4c6911
 
apidays Helsinki & North 2025 - Vero APIs - Experiences of API development in...
apidays
 
Choosing the Right Database for Indexing.pdf
Tamanna
 
Exploring Multilingual Embeddings for Italian Semantic Search: A Pretrained a...
Sease
 
apidays Singapore 2025 - Designing for Change, Julie Schiller (Google)
apidays
 
apidays Helsinki & North 2025 - APIs at Scale: Designing for Alignment, Trust...
apidays
 
OPPOTUS - Malaysias on Malaysia 1Q2025.pdf
Oppotus
 
Web Scraping with Google Gemini 2.0 .pdf
Tamanna
 
AI Presentation Tool Pitch Deck Presentation.pptx
ShyamPanthavoor1
 
Dr djdjjdsjsjsjsjsjsjjsjdjdjdjdjjd1.pptx
Nandy31
 
ER_Model_with_Diagrams_Presentation.pptx
dharaadhvaryu1992
 
The European Business Wallet: Why It Matters and How It Powers the EUDI Ecosy...
Lal Chandran
 
apidays Helsinki & North 2025 - APIs in the healthcare sector: hospitals inte...
apidays
 
Numbers of a nation: how we estimate population statistics | Accessible slides
Office for National Statistics
 
apidays Helsinki & North 2025 - API-Powered Journeys: Mobility in an API-Driv...
apidays
 
apidays Helsinki & North 2025 - API access control strategies beyond JWT bear...
apidays
 
apidays Helsinki & North 2025 - From Chaos to Clarity: Designing (AI-Ready) A...
apidays
 
How to Connect Your On-Premises Site to AWS Using Site-to-Site VPN.pdf
Tamanna
 
What does good look like - CRAP Brighton 8 July 2025
Jan Kierzyk
 
Advanced_NLP_with_Transformers_PPT_final 50.pptx
Shiwani Gupta
 

Introducing workload analysis

  • 1. Introducing workload analysis Shane K Johnson Senior Director of Product Marketing MariaDB Corporation 1
  • 2. Workload analysis – why 2 ● Gain deeper insights into database usage ● Optimize resource allocation ○ Reduce costs, improve performance ○ Rinse and repeat (e.g., day vs. night, weekday vs. weekend) ● Take proactive measures (vs. reactive) ● Maintain quality of service (QoS) ● Build a foundation for autonomous services
  • 3. Workload analysis – definition ● Categories ○ Transactional vs. analytical ○ Read vs. write vs. mixed ○ Too simplistic ● Discrete queries ○ Which ones to optimize for? ○ Which ones will be hurt? ○ Too many different queries Conventional 3 ● Resource based ● Database state ● Identifiable ● Time bound ○ Cycles and patterns ○ Evolution ● Statistical ○ Distributions ○ Properties Modern
  • 4. Workload analysis – insight ● Is the workload changing? ● Are workload changes getting smaller or bigger? ● Do workload changes justify further resource optimization? ● How are workload changes impacting the business? 4
  • 5. Workload analysis – application ● Most important metrics ● Define the workload ● Strong correlation ● Change with/to workload ● Learned by WLA Critical metrics 5 ● Time intervals ● Temporal changes ● Trends and spikes Historical context
  • 6. Workload analysis – coming next ● Dynamic vs. static ● Per workload vs. global ● Based on change ○ Similarity index ○ Rate, distribution, spread ● No more ○ Manual analysis ○ Needle in a haystack ● Personalized health checks Proactive monitoring ● Maintaining consistency ● Learned QoS metrics ● Predictive alerts ○ Or, autonomous changes Quality of Service (QoS) 6
  • 8. Workload analysis 8 ● SkySQL app that lets users explore database workloads that were automatically detected by our Machine Learning platform. ● It gives easy access to interactive visualizations to help users understand how database workloads change over time.
  • 9. Machine learning pipeline 9 1. Collect database metrics at 5-sec intervals 2. Extract data from Monitor repository, on an hourly basis 3. Preprocess data to reduce ”noise” and strongly correlated metrics 4. Apply Deep Learning to create working tensor a. 2000+ sample data points, 600+ model steps b. Approximately 100+ critical features 5. Cluster the matrix into workloads that exhibit similar behavior 6. Visualize via D3
  • 10. Daily max over time 10 Visualize changes in the daily maximum values of 100+ metrics, making it easy to identify historical trends and recurring patterns
  • 11. Correlated metrics 11 Visualize the collective impact of correlated metrics, identified by deep-learning, on all database workloads (i.e., metrics that change together).
  • 12. Distribution impact 12 Visualize the spread and distribution of metrics so DBAs can anticipate and optimize resources usage like memory for performance
  • 13. Metric relationships 13 Ability to pair any of the 100+ critical features to see how they change relative to each other.