Introduction of Chainer, a framework for neural networks, v1.11. Slides used for the student seminar on July 20, 2016, at Sugiyama-Sato lab in the Univ. of Tokyo.
This document summarizes an internship project using deep reinforcement learning to develop an agent that can automatically park a car simulator. The agent takes input from virtual cameras mounted on the car and uses a DQN network to learn which actions to take to reach a parking goal. Several agent configurations were tested, with the three-camera subjective view agent showing the most success after modifications to the reward function and task difficulty via curriculum learning. While the agent could sometimes learn to park, the learning was not always stable, indicating further refinement is needed to the deep RL approach for this automatic parking task.
Published on 11 may, 2018
Chainer is a deep learning framework which is flexible, intuitive, and powerful.
This slide introduces some unique features of Chainer and its additional packages such as ChainerMN (distributed learning), ChainerCV (computer vision), ChainerRL (reinforcement learning), Chainer Chemistry (biology and chemistry), and ChainerUI (visualization).
The slide of the talk given at Deep Learning Tokyo on Mar. 20, 2016. http://passmarket.yahoo.co.jp/event/show/detail/01ga1ky1mv5c.html
GTC Japan 2016 Chainer feature introductionKenta Oono
This document introduces Chainer's new trainer and dataset abstraction features which provide a standardized way to implement training loops and access datasets. The key aspects are:
- Trainer handles the overall training loop and allows extensions to customize checkpoints, logging, evaluation etc.
- Updater handles fetching mini-batches and model optimization within each loop.
- Iterators handle accessing datasets and returning mini-batches.
- Extensions can be added to the trainer for tasks like evaluation, visualization, and saving snapshots.
This abstraction makes implementing training easier and more customizable while still allowing manual control when needed. Common iterators, updaters, and extensions are provided to cover most use cases.
ChainerUI v0.3 was released with new features like sampled log visualization and performance tuning. It also introduced the experimental ImageReport extension for visualizing images generated during training. Examples shown include using ImageReport with a DCGAN and pix2pix model to display generated images. Future work includes improving the usability of ImageReport, adding support for charts, logging improvements, and enhancing the user experience of ChainerUI.
Alex Smola, Professor in the Machine Learning Department, Carnegie Mellon Uni...MLconf
Fast, Cheap and Deep – Scaling Machine Learning: Distributed high throughput machine learning is both a challenge and a key enabling technology. Using a Parameter Server template we are able to distribute algorithms efficiently over multiple GPUs and in the cloud. This allows us to design very fast recommender systems, factorization machines, classifiers, and deep networks. This degree of scalability allows us to tackle computationally expensive problems efficiently, yielding excellent results e.g. in visual question answering.
Introduction to Chainer: A Flexible Framework for Deep LearningSeiya Tokui
This is the slide used for PFI/PFN weekly seminar on June 18, 2015. Video (in Japanese): http://www.ustream.tv/recorded/64082997
Chainer v4 includes performance improvements like Intel integration and cuDNN enhancements. It also introduces usability features like Sequential chains and reorganized documentation. Chainer v4 allows exporting models to Caffe and ONNX formats. Chainer v5 is planned to improve usability with NumPy compatibility, distributions support, and code generation. It also aims to enhance performance through static subgraph caching.
Chainer is a deep learning framework which is flexible, intuitive, and powerful. This slide introduces some unique features of Chainer and its additional packages such as ChainerMN (distributed learning), ChainerCV (computer vision), ChainerRL (reinforcement learning)
The document discusses deep learning concepts without requiring advanced degrees. It introduces StoreKey, a Python package for scientific computing on GPUs and deep learning research. It covers basics like variables, tensors, and autograd in Python. Predictive models discussed include linear regression, logistic regression, and convolutional neural networks. Linear regression fits a line to data to predict unobserved values. Logistic regression predicts binary outcomes by fitting data to a logit function. A convolutional neural network example is shown with input, output, and hidden layers for classification problems.
Common Design of Deep Learning FrameworksKenta Oono
The document provides an overview of a tutorial on deep learning implementations and frameworks. It discusses:
1) The agenda of the tutorial, which covers an introduction to neural networks, common designs of frameworks, and differences between frameworks.
2) Key steps in training neural networks, including preparing data, computing loss/gradients, updating parameters, and common technology used like computational graphs and automatic differentiation.
3) Common components of deep learning frameworks, such as graphical interfaces, workflow management, computational graph handling, array libraries, and hardware support like GPUs.
FCN-Based 6D Robotic Grasping for Arbitrary Placed ObjectsKusano Hitoshi
This is the slide used for IEEE International Conference on Robotics and Automation (ICRA) 2017, Workshop on Learning and Control for Autonomous Manipulation Systems on June 2nd, 2017.
This document discusses GPU computing and CUDA programming. It begins with an introduction to GPU computing and CUDA. CUDA (Compute Unified Device Architecture) allows programming of Nvidia GPUs for parallel computing. The document then provides examples of optimizing matrix multiplication and closest pair problems using CUDA. It also discusses implementing and optimizing convolutional neural networks (CNNs) and autoencoders for GPUs using CUDA. Performance results show speedups for these deep learning algorithms when using GPUs versus CPU-only implementations.
Alex Smola at AI Frontiers: Scalable Deep Learning Using MXNetAI Frontiers
In this talk at AI Frontiers Conference, Alex Smola gives a brief overview over the features used to scale deep learning using MXNet. It relies on a mix between declarative and imperative programming to achieve efficiency while also allowing for significant flexibility for the user. It relies on a distributed (key, value) store for synchronization between GPUs and between machines. It also relies on the separation between a highly efficient execution engine and language bindings to achieve a high degree of flexibility between different languages while offering a native feel in each of them. Alex also briefly discusses how Amazon AWS can help deploy deep learning models and outline steps on our future roadmap.
Basic concept of Deep Learning with explaining its structure and backpropagation method and understanding autograd in PyTorch. (+ Data parallism in PyTorch)
Rajat Monga at AI Frontiers: Deep Learning with TensorFlowAI Frontiers
In this talk at AI Frontiers Conference, Rajat Monga shares about TensorFlow that has enabled cutting-edge machine learning research at the top AI labs in the world. At the same time it has made the technology accessible to a large audience leading to some amazing uses. TensorFlow is used for classification, recommendation, text parsing, sentiment analysis and more. This talk goes over the design that makes it fast, flexible, and easy to use, and describe how we continue to make it better.
Introduction of PyTorch
Explains PyTorch usages by a CNN example.
Describes the PyTorch modules (torch, torch.nn, torch.optim, etc) and the usages of multi-GPU processing.
Also gives examples for Recurrent Neural Network and Transfer Learning.
Chainer is a deep learning framework which is flexible, intuitive, and powerful.
This slide introduces some unique features of Chainer and its additional packages such as ChainerMN (distributed learning), ChainerCV (computer vision), ChainerRL (reinforcement learning)
Deep learning continues to push the state of the art in domains such as computer vision, natural language understanding and recommendation engines. One of the key reasons for this progress is the availability of highly flexible and developer friendly deep learning frameworks. During this workshop, members of the Amazon Machine Learning team will provide a short background on Deep Learning focusing on relevant application domains and an introduction to using the powerful and scalable Deep Learning framework, MXNet. At the end of this tutorial you’ll gain hands on experience targeting a variety of applications including computer vision and recommendation engines as well as exposure to how to use preconfigured Deep Learning AMIs and CloudFormation Templates to help speed your development.
Deep learning for molecules, introduction to chainer chemistryKenta Oono
1) The document introduces machine learning and deep learning techniques for predicting chemical properties, including rule-based approaches versus learning-based approaches using neural message passing algorithms.
2) It discusses several graph neural network models like NFP, GGNN, WeaveNet and SchNet that can be applied to molecular graphs to predict characteristics. These models update atom representations through message passing and graph convolution operations.
3) Chainer Chemistry is introduced as a deep learning framework that can be used with these graph neural network models for chemical property prediction tasks. Examples of tasks include drug discovery and molecular generation.
Vowpal Wabbit is a machine learning system that has four main goals: scalable and efficient machine learning, supporting new algorithm research, simplicity with few dependencies, and usability with minimal setup requirements. It uses several "tricks" like feature hashing and caching, online learning, and importance weighting to achieve scalability. It also supports newer algorithms like adaptive learning rates and dimensional correction. Vowpal Wabbit can be run in parallel on large clusters to handle terascale problems with billions of examples.
Intro to TensorFlow and PyTorch Workshop at Tubular LabsKendall
These are some introductory slides for the Intro to TensorFlow and PyTorch workshop at Tubular Labs. The Github code is available at:
https://github.com/PythonWorkshop/Intro-to-TensorFlow-and-PyTorch
This document provides an overview of running an image classification workload using IBM PowerAI and the MNIST dataset. It discusses deep learning concepts like neural networks and training flows. It then demonstrates how to set up TensorFlow on an IBM PowerAI trial server, load the MNIST dataset, build and train a basic neural network model for image classification, and evaluate the trained model's accuracy on test data.
Alex Smola, Professor in the Machine Learning Department, Carnegie Mellon Uni...MLconf
Fast, Cheap and Deep – Scaling Machine Learning: Distributed high throughput machine learning is both a challenge and a key enabling technology. Using a Parameter Server template we are able to distribute algorithms efficiently over multiple GPUs and in the cloud. This allows us to design very fast recommender systems, factorization machines, classifiers, and deep networks. This degree of scalability allows us to tackle computationally expensive problems efficiently, yielding excellent results e.g. in visual question answering.
Introduction to Chainer: A Flexible Framework for Deep LearningSeiya Tokui
This is the slide used for PFI/PFN weekly seminar on June 18, 2015. Video (in Japanese): http://www.ustream.tv/recorded/64082997
Chainer v4 includes performance improvements like Intel integration and cuDNN enhancements. It also introduces usability features like Sequential chains and reorganized documentation. Chainer v4 allows exporting models to Caffe and ONNX formats. Chainer v5 is planned to improve usability with NumPy compatibility, distributions support, and code generation. It also aims to enhance performance through static subgraph caching.
Chainer is a deep learning framework which is flexible, intuitive, and powerful. This slide introduces some unique features of Chainer and its additional packages such as ChainerMN (distributed learning), ChainerCV (computer vision), ChainerRL (reinforcement learning)
The document discusses deep learning concepts without requiring advanced degrees. It introduces StoreKey, a Python package for scientific computing on GPUs and deep learning research. It covers basics like variables, tensors, and autograd in Python. Predictive models discussed include linear regression, logistic regression, and convolutional neural networks. Linear regression fits a line to data to predict unobserved values. Logistic regression predicts binary outcomes by fitting data to a logit function. A convolutional neural network example is shown with input, output, and hidden layers for classification problems.
Common Design of Deep Learning FrameworksKenta Oono
The document provides an overview of a tutorial on deep learning implementations and frameworks. It discusses:
1) The agenda of the tutorial, which covers an introduction to neural networks, common designs of frameworks, and differences between frameworks.
2) Key steps in training neural networks, including preparing data, computing loss/gradients, updating parameters, and common technology used like computational graphs and automatic differentiation.
3) Common components of deep learning frameworks, such as graphical interfaces, workflow management, computational graph handling, array libraries, and hardware support like GPUs.
FCN-Based 6D Robotic Grasping for Arbitrary Placed ObjectsKusano Hitoshi
This is the slide used for IEEE International Conference on Robotics and Automation (ICRA) 2017, Workshop on Learning and Control for Autonomous Manipulation Systems on June 2nd, 2017.
This document discusses GPU computing and CUDA programming. It begins with an introduction to GPU computing and CUDA. CUDA (Compute Unified Device Architecture) allows programming of Nvidia GPUs for parallel computing. The document then provides examples of optimizing matrix multiplication and closest pair problems using CUDA. It also discusses implementing and optimizing convolutional neural networks (CNNs) and autoencoders for GPUs using CUDA. Performance results show speedups for these deep learning algorithms when using GPUs versus CPU-only implementations.
Alex Smola at AI Frontiers: Scalable Deep Learning Using MXNetAI Frontiers
In this talk at AI Frontiers Conference, Alex Smola gives a brief overview over the features used to scale deep learning using MXNet. It relies on a mix between declarative and imperative programming to achieve efficiency while also allowing for significant flexibility for the user. It relies on a distributed (key, value) store for synchronization between GPUs and between machines. It also relies on the separation between a highly efficient execution engine and language bindings to achieve a high degree of flexibility between different languages while offering a native feel in each of them. Alex also briefly discusses how Amazon AWS can help deploy deep learning models and outline steps on our future roadmap.
Basic concept of Deep Learning with explaining its structure and backpropagation method and understanding autograd in PyTorch. (+ Data parallism in PyTorch)
Rajat Monga at AI Frontiers: Deep Learning with TensorFlowAI Frontiers
In this talk at AI Frontiers Conference, Rajat Monga shares about TensorFlow that has enabled cutting-edge machine learning research at the top AI labs in the world. At the same time it has made the technology accessible to a large audience leading to some amazing uses. TensorFlow is used for classification, recommendation, text parsing, sentiment analysis and more. This talk goes over the design that makes it fast, flexible, and easy to use, and describe how we continue to make it better.
Introduction of PyTorch
Explains PyTorch usages by a CNN example.
Describes the PyTorch modules (torch, torch.nn, torch.optim, etc) and the usages of multi-GPU processing.
Also gives examples for Recurrent Neural Network and Transfer Learning.
Chainer is a deep learning framework which is flexible, intuitive, and powerful.
This slide introduces some unique features of Chainer and its additional packages such as ChainerMN (distributed learning), ChainerCV (computer vision), ChainerRL (reinforcement learning)
Deep learning continues to push the state of the art in domains such as computer vision, natural language understanding and recommendation engines. One of the key reasons for this progress is the availability of highly flexible and developer friendly deep learning frameworks. During this workshop, members of the Amazon Machine Learning team will provide a short background on Deep Learning focusing on relevant application domains and an introduction to using the powerful and scalable Deep Learning framework, MXNet. At the end of this tutorial you’ll gain hands on experience targeting a variety of applications including computer vision and recommendation engines as well as exposure to how to use preconfigured Deep Learning AMIs and CloudFormation Templates to help speed your development.
Deep learning for molecules, introduction to chainer chemistryKenta Oono
1) The document introduces machine learning and deep learning techniques for predicting chemical properties, including rule-based approaches versus learning-based approaches using neural message passing algorithms.
2) It discusses several graph neural network models like NFP, GGNN, WeaveNet and SchNet that can be applied to molecular graphs to predict characteristics. These models update atom representations through message passing and graph convolution operations.
3) Chainer Chemistry is introduced as a deep learning framework that can be used with these graph neural network models for chemical property prediction tasks. Examples of tasks include drug discovery and molecular generation.
Vowpal Wabbit is a machine learning system that has four main goals: scalable and efficient machine learning, supporting new algorithm research, simplicity with few dependencies, and usability with minimal setup requirements. It uses several "tricks" like feature hashing and caching, online learning, and importance weighting to achieve scalability. It also supports newer algorithms like adaptive learning rates and dimensional correction. Vowpal Wabbit can be run in parallel on large clusters to handle terascale problems with billions of examples.
Intro to TensorFlow and PyTorch Workshop at Tubular LabsKendall
These are some introductory slides for the Intro to TensorFlow and PyTorch workshop at Tubular Labs. The Github code is available at:
https://github.com/PythonWorkshop/Intro-to-TensorFlow-and-PyTorch
This document provides an overview of running an image classification workload using IBM PowerAI and the MNIST dataset. It discusses deep learning concepts like neural networks and training flows. It then demonstrates how to set up TensorFlow on an IBM PowerAI trial server, load the MNIST dataset, build and train a basic neural network model for image classification, and evaluate the trained model's accuracy on test data.
https://telecombcn-dl.github.io/2017-dlcv/
Deep learning technologies are at the core of the current revolution in artificial intelligence for multimedia data analysis. The convergence of large-scale annotated datasets and affordable GPU hardware has allowed the training of neural networks for data analysis tasks which were previously addressed with hand-crafted features. Architectures such as convolutional neural networks, recurrent neural networks and Q-nets for reinforcement learning have shaped a brand new scenario in signal processing. This course will cover the basic principles and applications of deep learning to computer vision problems, such as image classification, object detection or image captioning.
The document discusses ONNC, a compiler for deep learning formats like ONNX. It aims to connect ONNX to various deep learning accelerator (DLA) chips to help vendors bring products to market faster. Key features include supporting DLA features, optimizing memory usage and execution time, and being released as open source before the end of July 2018.
The document provides an overview and agenda for an introduction to running AI workloads on PowerAI. It discusses PowerAI and how it combines popular deep learning frameworks, development tools, and accelerated IBM Power servers. It then demonstrates AI workloads using TensorFlow and PyTorch, including running an MNIST workload to classify handwritten digits using basic linear regression and convolutional neural networks in TensorFlow, and an introduction to PyTorch concepts like tensors, modules, and softmax cross entropy loss.
http://imatge-upc.github.io/telecombcn-2016-dlcv/
Deep learning technologies are at the core of the current revolution in artificial intelligence for multimedia data analysis. The convergence of big annotated data and affordable GPU hardware has allowed the training of neural networks for data analysis tasks which had been addressed until now with hand-crafted features. Architectures such as convolutional neural networks, recurrent neural networks and Q-nets for reinforcement learning have shaped a brand new scenario in signal processing. This course will cover the basic principles and applications of deep learning to computer vision problems, such as image classification, object detection or text captioning.
An Introduction to TensorFlow architectureMani Goswami
Introduces you to the internals of TensorFlow and deep dives into distributed version of TensorFlow. Refer to https://github.com/manigoswami/tensorflow-examples for examples.
MLOps Case Studies: Building fast, scalable, and high-accuracy ML systems at ...Masashi Shibata
This document discusses three case studies for MLOps:
1. Building a memory-efficient Python binding for LIBFFM using Cython and NumPy C-API to implement their own Python binding.
2. Implementing a transfer learning method for hyperparameter optimization using Optuna and CMA-ES to exploit previous optimization history.
3. Accelerating a prediction server and addressing challenges of high throughput and low latency by using Cython to speed up inference processing, improving throughput by 1.35x and reducing latency by 60%.
Spark Summit EU talk by Ram Sriharsha and Vlad FeinbergSpark Summit
This document summarizes an online machine learning framework called Structured Streaming that is being developed for Apache Spark. Some key points:
- It allows machine learning algorithms to be applied continuously to streaming data and update models incrementally in an online fashion.
- Models are updated every time interval (e.g. every second) based on new data within that interval. This provides an approximation of processing all data to date.
- It uses a stateful aggregation approach to allow models to be updated and merged across distributed partitions in a way that is deterministic but not necessarily commutative.
- APIs are provided for common online learning algorithms like online logistic regression and gradient descent to interface with streaming data sources and sinks.
This document provides an overview and agenda for a tutorial on deep learning implementations and frameworks. The tutorial is split into two sessions. The first session will cover basics of neural networks, common design aspects of neural network implementations, and differences between deep learning frameworks. The second session will include coding examples of different frameworks and a conclusion. Slide decks and resources will be provided on topics including basics of neural networks, common design of frameworks, and differences between frameworks. The tutorial aims to introduce fundamentals of deep learning and compare popular frameworks.
Introduction to TensorFlow, by Machine Learning at BerkeleyTed Xiao
A workshop introducing the TensorFlow Machine Learning framework. Presented by Brenton Chu, Vice President of Machine Learning at Berkeley.
This presentation cover show to construct, train, evaluate, and visualize neural networks in TensorFlow 1.0
http://ml.berkeley.edu
Snabb - A toolkit for user-space networking (FOSDEM 2018)Igalia
By Diego Pino.
Snabb is a toolkit for developing user-space network functions. A network function (filtering, NAT, encapsulation) is any program that manipulates network traffic. Snabb eases the effort to write such programs. Snabb fits in the category of user-space networking. Snabb by-passes the Linux kernel talking directly to the hardware. This makes Snabb a very convenient tool for high-performance networking. Unlike other user-space toolkits such as DPDK or VPP, Snabb is entirely developed in Lua which significantly lowers the adoption barrier.
In this talk I introduce the Snabb toolkit. Through real-world examples you will learn how Snabb works and even how to start prototyping your own network functions.
(c) FOSDEM 2018
Brussels, 3 & 4 February 2018
https://fosdem.org/2018/schedule/event/snabb/
Keras and TensorFlow are popular Python packages for deep learning. Keras provides high-level neural network APIs that allow users to build and train models quickly with fewer lines of code, running on CPU or GPU. TensorFlow is a more flexible platform that supports lower-level operations and multi-platform deployment, but requires more code. Both packages were used in examples to build and train a basic neural network model to solve the XOR problem, demonstrating their capabilities for machine learning tasks.
Machine-learning based performance heuristics for Runtime CPU/GPU Selection i...Akihiro Hayashi
This document discusses using machine learning techniques to perform runtime selection of CPUs or GPUs for executing Java programs. It describes challenges in supporting Java features like exceptions on GPUs and accelerating Java programs. Features like loop characteristics, instruction counts, memory accesses are extracted from programs to train an SVM model to predict faster device. Evaluating on 11 apps, the model achieves 97.6-99% accuracy using 5-fold cross validation to avoid overfitting. This runtime selection approach can adapt to new hardware without needing to rebuild performance models.
DISQUS is a comment system that handles high volumes of traffic, with up to 17,000 requests per second and 250 million monthly visitors. They face challenges in unpredictable spikes in traffic and ensuring high availability. Their architecture includes over 100 servers split between web servers, databases, caching, and load balancing. They employ techniques like vertical and horizontal data partitioning, atomic updates, delayed signals, consistent caching, and feature flags to scale their large Django application.
The document evaluates the performance of parallelizing a naive matrix multiplication algorithm using OpenMP on a multicore processor. It implements sequential and parallel versions of square matrix multiplication and measures execution time. Results show that as the number of threads and matrix size increase, execution time decreases and speedup and efficiency increase, demonstrating that the parallel implementation outperforms the serial version, especially for larger datasets.
This document outlines Chainer's development plans, including past releases from versions 1.0 to 1.5, apologies about installation complications, and new policies and release schedules going forward from version 1.6. Key points include making installation easier, adding backwards compatibility, releasing minor versions every 6 weeks and revision versions every 2 weeks, and potential future features like profiling, debugging tools, and isolating CuPy.
1) The document discusses the development history and planned features of Chainer, a deep learning framework.
2) It describes Chainer's transition to a new model structure using Links and Chains to define networks in a more modular and reusable way.
3) The new structure will allow for easier saving, loading, and composition of network definitions compared to the previous FunctionSet/Optimizer approach.
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...Alan Dix
Talk at the final event of Data Fusion Dynamics: A Collaborative UK-Saudi Initiative in Cybersecurity and Artificial Intelligence funded by the British Council UK-Saudi Challenge Fund 2024, Cardiff Metropolitan University, 29th April 2025
https://alandix.com/academic/talks/CMet2025-AI-Changes-Everything/
Is AI just another technology, or does it fundamentally change the way we live and think?
Every technology has a direct impact with micro-ethical consequences, some good, some bad. However more profound are the ways in which some technologies reshape the very fabric of society with macro-ethical impacts. The invention of the stirrup revolutionised mounted combat, but as a side effect gave rise to the feudal system, which still shapes politics today. The internal combustion engine offers personal freedom and creates pollution, but has also transformed the nature of urban planning and international trade. When we look at AI the micro-ethical issues, such as bias, are most obvious, but the macro-ethical challenges may be greater.
At a micro-ethical level AI has the potential to deepen social, ethnic and gender bias, issues I have warned about since the early 1990s! It is also being used increasingly on the battlefield. However, it also offers amazing opportunities in health and educations, as the recent Nobel prizes for the developers of AlphaFold illustrate. More radically, the need to encode ethics acts as a mirror to surface essential ethical problems and conflicts.
At the macro-ethical level, by the early 2000s digital technology had already begun to undermine sovereignty (e.g. gambling), market economics (through network effects and emergent monopolies), and the very meaning of money. Modern AI is the child of big data, big computation and ultimately big business, intensifying the inherent tendency of digital technology to concentrate power. AI is already unravelling the fundamentals of the social, political and economic world around us, but this is a world that needs radical reimagining to overcome the global environmental and human challenges that confront us. Our challenge is whether to let the threads fall as they may, or to use them to weave a better future.
Technology Trends in 2025: AI and Big Data AnalyticsInData Labs
At InData Labs, we have been keeping an ear to the ground, looking out for AI-enabled digital transformation trends coming our way in 2025. Our report will provide a look into the technology landscape of the future, including:
-Artificial Intelligence Market Overview
-Strategies for AI Adoption in 2025
-Anticipated drivers of AI adoption and transformative technologies
-Benefits of AI and Big data for your business
-Tips on how to prepare your business for innovation
-AI and data privacy: Strategies for securing data privacy in AI models, etc.
Download your free copy nowand implement the key findings to improve your business.
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul
Artificial intelligence is changing how businesses operate. Companies are using AI agents to automate tasks, reduce time spent on repetitive work, and focus more on high-value activities. Noah Loul, an AI strategist and entrepreneur, has helped dozens of companies streamline their operations using smart automation. He believes AI agents aren't just tools—they're workers that take on repeatable tasks so your human team can focus on what matters. If you want to reduce time waste and increase output, AI agents are the next move.
Big Data Analytics Quick Research Guide by Arthur MorganArthur Morgan
This is a Quick Research Guide (QRG).
QRGs include the following:
- A brief, high-level overview of the QRG topic.
- A milestone timeline for the QRG topic.
- Links to various free online resource materials to provide a deeper dive into the QRG topic.
- Conclusion and a recommendation for at least two books available in the SJPL system on the QRG topic.
QRGs planned for the series:
- Artificial Intelligence QRG
- Quantum Computing QRG
- Big Data Analytics QRG
- Spacecraft Guidance, Navigation & Control QRG (coming 2026)
- UK Home Computing & The Birth of ARM QRG (coming 2027)
Any questions or comments?
- Please contact Arthur Morgan at [email protected].
100% human made.
Spark is a powerhouse for large datasets, but when it comes to smaller data workloads, its overhead can sometimes slow things down. What if you could achieve high performance and efficiency without the need for Spark?
At S&P Global Commodity Insights, having a complete view of global energy and commodities markets enables customers to make data-driven decisions with confidence and create long-term, sustainable value. 🌍
Explore delta-rs + CDC and how these open-source innovations power lightweight, high-performance data applications beyond Spark! 🚀
Quantum Computing Quick Research Guide by Arthur MorganArthur Morgan
This is a Quick Research Guide (QRG).
QRGs include the following:
- A brief, high-level overview of the QRG topic.
- A milestone timeline for the QRG topic.
- Links to various free online resource materials to provide a deeper dive into the QRG topic.
- Conclusion and a recommendation for at least two books available in the SJPL system on the QRG topic.
QRGs planned for the series:
- Artificial Intelligence QRG
- Quantum Computing QRG
- Big Data Analytics QRG
- Spacecraft Guidance, Navigation & Control QRG (coming 2026)
- UK Home Computing & The Birth of ARM QRG (coming 2027)
Any questions or comments?
- Please contact Arthur Morgan at [email protected].
100% human made.
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc
Most consumers believe they’re making informed decisions about their personal data—adjusting privacy settings, blocking trackers, and opting out where they can. However, our new research reveals that while awareness is high, taking meaningful action is still lacking. On the corporate side, many organizations report strong policies for managing third-party data and consumer consent yet fall short when it comes to consistency, accountability and transparency.
This session will explore the research findings from TrustArc’s Privacy Pulse Survey, examining consumer attitudes toward personal data collection and practical suggestions for corporate practices around purchasing third-party data.
Attendees will learn:
- Consumer awareness around data brokers and what consumers are doing to limit data collection
- How businesses assess third-party vendors and their consent management operations
- Where business preparedness needs improvement
- What these trends mean for the future of privacy governance and public trust
This discussion is essential for privacy, risk, and compliance professionals who want to ground their strategies in current data and prepare for what’s next in the privacy landscape.
Dev Dives: Automate and orchestrate your processes with UiPath MaestroUiPathCommunity
This session is designed to equip developers with the skills needed to build mission-critical, end-to-end processes that seamlessly orchestrate agents, people, and robots.
📕 Here's what you can expect:
- Modeling: Build end-to-end processes using BPMN.
- Implementing: Integrate agentic tasks, RPA, APIs, and advanced decisioning into processes.
- Operating: Control process instances with rewind, replay, pause, and stop functions.
- Monitoring: Use dashboards and embedded analytics for real-time insights into process instances.
This webinar is a must-attend for developers looking to enhance their agentic automation skills and orchestrate robust, mission-critical processes.
👨🏫 Speaker:
Andrei Vintila, Principal Product Manager @UiPath
This session streamed live on April 29, 2025, 16:00 CET.
Check out all our upcoming Dev Dives sessions at https://community.uipath.com/dev-dives-automation-developer-2025/.
HCL Nomad Web – Best Practices and Managing Multiuser Environmentspanagenda
Webinar Recording: https://www.panagenda.com/webinars/hcl-nomad-web-best-practices-and-managing-multiuser-environments/
HCL Nomad Web is heralded as the next generation of the HCL Notes client, offering numerous advantages such as eliminating the need for packaging, distribution, and installation. Nomad Web client upgrades will be installed “automatically” in the background. This significantly reduces the administrative footprint compared to traditional HCL Notes clients. However, troubleshooting issues in Nomad Web present unique challenges compared to the Notes client.
Join Christoph and Marc as they demonstrate how to simplify the troubleshooting process in HCL Nomad Web, ensuring a smoother and more efficient user experience.
In this webinar, we will explore effective strategies for diagnosing and resolving common problems in HCL Nomad Web, including
- Accessing the console
- Locating and interpreting log files
- Accessing the data folder within the browser’s cache (using OPFS)
- Understand the difference between single- and multi-user scenarios
- Utilizing Client Clocking
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfSoftware Company
Explore the benefits and features of advanced logistics management software for businesses in Riyadh. This guide delves into the latest technologies, from real-time tracking and route optimization to warehouse management and inventory control, helping businesses streamline their logistics operations and reduce costs. Learn how implementing the right software solution can enhance efficiency, improve customer satisfaction, and provide a competitive edge in the growing logistics sector of Riyadh.
4. Why are frameworks needed for
neural networks (NN)?
NN research requirements:
• Flexibility in defining NN architectures
• Fast trial-and-error
• It means we want to automate programming as much as possible
We want to automate
• Automatic differentiation
• CUDA programming
• Efficient execution (computational optimization)
• Boilerplates in training loops
4
5. Core concept: computational graph (CG)
• Directed acyclic graph (DAG) that represents how to
compute output from input
• Two types of representations
• Data-operation graph (Theano, Chainer)
• Operation graph (a.k.a. data-flow graph) (TensorFlow, Torch.nn)
matmul + MSE
Example: CG (data-operation grpah) for least-squares linear regression
MSE: Mean Squared Error
5
6. Automatic differentiation over a computational grpah
• Gradient can be factorized by chain rules
• Reducing the products of Jacobians one by one: automatic
differentiation
matmul + MSE
(all factors are Jacobian)
6
7. Backpropagation over a computational graph
Usually inputs (W, b) are larger than the output (loss), so
reducing in right-fold way is computationally efficient.
→ Backpropagation (reverse-mode AD)
Left-fold computation is called forward-mode AD or Real Time
Recurrent Learning (in RNN literature)
matmul + MSE
(all factors are Jacobian)
7
11. Chainer
• Open source framework for neural networks
• First release: v1.0.0 (June, 2015)
• Latest release: v1.11.0 (July, 2016)
URLs:
• GitHub: https://github.com/pfnet/chainer
• Official site: http://chainer.org/
• Documentation: http://docs.chainer.org/
• Forum
• English: https://groups.google.com/forum/#!forum/chainer
• Japanese: https://groups.google.com/forum/#!forum/chainer-jp
11
12. Basic information
Chainer is a Python framework of neural networks.
Components:
• Backend / Low-level API
• CuPy: GPU array library with NumPy-subset interface
• Dynamic computational graph
• High-level API
• Model composition (links and chains)
• Dataset abstraction
• Training loop abstraction
12
13. Installation
On your Python environment (2.7 or 3.5), type
pip install chainer
• Enable GPU: If CUDA is installed and paths (CPATH,
LD_LIBRARY_PATH) are properly set, the above command
also installs GPU support (including CuPy)
• NOTE: install Chainer AFTER configuring CUDA!
• When your CUDA is updated, don’t forget to reinstall Chainer
• Sometimes you might have to delete the CUDA kernel cache at
$(HOME)/.cupy (just rm -r it)
• Chainer also supports cuDNN v2 – v5.1
13
14. How to learn Chainer
Official tutorial
• Part of the official document (http://docs.chainer.org)
Official examples
• examples directory in the official repository
(https://github.com/pfnet/chainer)
14
15. Computational graph (CG) in Chainer
Chainer is based on dynamic CG construction
• CG is not built beforehand for the forward computation
• The forward computation is written like a regular program on
Variable and Function
• Variable remembers the history of computation = CG
• Backpropagation is done by walking through this CG
15
16. import chainer, chainer.functions as F
import numpy as np
W = chainer.Variable(np.array(...))
b = chainer.Variable(np.array(...))
x = np.array(...)
y = np.array(...)
a = F.matmul(W, x)
y_hat = a + b
ell = F.mean_squared_error(y, y_hat)
print(ell.data) # => print the computed error
CG in Chainer: example
matmul + MSE
Input definition
(use Variable if you want to
extract grad; see the next slide)
Forward computation
(done on-the-fly)
16
17. Backpropagation in Chainer
• backward() executes backpropagation along the history of
forward computations
• Gradient w.r.t. terminal nodes can be extracted
(for non-terminal nodes, pass retain_grad=True to the
backward method)
17
a = F.matmul(W, x)
y_hat = a + b
ell = F.mean_squared_error(y, y_hat)
ell.backward() # Compute gradient of the error
print(W.grad) # => print the gradient w.r.t. W
print(b.grad) # => print the gradient w.r.t. b
18. Pre-built CG vs On-the-fly CG
• Most other frameworks use “pre-built CG”
• CGs are built by scripting or from static data (e.g. prototxt)
• They are executed multiple times after the construction
• We call this paradigm “Define-and-Run”
• easy to cache the graph optimization
• hard to define different graphs at every iteration, unintuitive, hard
to debug
• Chainer adopts “on-the-fly CG”
• CGs are built simultaneously with the forward computation
• The graph is only used to derive automatic differentiation
• We call this paradigm “Define-by-Run”
• flexibility, intuitiveness, easy to debug
• hard to cache the graph optimization
18
19. Defininig neural network models
• In Object-Oriented Programming (OOP), we often bind codes
to data
• In NN programming, we want to bind the forward
computation with parameters
• We can use Link and Chain for that purpose
• Link: a Function with parameters
• Chain: a forward computation routine that combines one or
more child links
• Chain itself is a link, so we can nest chains, resulting in a hierarchy
of links/chains
19
20. import chainer, chainer.functions as F, chainer.links as L
import numpy as np
class MLP(chainer.Chain):
def __init__(self):
super().__init__(
l1=L.Linear(100, 10),
l2=L.Linear(10, 1),
)
def __call__(self, x):
h = F.tanh(self.l1(x))
return self.l2(h)
Example: multi-layer perceptron
Wx+b
Linear
Linear
MLP
tanh Linear
20
21. class Classifier(chainer.Chain):
def __init__(self, predictor):
super().__init__(predictor=predictor)
def __call__(self, x, y):
y_hat = self.predictor(x)
loss = F.softmax_cross_entropy(y_hat, y)
accuracy = F.accuracy(y_hat, y)
chainer.report({'loss': loss, 'accuracy': accuracy}, self)
return loss
Example: Classifier
We often implement a chain that defines the loss function like
this
child link
Report the performance to Reporter
21
22. Built-in functions and links
There are many Functions and Links provided by Chainer
Popular examples (see the reference manual for the full list):
• Layers with parameters:
Linear, Convolution2D, Deconvolution2D, EmbedID
• Activation functions and recurrent layers:
sigmoid, tanh, relu, maxout, LSTM, GRU
• Loss functions:
softmax_cross_entropy, mean_squared_error,
connectionist_temporary_classification
• Other NN stuffs:
dropout, BatchNormalization
Many array/math functions are also supported
(mostly from NumPy)
22
23. Numerical optimization
• NNs are often trained with online gradient methods
• Stochastic Gradient Descent (SGD), momentum SGD, AdaGrad,
RMSprop, Adam, etc.
• Most of these optimizers need state vectors besides the parameters
(e.g. momentum, moving average of squared gradient, etc.)
• Chainer provides Optimizer to abstract the optimization
routines
• Examples are provided in chainer.optimizers
23
24. Numerical optimization
• Optimizer accepts target link to optimize
• It enumerates the parameters in the link hierarchy, and
prepares the corresponding state vectors
• Pass a loss function and its arguments to update the
parameters (the optimizer runs forward prop and backprop,
and then updates the parameters)
24
model = ... # chain
optimizer = chainer.optimizers.MomentumSGD()
optimizer.setup(model)
def loss_fun(x, y): ...
optimizer.update(loss_fun, x, y)
25. Training loop
Training loop: a loop that implements the iterative updates of
parameters
Each iteration consists of following procedures:
• Load a mini batch
• Forward/backward propagation
• Update parameters with Optimizer
• Track the current performance
• Save a checkpoint in regular intervals
We sometimes want to resume the training from a checkpoint
25
26. Training loop abstraction
(new feature of v1.11)
Trainer implements the training loop.
• Load a mini batch
• Forward/backward propagation
• Update parameters with Optimizer
• Track the current performance
• Save a checkpoint in regular intervals
Updater
Extension
26
27. Updater: parameter update routine
• It updates parameters using a mini batch
• Dataset defines a set of training points
• Iterator defines how to iterate over the dataset
Updater Optimizer Target Link
Iterator Dataset
27
28. Built-in datasets, iterators, and updaters
Dataset
• MNIST, CIFAR10/100, Penn Tree Bank (word sequence)
• Also support random split and cross-validation splits
Iterators
• Random shuffling at each epoch (epoch = 1 sweep over the
whole dataset)
• MultiprocessIterator: parallel prefetch of next mini batch
Updaters
• StandardUpdater: standard implementation
• ParallelUpdater: multi-GPU data-parallel updater
28
29. Extensions to extend the training loop
Trainer’s training loop
• Call updater.update()
• For all extension and corresponding trigger:
If trigger(trainer) == True:
call extension(trainer)
Users can register extensions to a trainer
• It is called at every iteration unless the trigger returns False
• The trigger manages when to invoke the extension
29
30. Built-in extensions
• Evaluator: evaluate the performance of current models on
a validation set
• LogReport: Collect reports made by the models and output
them to a JSON file
• PrintReport: Print selected entries from the log to console
• ProgressBar: Print a progress bar of the training process
• snapshot: Save a snapshot of the trainer object
(users can resume training by deserializing the snapshot)
30
31. Custom extensions
Users can write their own extensions.
Two ways: inherit Extension class, or using
@make_extension decorator (the decorator is easier)
Example: learning rate decay by the inverse of iteration count
31
@chainer.training.make_extension()
def adjust_learning_rate(trainer):
optimizer = trainer.updater.get_optimizer('main')
optimizer.lr = 0.01 / optimizer.t
33. MNIST example
• MNIST: hand-written digit image dataset
• 60,000 training images and 10,000 test images
• Each image has 28x28 = 784 pixels
• Digit (0-9) is labeled to each image
• Often used as a “Hello world” of deep learning
• Task: label prediction (multiclass classification)
• We use a multi-layer perceptron and use softmax cross
entropy as a loss function
33
34. Definition of the multi-layer perceptron
34
class MLP(chainer.Chain):
def __init__(self, n_in, n_units, n_out):
super().__init__(
l1=L.Linear(n_in, n_units), # first layer
l2=L.Linear(n_units, n_units), # second layer
l3=L.Linear(n_units, n_out), # output layer
)
def __call__(self, x):
h1 = F.relu(self.l1(x))
h2 = F.relu(self.l2(h1))
return self.l3(h2)
35. Instantiate a classifier with the MLP
We wrap MLP by Classifier chain.
to_gpu is optional: it is needed only if you want to use a GPU.
Then, set up an optimizer for it.
35
model = L.Classifier(MLP(784, 1000, 10))
model.to_gpu(device=0) # Copy the model to GPU-0
optimizer = chainer.optimizers.Adam()
optimizer.setup(model)
36. Prepare the dataset and iterators
Chainer provides a utility function to download MNIST.
The train and test are instances of TupleDataset.
Each example is a tuple of an image and a label.
Each image is a 784 dimensional float32 vector.
repeat=False means only one sweep over the test dataset is
needed for validation.
36
train, test = chainer.datasets.get_mnist()
train_iter = chainer.iterators.SerialIterator(train, batchsize=100)
test_iter = chainer.iterators.SerialIterator(
test, batchsize=100, repeat=False, shuffle=False)
37. We have to create an updater to use Trainer.
Option: we can easily use data-parallel computation with
multiple GPUs by using ParallelUpdater.
Set up an updater and a trainer
37
updater = training.StandardUpdater(train_iter, optimizer, device=0)
trainer = training.Trainer(updater, (10, 'epoch'), out='result')
updater = training.ParallelUpdater(
train_iter, optimizer, devices={'main': 0, 'second': 1})
38. Add extensions
38
# Evaluate the model with the test set at the end of each epoch
trainer.extend(extensions.Evaluator(tests_iter, model, device=0))
# Save a snapshot of the trainer at the end of each epoch
trainer.extend(extensions.snapshot())
# Collect performance, save it to a log file,
# and print some entries to the console
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport(
['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy']))
# Print a progress bar
trainer.extend(extensions.ProgressBar())
39. Executes the training loop
39
Just call trainer.run.
DEMO: executing this trainer.
trainer.run()
40. Summary
• Computational graph is a crucial part of any deep learning
frameworks
• DL frameworks also contain high-level APIs
• Chainer provides both low-level APIs and high-level APIs
• Today, I introduced the computational graph in Chainer and
high-level APIs
• Almost any part of Chainer can be customized, so you can try
unusual workflow sometimes seen in cutting-edge DL
research
40