SlideShare a Scribd company logo
Apache™
 Hadoop®
Students:
 Omar Jaber
Dr. Aiman AbuSamra
31/12/2014
Islamic University-Gaza 
Faculty of Engineering
Computer Engineering Department
What is Apache             ?
 Hadoop, formally called Apache Hadoop, is an 
Apache Software Foundation project and open source software 
platform for scalable,distributed computing. Hadoop can provide fast 
and reliable analysis of both structured data and unstructured data. 
Given its capabilities to handle large data sets, it's often associated 
with the phrase big data.
 The Apache Hadoop software library is essentially a framework that 
allows for the distributed processing of large datasets across 
clusters of computers using a simple programming model. Hadoop 
can scale up from single servers to thousands of machines, each 
offering local computation and storage.
What is Apache              ?
 Apache Hadoop™ was born out of a need to process an avalanche of 
Big Data. The web was generating more and more information on a daily 
basis, and it was becoming very difficult to index over one billion pages 
of content. In order to cope, Google invented a new style of data 
processing known as MapReduce. A year after Google published a 
white paper describing the MapReduce framework, Doug Cutting and 
Mike Cafarella, inspired by the white paper, created Hadoop to apply 
these concepts to an open-source software framework to support 
distribution for the Nutch search engine project. Given the original case, 
Hadoop was designed with a simple write-once storage infrastructure.
 Hadoop has moved far beyond its beginnings in web indexing and is 
now used in many industries for a huge variety of tasks that all share the 
common theme of lots of variety, volume and velocity of data – both 
structured and unstructured. It is now widely used across industries, 
including finance, media and entertainment, government, healthcare, 
information services, retail, and other industries with Big Data 
requirements but the limitations of the original storage infrastructure 
remain.
Who uses Hadoop?
The base Apache Hadoop framework 
• Hadoop Common – contains libraries and utilities needed by 
other Hadoop modules.
• Hadoop Distributed File System (HDFS) – a distributed file-
system that stores data on commodity machines, providing very 
high aggregate bandwidth across the cluster.
• Hadoop YARN – a resource-management platform responsible 
for managing compute resources in clusters and using them for 
scheduling of users' applications.
• Hadoop MapReduce – a programming model for large scale 
data processing.
How is Hadoop Different from Past
Techniques?
• Hadoop can handle data in a very fluid way. Hadoop is more than just a
faster, cheaper database and analytics tool. Unlike databases, Hadoop
doesn’t insist that you structure your data. Data may be unstructured and
schemaless. Users can dump their data into the framework without needing
to reformat it. By contrast, relational databases require that data be
structured and schemas be defined before storing the data.
• Hadoop has a simplified programming model. Hadoop’s simplified
programming model allows users to quickly write and test distributed
systems. Performing computation on large volumes of data has been done
before, usually in a distributed setting but writing distributed systems is
notoriously hard. By trading away some programming flexibility, Hadoop
makes it much easier to write distributed programs.
How is Hadoop Different from Past
Techniques?
• Hadoop is easy to administer. Alternative high performance computing
(HPC) systems allow programs to run on large collections of computers, but
they typically require rigid program configuration and generally require that
data be stored on a separate storage area network (SAN) system.
Schedulers on HPC clusters require careful administration and since
program execution is sensitive to node failure, administration of a Hadoop
cluster is much easier.
• Hadoop is agile. Relational databases are good at storing and processing
data sets with predefined and rigid data models. For unstructured data,
relational databases lack the agility and scalability that is needed. Apache
Hadoop makes it possible to cheaply process and analyze huge amounts of
both structured and unstructured data together, and to process data without
defining all structure ahead of time.
Hadoop Creation History
SQL on Hadoop
 SQL is one of the most widely used languages to access, analyze, and
manipulate structured data. As Hadoop gains traction within enterprise data
architectures across industries, the need for SQL for both structured and
loosely-structured data on Hadoop is growing rapidly. Key organizational
drivers include the ability to:
- Leverage existing SQL skills in the organization
- Reuse BI, ETL, and analytics infrastructure investments with Hadoop
 MapR delivers maximum flexibility for SQL access in Hadoop by ensuring that
its users can run the widest variety of both open-source and proprietary SQL
technologies on its secure and high-performance distribution for Hadoop.
SQL on Hadoop
MapR supports SQL as a key use case along with the other types of
processing on Hadoop. MapR takes an open approach to SQL,
supporting the broadest set of SQL-on-Hadoop (also called "SQL-in-
Hadoop") projects and technologies on the enterprise-grade MapR
Distribution for Hadoop.
What is Hadoop MapReduce ?
 Hadoop MapReduce (Hadoop Map/Reduce) is a software
framework for distributed processing of large data sets on compute
clusters of commodity hardware. It is a sub-project of the Apache
Hadoop project. The framework takes care of scheduling tasks,
monitoring them and re-executing any failed tasks.
 According to The Apache Software Foundation, the primary
objective of Map/Reduce is to split the input data set into
independent chunks that are processed in a completely parallel
manner. The Hadoop MapReduce framework sorts the outputs of
the maps, which are then input to the reduce tasks. Typically, both
the input and the output of the job are stored in a file system.
The MapR Advantage
 MapR allows you to do more with Hadoop by combining Apache
Hadoop with architectural innovations focused on operational
excellence in the data center. MapR is the only distribution that is
built from the ground up for business-critical production applications.
 MapR is a complete distribution for Apache Hadoop that packages
more than a dozen projects from the Hadoop ecosystem to provide
you with a broad set of big data capabilities. The MapR platform not
only provides enterprise-grade features such as high availability,
disaster recovery, security, and full data protection but also allows
Hadoop to be easily accessed as traditional network attached
storage (NAS) with read-write capabilities.
Why use Apache Hadoop?
• It’s cost effective. Apache Hadoop controls costs by storing data
more affordably per terabyte than other platforms. Instead of
thousands to tens of thousands per terabyte, Hadoop delivers
compute and storage for hundreds of dollars per terabyte.
• It’s fault-tolerant. Fault tolerance is one of the most important
advantages of using Hadoop. Even if individual nodes experience
high rates of failure when running jobs on a large cluster, data is
replicated across a cluster so that it can be recovered easily in the
face of disk, node or rack failures.
Why use Apache Hadoop?
• It’s flexible. The flexible way that data is stored in Apache Hadoop
is one of its biggest assets – enabling businesses to generate value
from data that was previously considered too expensive to be stored
and processed in traditional databases. With Hadoop, you can use
all types of data, both structured and unstructured, to extract more
meaningful business insights from more of your data.
• It’s scalable. Hadoop is a highly scalable storage platform, because
it can store and distribute very large data sets across clusters of
hundreds of inexpensive servers operating in parallel. The problem
with traditional relational database management systems (RDBMS)
is that they can’t scale to process massive volumes of data.
How Hadoop got its name?
Why use the elephant !
References 
• http://hadoop.apache.org/
• http://ar.wikipedia.org/
• http://hortonworks.com/
• www.mapr.com
Thanks ☺
Ad

More Related Content

What's hot (20)

Hadoop Ecosystem
Hadoop EcosystemHadoop Ecosystem
Hadoop Ecosystem
Sandip Darwade
 
Overview of Big data, Hadoop and Microsoft BI - version1
Overview of Big data, Hadoop and Microsoft BI - version1Overview of Big data, Hadoop and Microsoft BI - version1
Overview of Big data, Hadoop and Microsoft BI - version1
Thanh Nguyen
 
Which Hadoop Distribution to use: Apache, Cloudera, MapR or HortonWorks?
Which Hadoop Distribution to use: Apache, Cloudera, MapR or HortonWorks?Which Hadoop Distribution to use: Apache, Cloudera, MapR or HortonWorks?
Which Hadoop Distribution to use: Apache, Cloudera, MapR or HortonWorks?
Edureka!
 
Big data hadoop rdbms
Big data hadoop rdbmsBig data hadoop rdbms
Big data hadoop rdbms
Arjen de Vries
 
Big Data and Hadoop
Big Data and HadoopBig Data and Hadoop
Big Data and Hadoop
Flavio Vit
 
HADOOP TECHNOLOGY ppt
HADOOP  TECHNOLOGY pptHADOOP  TECHNOLOGY ppt
HADOOP TECHNOLOGY ppt
sravya raju
 
PPT on Hadoop
PPT on HadoopPPT on Hadoop
PPT on Hadoop
Shubham Parmar
 
Big data concepts
Big data conceptsBig data concepts
Big data concepts
Serkan Özal
 
Hadoop
HadoopHadoop
Hadoop
reddivarihareesh
 
Introduction to Hadoop
Introduction to HadoopIntroduction to Hadoop
Introduction to Hadoop
Dr. C.V. Suresh Babu
 
The Hadoop Path by Subash DSouza of Archangel Technology Consultants, LLC.
The Hadoop Path by Subash DSouza of Archangel Technology Consultants, LLC.The Hadoop Path by Subash DSouza of Archangel Technology Consultants, LLC.
The Hadoop Path by Subash DSouza of Archangel Technology Consultants, LLC.
Data Con LA
 
Hadoop in three use cases
Hadoop in three use casesHadoop in three use cases
Hadoop in three use cases
Joey Echeverria
 
Hadoop Architecture
Hadoop Architecture Hadoop Architecture
Hadoop Architecture
Ganesh B
 
Big Data on the Microsoft Platform
Big Data on the Microsoft PlatformBig Data on the Microsoft Platform
Big Data on the Microsoft Platform
Andrew Brust
 
Big Data & Hadoop Tutorial
Big Data & Hadoop TutorialBig Data & Hadoop Tutorial
Big Data & Hadoop Tutorial
Edureka!
 
SQL-on-Hadoop Tutorial
SQL-on-Hadoop TutorialSQL-on-Hadoop Tutorial
SQL-on-Hadoop Tutorial
Daniel Abadi
 
Hadoop info
Hadoop infoHadoop info
Hadoop info
Nikita Sure
 
Future of-hadoop-analytics
Future of-hadoop-analyticsFuture of-hadoop-analytics
Future of-hadoop-analytics
MapR Technologies
 
Anju
AnjuAnju
Anju
Anju Shekhawat
 
Hadoop - Architectural road map for Hadoop Ecosystem
Hadoop -  Architectural road map for Hadoop EcosystemHadoop -  Architectural road map for Hadoop Ecosystem
Hadoop - Architectural road map for Hadoop Ecosystem
nallagangus
 
Overview of Big data, Hadoop and Microsoft BI - version1
Overview of Big data, Hadoop and Microsoft BI - version1Overview of Big data, Hadoop and Microsoft BI - version1
Overview of Big data, Hadoop and Microsoft BI - version1
Thanh Nguyen
 
Which Hadoop Distribution to use: Apache, Cloudera, MapR or HortonWorks?
Which Hadoop Distribution to use: Apache, Cloudera, MapR or HortonWorks?Which Hadoop Distribution to use: Apache, Cloudera, MapR or HortonWorks?
Which Hadoop Distribution to use: Apache, Cloudera, MapR or HortonWorks?
Edureka!
 
Big Data and Hadoop
Big Data and HadoopBig Data and Hadoop
Big Data and Hadoop
Flavio Vit
 
HADOOP TECHNOLOGY ppt
HADOOP  TECHNOLOGY pptHADOOP  TECHNOLOGY ppt
HADOOP TECHNOLOGY ppt
sravya raju
 
The Hadoop Path by Subash DSouza of Archangel Technology Consultants, LLC.
The Hadoop Path by Subash DSouza of Archangel Technology Consultants, LLC.The Hadoop Path by Subash DSouza of Archangel Technology Consultants, LLC.
The Hadoop Path by Subash DSouza of Archangel Technology Consultants, LLC.
Data Con LA
 
Hadoop in three use cases
Hadoop in three use casesHadoop in three use cases
Hadoop in three use cases
Joey Echeverria
 
Hadoop Architecture
Hadoop Architecture Hadoop Architecture
Hadoop Architecture
Ganesh B
 
Big Data on the Microsoft Platform
Big Data on the Microsoft PlatformBig Data on the Microsoft Platform
Big Data on the Microsoft Platform
Andrew Brust
 
Big Data & Hadoop Tutorial
Big Data & Hadoop TutorialBig Data & Hadoop Tutorial
Big Data & Hadoop Tutorial
Edureka!
 
SQL-on-Hadoop Tutorial
SQL-on-Hadoop TutorialSQL-on-Hadoop Tutorial
SQL-on-Hadoop Tutorial
Daniel Abadi
 
Hadoop - Architectural road map for Hadoop Ecosystem
Hadoop -  Architectural road map for Hadoop EcosystemHadoop -  Architectural road map for Hadoop Ecosystem
Hadoop - Architectural road map for Hadoop Ecosystem
nallagangus
 

Viewers also liked (20)

Trivadis TechEvent 2016 Kill three birds with one stone (Eclipse Scout) by Ch...
Trivadis TechEvent 2016 Kill three birds with one stone (Eclipse Scout) by Ch...Trivadis TechEvent 2016 Kill three birds with one stone (Eclipse Scout) by Ch...
Trivadis TechEvent 2016 Kill three birds with one stone (Eclipse Scout) by Ch...
Trivadis
 
Trivadis TechEvent 2016 Oracle Enterprise Performance Management in the Clou...
Trivadis TechEvent 2016  Oracle Enterprise Performance Management in the Clou...Trivadis TechEvent 2016  Oracle Enterprise Performance Management in the Clou...
Trivadis TechEvent 2016 Oracle Enterprise Performance Management in the Clou...
Trivadis
 
Investigating the groundwater of Qorveh-Chaharduli plain in terms of drinking...
Investigating the groundwater of Qorveh-Chaharduli plain in terms of drinking...Investigating the groundwater of Qorveh-Chaharduli plain in terms of drinking...
Investigating the groundwater of Qorveh-Chaharduli plain in terms of drinking...
Innspub Net
 
Mobile development-e mag-version3
Mobile development-e mag-version3Mobile development-e mag-version3
Mobile development-e mag-version3
nesrine attia
 
2013 輔大資工 暑期宅學營 Drupal 
基礎應用與模組實作
2013 輔大資工 暑期宅學營 Drupal 
基礎應用與模組實作2013 輔大資工 暑期宅學營 Drupal 
基礎應用與模組實作
2013 輔大資工 暑期宅學營 Drupal 
基礎應用與模組實作
Huang-I Yang
 
Trivadis TechEvent 2016 How to transform a complex web application into a mob...
Trivadis TechEvent 2016 How to transform a complex web application into a mob...Trivadis TechEvent 2016 How to transform a complex web application into a mob...
Trivadis TechEvent 2016 How to transform a complex web application into a mob...
Trivadis
 
2015ーモバイルECはどうする?
2015ーモバイルECはどうする?2015ーモバイルECはどうする?
2015ーモバイルECはどうする?
DOMO.inc
 
Trivadis TechEvent 2016 Java for enterprises in the Google cloud by Thomas Bröll
Trivadis TechEvent 2016 Java for enterprises in the Google cloud by Thomas BröllTrivadis TechEvent 2016 Java for enterprises in the Google cloud by Thomas Bröll
Trivadis TechEvent 2016 Java for enterprises in the Google cloud by Thomas Bröll
Trivadis
 
Delivering Happiness @Zappos
Delivering Happiness @ZapposDelivering Happiness @Zappos
Delivering Happiness @Zappos
Tomáš Hajzler
 
PHPCS (PHP Code Sniffer)
PHPCS (PHP Code Sniffer)PHPCS (PHP Code Sniffer)
PHPCS (PHP Code Sniffer)
Oleksii Prohonnyi
 
Chapter5 presentation_service marketing
Chapter5 presentation_service marketingChapter5 presentation_service marketing
Chapter5 presentation_service marketing
Phat Ngoc NGUYEN
 
Assessment of Canal Sediments for Agricultural Uses - JBES
Assessment of Canal Sediments for Agricultural Uses - JBESAssessment of Canal Sediments for Agricultural Uses - JBES
Assessment of Canal Sediments for Agricultural Uses - JBES
Innspub Net
 
Náhledové PDF - prvních 30 stran Domácnost bez odpadu
Náhledové PDF - prvních 30 stran Domácnost bez odpaduNáhledové PDF - prvních 30 stran Domácnost bez odpadu
Náhledové PDF - prvních 30 stran Domácnost bez odpadu
Tomáš Hajzler
 
Big Data Infrastructure: Introduction to Hadoop with MapReduce, Pig, and Hive
Big Data Infrastructure: Introduction to Hadoop with MapReduce, Pig, and HiveBig Data Infrastructure: Introduction to Hadoop with MapReduce, Pig, and Hive
Big Data Infrastructure: Introduction to Hadoop with MapReduce, Pig, and Hive
odsc
 
Trivadis TechEvent 2016 Capacity Management with TVD-CapMan - recent projects...
Trivadis TechEvent 2016 Capacity Management with TVD-CapMan - recent projects...Trivadis TechEvent 2016 Capacity Management with TVD-CapMan - recent projects...
Trivadis TechEvent 2016 Capacity Management with TVD-CapMan - recent projects...
Trivadis
 
作業系統與硬體元件的驅動軟體開發法則 (Operating Systems and Software Design Principles for Har...
作業系統與硬體元件的驅動軟體開發法則 (Operating Systems and Software Design Principles for Har...作業系統與硬體元件的驅動軟體開發法則 (Operating Systems and Software Design Principles for Har...
作業系統與硬體元件的驅動軟體開發法則 (Operating Systems and Software Design Principles for Har...
William Liang
 
Jvm Architecture
Jvm ArchitectureJvm Architecture
Jvm Architecture
ThirupathiReddy Vajjala
 
Naše bezodpadová domácnost
Naše bezodpadová domácnostNaše bezodpadová domácnost
Naše bezodpadová domácnost
Tomáš Hajzler
 
Introduction to Data Analyst Training
Introduction to Data Analyst TrainingIntroduction to Data Analyst Training
Introduction to Data Analyst Training
Cloudera, Inc.
 
Trivadis TechEvent 2016 Die Rolle der Unterschrift bei der Digitalisierung vo...
Trivadis TechEvent 2016 Die Rolle der Unterschrift bei der Digitalisierung vo...Trivadis TechEvent 2016 Die Rolle der Unterschrift bei der Digitalisierung vo...
Trivadis TechEvent 2016 Die Rolle der Unterschrift bei der Digitalisierung vo...
Trivadis
 
Trivadis TechEvent 2016 Kill three birds with one stone (Eclipse Scout) by Ch...
Trivadis TechEvent 2016 Kill three birds with one stone (Eclipse Scout) by Ch...Trivadis TechEvent 2016 Kill three birds with one stone (Eclipse Scout) by Ch...
Trivadis TechEvent 2016 Kill three birds with one stone (Eclipse Scout) by Ch...
Trivadis
 
Trivadis TechEvent 2016 Oracle Enterprise Performance Management in the Clou...
Trivadis TechEvent 2016  Oracle Enterprise Performance Management in the Clou...Trivadis TechEvent 2016  Oracle Enterprise Performance Management in the Clou...
Trivadis TechEvent 2016 Oracle Enterprise Performance Management in the Clou...
Trivadis
 
Investigating the groundwater of Qorveh-Chaharduli plain in terms of drinking...
Investigating the groundwater of Qorveh-Chaharduli plain in terms of drinking...Investigating the groundwater of Qorveh-Chaharduli plain in terms of drinking...
Investigating the groundwater of Qorveh-Chaharduli plain in terms of drinking...
Innspub Net
 
Mobile development-e mag-version3
Mobile development-e mag-version3Mobile development-e mag-version3
Mobile development-e mag-version3
nesrine attia
 
2013 輔大資工 暑期宅學營 Drupal 
基礎應用與模組實作
2013 輔大資工 暑期宅學營 Drupal 
基礎應用與模組實作2013 輔大資工 暑期宅學營 Drupal 
基礎應用與模組實作
2013 輔大資工 暑期宅學營 Drupal 
基礎應用與模組實作
Huang-I Yang
 
Trivadis TechEvent 2016 How to transform a complex web application into a mob...
Trivadis TechEvent 2016 How to transform a complex web application into a mob...Trivadis TechEvent 2016 How to transform a complex web application into a mob...
Trivadis TechEvent 2016 How to transform a complex web application into a mob...
Trivadis
 
2015ーモバイルECはどうする?
2015ーモバイルECはどうする?2015ーモバイルECはどうする?
2015ーモバイルECはどうする?
DOMO.inc
 
Trivadis TechEvent 2016 Java for enterprises in the Google cloud by Thomas Bröll
Trivadis TechEvent 2016 Java for enterprises in the Google cloud by Thomas BröllTrivadis TechEvent 2016 Java for enterprises in the Google cloud by Thomas Bröll
Trivadis TechEvent 2016 Java for enterprises in the Google cloud by Thomas Bröll
Trivadis
 
Delivering Happiness @Zappos
Delivering Happiness @ZapposDelivering Happiness @Zappos
Delivering Happiness @Zappos
Tomáš Hajzler
 
Chapter5 presentation_service marketing
Chapter5 presentation_service marketingChapter5 presentation_service marketing
Chapter5 presentation_service marketing
Phat Ngoc NGUYEN
 
Assessment of Canal Sediments for Agricultural Uses - JBES
Assessment of Canal Sediments for Agricultural Uses - JBESAssessment of Canal Sediments for Agricultural Uses - JBES
Assessment of Canal Sediments for Agricultural Uses - JBES
Innspub Net
 
Náhledové PDF - prvních 30 stran Domácnost bez odpadu
Náhledové PDF - prvních 30 stran Domácnost bez odpaduNáhledové PDF - prvních 30 stran Domácnost bez odpadu
Náhledové PDF - prvních 30 stran Domácnost bez odpadu
Tomáš Hajzler
 
Big Data Infrastructure: Introduction to Hadoop with MapReduce, Pig, and Hive
Big Data Infrastructure: Introduction to Hadoop with MapReduce, Pig, and HiveBig Data Infrastructure: Introduction to Hadoop with MapReduce, Pig, and Hive
Big Data Infrastructure: Introduction to Hadoop with MapReduce, Pig, and Hive
odsc
 
Trivadis TechEvent 2016 Capacity Management with TVD-CapMan - recent projects...
Trivadis TechEvent 2016 Capacity Management with TVD-CapMan - recent projects...Trivadis TechEvent 2016 Capacity Management with TVD-CapMan - recent projects...
Trivadis TechEvent 2016 Capacity Management with TVD-CapMan - recent projects...
Trivadis
 
作業系統與硬體元件的驅動軟體開發法則 (Operating Systems and Software Design Principles for Har...
作業系統與硬體元件的驅動軟體開發法則 (Operating Systems and Software Design Principles for Har...作業系統與硬體元件的驅動軟體開發法則 (Operating Systems and Software Design Principles for Har...
作業系統與硬體元件的驅動軟體開發法則 (Operating Systems and Software Design Principles for Har...
William Liang
 
Naše bezodpadová domácnost
Naše bezodpadová domácnostNaše bezodpadová domácnost
Naše bezodpadová domácnost
Tomáš Hajzler
 
Introduction to Data Analyst Training
Introduction to Data Analyst TrainingIntroduction to Data Analyst Training
Introduction to Data Analyst Training
Cloudera, Inc.
 
Trivadis TechEvent 2016 Die Rolle der Unterschrift bei der Digitalisierung vo...
Trivadis TechEvent 2016 Die Rolle der Unterschrift bei der Digitalisierung vo...Trivadis TechEvent 2016 Die Rolle der Unterschrift bei der Digitalisierung vo...
Trivadis TechEvent 2016 Die Rolle der Unterschrift bei der Digitalisierung vo...
Trivadis
 
Ad

Similar to Introduction to Apache hadoop (20)

What is Apache Hadoop and its ecosystem?
What is Apache Hadoop and its ecosystem?What is Apache Hadoop and its ecosystem?
What is Apache Hadoop and its ecosystem?
tommychauhan
 
Brief Introduction about Hadoop and Core Services.
Brief Introduction about Hadoop and Core Services.Brief Introduction about Hadoop and Core Services.
Brief Introduction about Hadoop and Core Services.
Muthu Natarajan
 
finap ppt conference.pptx
finap ppt conference.pptxfinap ppt conference.pptx
finap ppt conference.pptx
SukhpreetSingh519414
 
Big Data Analytics Presentation on the resourcefulness of Big data
Big Data Analytics Presentation on the resourcefulness of Big dataBig Data Analytics Presentation on the resourcefulness of Big data
Big Data Analytics Presentation on the resourcefulness of Big data
nextstep013
 
Hadoop An Introduction
Hadoop An IntroductionHadoop An Introduction
Hadoop An Introduction
Mohanasundaram Ponnusamy
 
Big Data Hadoop Technology
Big Data Hadoop TechnologyBig Data Hadoop Technology
Big Data Hadoop Technology
Rahul Sharma
 
Hadoop Platforms - Introduction, Importance, Providers
Hadoop Platforms - Introduction, Importance, ProvidersHadoop Platforms - Introduction, Importance, Providers
Hadoop Platforms - Introduction, Importance, Providers
Mrigendra Sharma
 
Hire Hadoop Developer
Hire Hadoop DeveloperHire Hadoop Developer
Hire Hadoop Developer
Geeks Per Hour
 
2.1-HADOOP.pdf
2.1-HADOOP.pdf2.1-HADOOP.pdf
2.1-HADOOP.pdf
MarianJRuben
 
Introduction To Hadoop Administration - SpringPeople
Introduction To Hadoop Administration - SpringPeopleIntroduction To Hadoop Administration - SpringPeople
Introduction To Hadoop Administration - SpringPeople
SpringPeople
 
RDBMS vs Hadoop vs Spark
RDBMS vs Hadoop vs SparkRDBMS vs Hadoop vs Spark
RDBMS vs Hadoop vs Spark
Laxmi8
 
Hadoop in a Nutshell
Hadoop in a NutshellHadoop in a Nutshell
Hadoop in a Nutshell
Anthony Thomas
 
Hadoop map reduce
Hadoop map reduceHadoop map reduce
Hadoop map reduce
VijayMohan Vasu
 
Hadoop Tutorial for Beginners
Hadoop Tutorial for BeginnersHadoop Tutorial for Beginners
Hadoop Tutorial for Beginners
business Corporate
 
Big Data Technology Stack : Nutshell
Big Data Technology Stack : NutshellBig Data Technology Stack : Nutshell
Big Data Technology Stack : Nutshell
Khalid Imran
 
Big Data Hoopla Simplified - TDWI Memphis 2014
Big Data Hoopla Simplified - TDWI Memphis 2014Big Data Hoopla Simplified - TDWI Memphis 2014
Big Data Hoopla Simplified - TDWI Memphis 2014
Rajan Kanitkar
 
Hadoop in action
Hadoop in actionHadoop in action
Hadoop in action
Mahmoud Yassin
 
M. Florence Dayana - Hadoop Foundation for Analytics.pptx
M. Florence Dayana - Hadoop Foundation for Analytics.pptxM. Florence Dayana - Hadoop Foundation for Analytics.pptx
M. Florence Dayana - Hadoop Foundation for Analytics.pptx
Dr.Florence Dayana
 
Hadoop a Natural Choice for Data Intensive Log Processing
Hadoop a Natural Choice for Data Intensive Log ProcessingHadoop a Natural Choice for Data Intensive Log Processing
Hadoop a Natural Choice for Data Intensive Log Processing
Hitendra Kumar
 
Hadoop
HadoopHadoop
Hadoop
thisisnabin
 
What is Apache Hadoop and its ecosystem?
What is Apache Hadoop and its ecosystem?What is Apache Hadoop and its ecosystem?
What is Apache Hadoop and its ecosystem?
tommychauhan
 
Brief Introduction about Hadoop and Core Services.
Brief Introduction about Hadoop and Core Services.Brief Introduction about Hadoop and Core Services.
Brief Introduction about Hadoop and Core Services.
Muthu Natarajan
 
Big Data Analytics Presentation on the resourcefulness of Big data
Big Data Analytics Presentation on the resourcefulness of Big dataBig Data Analytics Presentation on the resourcefulness of Big data
Big Data Analytics Presentation on the resourcefulness of Big data
nextstep013
 
Big Data Hadoop Technology
Big Data Hadoop TechnologyBig Data Hadoop Technology
Big Data Hadoop Technology
Rahul Sharma
 
Hadoop Platforms - Introduction, Importance, Providers
Hadoop Platforms - Introduction, Importance, ProvidersHadoop Platforms - Introduction, Importance, Providers
Hadoop Platforms - Introduction, Importance, Providers
Mrigendra Sharma
 
Introduction To Hadoop Administration - SpringPeople
Introduction To Hadoop Administration - SpringPeopleIntroduction To Hadoop Administration - SpringPeople
Introduction To Hadoop Administration - SpringPeople
SpringPeople
 
RDBMS vs Hadoop vs Spark
RDBMS vs Hadoop vs SparkRDBMS vs Hadoop vs Spark
RDBMS vs Hadoop vs Spark
Laxmi8
 
Big Data Technology Stack : Nutshell
Big Data Technology Stack : NutshellBig Data Technology Stack : Nutshell
Big Data Technology Stack : Nutshell
Khalid Imran
 
Big Data Hoopla Simplified - TDWI Memphis 2014
Big Data Hoopla Simplified - TDWI Memphis 2014Big Data Hoopla Simplified - TDWI Memphis 2014
Big Data Hoopla Simplified - TDWI Memphis 2014
Rajan Kanitkar
 
M. Florence Dayana - Hadoop Foundation for Analytics.pptx
M. Florence Dayana - Hadoop Foundation for Analytics.pptxM. Florence Dayana - Hadoop Foundation for Analytics.pptx
M. Florence Dayana - Hadoop Foundation for Analytics.pptx
Dr.Florence Dayana
 
Hadoop a Natural Choice for Data Intensive Log Processing
Hadoop a Natural Choice for Data Intensive Log ProcessingHadoop a Natural Choice for Data Intensive Log Processing
Hadoop a Natural Choice for Data Intensive Log Processing
Hitendra Kumar
 
Ad

Recently uploaded (20)

Mathematical foundation machine learning.pdf
Mathematical foundation machine learning.pdfMathematical foundation machine learning.pdf
Mathematical foundation machine learning.pdf
TalhaShahid49
 
Degree_of_Automation.pdf for Instrumentation and industrial specialist
Degree_of_Automation.pdf for  Instrumentation  and industrial specialistDegree_of_Automation.pdf for  Instrumentation  and industrial specialist
Degree_of_Automation.pdf for Instrumentation and industrial specialist
shreyabhosale19
 
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
inmishra17121973
 
π0.5: a Vision-Language-Action Model with Open-World Generalization
π0.5: a Vision-Language-Action Model with Open-World Generalizationπ0.5: a Vision-Language-Action Model with Open-World Generalization
π0.5: a Vision-Language-Action Model with Open-World Generalization
NABLAS株式会社
 
International Journal of Distributed and Parallel systems (IJDPS)
International Journal of Distributed and Parallel systems (IJDPS)International Journal of Distributed and Parallel systems (IJDPS)
International Journal of Distributed and Parallel systems (IJDPS)
samueljackson3773
 
Value Stream Mapping Worskshops for Intelligent Continuous Security
Value Stream Mapping Worskshops for Intelligent Continuous SecurityValue Stream Mapping Worskshops for Intelligent Continuous Security
Value Stream Mapping Worskshops for Intelligent Continuous Security
Marc Hornbeek
 
railway wheels, descaling after reheating and before forging
railway wheels, descaling after reheating and before forgingrailway wheels, descaling after reheating and before forging
railway wheels, descaling after reheating and before forging
Javad Kadkhodapour
 
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E..."Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
Infopitaara
 
Smart_Storage_Systems_Production_Engineering.pptx
Smart_Storage_Systems_Production_Engineering.pptxSmart_Storage_Systems_Production_Engineering.pptx
Smart_Storage_Systems_Production_Engineering.pptx
rushikeshnavghare94
 
MAQUINARIA MINAS CEMA 6th Edition (1).pdf
MAQUINARIA MINAS CEMA 6th Edition (1).pdfMAQUINARIA MINAS CEMA 6th Edition (1).pdf
MAQUINARIA MINAS CEMA 6th Edition (1).pdf
ssuser562df4
 
fluke dealers in bangalore..............
fluke dealers in bangalore..............fluke dealers in bangalore..............
fluke dealers in bangalore..............
Haresh Vaswani
 
Level 1-Safety.pptx Presentation of Electrical Safety
Level 1-Safety.pptx Presentation of Electrical SafetyLevel 1-Safety.pptx Presentation of Electrical Safety
Level 1-Safety.pptx Presentation of Electrical Safety
JoseAlbertoCariasDel
 
five-year-soluhhhhhhhhhhhhhhhhhtions.pdf
five-year-soluhhhhhhhhhhhhhhhhhtions.pdffive-year-soluhhhhhhhhhhhhhhhhhtions.pdf
five-year-soluhhhhhhhhhhhhhhhhhtions.pdf
AdityaSharma944496
 
ADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITY
ADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITYADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITY
ADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITY
ijscai
 
"Feed Water Heaters in Thermal Power Plants: Types, Working, and Efficiency G...
"Feed Water Heaters in Thermal Power Plants: Types, Working, and Efficiency G..."Feed Water Heaters in Thermal Power Plants: Types, Working, and Efficiency G...
"Feed Water Heaters in Thermal Power Plants: Types, Working, and Efficiency G...
Infopitaara
 
Smart Storage Solutions.pptx for production engineering
Smart Storage Solutions.pptx for production engineeringSmart Storage Solutions.pptx for production engineering
Smart Storage Solutions.pptx for production engineering
rushikeshnavghare94
 
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptxExplainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
MahaveerVPandit
 
Introduction to FLUID MECHANICS & KINEMATICS
Introduction to FLUID MECHANICS &  KINEMATICSIntroduction to FLUID MECHANICS &  KINEMATICS
Introduction to FLUID MECHANICS & KINEMATICS
narayanaswamygdas
 
Compiler Design Unit1 PPT Phases of Compiler.pptx
Compiler Design Unit1 PPT Phases of Compiler.pptxCompiler Design Unit1 PPT Phases of Compiler.pptx
Compiler Design Unit1 PPT Phases of Compiler.pptx
RushaliDeshmukh2
 
Oil-gas_Unconventional oil and gass_reseviours.pdf
Oil-gas_Unconventional oil and gass_reseviours.pdfOil-gas_Unconventional oil and gass_reseviours.pdf
Oil-gas_Unconventional oil and gass_reseviours.pdf
M7md3li2
 
Mathematical foundation machine learning.pdf
Mathematical foundation machine learning.pdfMathematical foundation machine learning.pdf
Mathematical foundation machine learning.pdf
TalhaShahid49
 
Degree_of_Automation.pdf for Instrumentation and industrial specialist
Degree_of_Automation.pdf for  Instrumentation  and industrial specialistDegree_of_Automation.pdf for  Instrumentation  and industrial specialist
Degree_of_Automation.pdf for Instrumentation and industrial specialist
shreyabhosale19
 
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
inmishra17121973
 
π0.5: a Vision-Language-Action Model with Open-World Generalization
π0.5: a Vision-Language-Action Model with Open-World Generalizationπ0.5: a Vision-Language-Action Model with Open-World Generalization
π0.5: a Vision-Language-Action Model with Open-World Generalization
NABLAS株式会社
 
International Journal of Distributed and Parallel systems (IJDPS)
International Journal of Distributed and Parallel systems (IJDPS)International Journal of Distributed and Parallel systems (IJDPS)
International Journal of Distributed and Parallel systems (IJDPS)
samueljackson3773
 
Value Stream Mapping Worskshops for Intelligent Continuous Security
Value Stream Mapping Worskshops for Intelligent Continuous SecurityValue Stream Mapping Worskshops for Intelligent Continuous Security
Value Stream Mapping Worskshops for Intelligent Continuous Security
Marc Hornbeek
 
railway wheels, descaling after reheating and before forging
railway wheels, descaling after reheating and before forgingrailway wheels, descaling after reheating and before forging
railway wheels, descaling after reheating and before forging
Javad Kadkhodapour
 
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E..."Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
Infopitaara
 
Smart_Storage_Systems_Production_Engineering.pptx
Smart_Storage_Systems_Production_Engineering.pptxSmart_Storage_Systems_Production_Engineering.pptx
Smart_Storage_Systems_Production_Engineering.pptx
rushikeshnavghare94
 
MAQUINARIA MINAS CEMA 6th Edition (1).pdf
MAQUINARIA MINAS CEMA 6th Edition (1).pdfMAQUINARIA MINAS CEMA 6th Edition (1).pdf
MAQUINARIA MINAS CEMA 6th Edition (1).pdf
ssuser562df4
 
fluke dealers in bangalore..............
fluke dealers in bangalore..............fluke dealers in bangalore..............
fluke dealers in bangalore..............
Haresh Vaswani
 
Level 1-Safety.pptx Presentation of Electrical Safety
Level 1-Safety.pptx Presentation of Electrical SafetyLevel 1-Safety.pptx Presentation of Electrical Safety
Level 1-Safety.pptx Presentation of Electrical Safety
JoseAlbertoCariasDel
 
five-year-soluhhhhhhhhhhhhhhhhhtions.pdf
five-year-soluhhhhhhhhhhhhhhhhhtions.pdffive-year-soluhhhhhhhhhhhhhhhhhtions.pdf
five-year-soluhhhhhhhhhhhhhhhhhtions.pdf
AdityaSharma944496
 
ADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITY
ADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITYADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITY
ADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITY
ijscai
 
"Feed Water Heaters in Thermal Power Plants: Types, Working, and Efficiency G...
"Feed Water Heaters in Thermal Power Plants: Types, Working, and Efficiency G..."Feed Water Heaters in Thermal Power Plants: Types, Working, and Efficiency G...
"Feed Water Heaters in Thermal Power Plants: Types, Working, and Efficiency G...
Infopitaara
 
Smart Storage Solutions.pptx for production engineering
Smart Storage Solutions.pptx for production engineeringSmart Storage Solutions.pptx for production engineering
Smart Storage Solutions.pptx for production engineering
rushikeshnavghare94
 
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptxExplainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
MahaveerVPandit
 
Introduction to FLUID MECHANICS & KINEMATICS
Introduction to FLUID MECHANICS &  KINEMATICSIntroduction to FLUID MECHANICS &  KINEMATICS
Introduction to FLUID MECHANICS & KINEMATICS
narayanaswamygdas
 
Compiler Design Unit1 PPT Phases of Compiler.pptx
Compiler Design Unit1 PPT Phases of Compiler.pptxCompiler Design Unit1 PPT Phases of Compiler.pptx
Compiler Design Unit1 PPT Phases of Compiler.pptx
RushaliDeshmukh2
 
Oil-gas_Unconventional oil and gass_reseviours.pdf
Oil-gas_Unconventional oil and gass_reseviours.pdfOil-gas_Unconventional oil and gass_reseviours.pdf
Oil-gas_Unconventional oil and gass_reseviours.pdf
M7md3li2
 

Introduction to Apache hadoop