SlideShare a Scribd company logo
Sanjivani Rural Education Society's
Sanjivani College of Engineering, Kopargaon 423603.
-Department of Strucutral Engineering-
By
Mr. Sumit S. Kolapkar (Assistant Professor)
Mail Id- kolapkarsumitst@sanjivani.org.in
Ø Why data visualization in Python-
• Is a quick and easy way to convey the concepts in a
universal manner.
Ø What is data visualization-
• Is a graphical way of representing information and
data.
Ø Types of data visualization in Python-
• Plotting Libraries-
• Matplotlib-
• Pandas Visualization-
• Seaborn-
• ggplot-
• Plotly-
Ø What is Matplotlib-
• Is a plotting library for Python and it is numerical
mathematical extension of Numpy
• Is 2D and 3D plotting Python library
• It was introduced by John Hunter in the year 2002
Ø Matplotlib graphs-
Ø Importing Matplotlib in Python-
• import matplotlib.pyplot as plt
OR
• from matplotlib import pyplot as plt
Example-
import matplotlib.pyplot as plt
x=[1,2,3,4,5]
y=[6,7,8,9,10]
plt.plot(x,y)
plt.show ()
Example-
import matplotlib.pyplot as plt
x=[1,2,3,4,5]
y=[6,7,8,9,10]
plt.bar(x,y)
plt.show ()
Ø Importing Matplotlib in Python-
Example-
import matplotlib.pyplot as plt
x=[1,2,3,4,5]
y=[6,7,8,9,10]
Z=['b','g','r','black','pink']
plt.bar(x,y,color=Z)
plt.show ()
Base Color-
Ø Importing Matplotlib in Python-
Ø Matplotlib Bar Plot-
• import matplotlib.pyplot as plt
x = ['Python','C','C++', 'Java']
y = [90,65,82,85]
plt.bar(x,y)
plt.show ()
Ø Matplotlib Bar Plot-
• import matplotlib.pyplot as plt
x=[ ]
y=[ ]
z=[ ]
plt.bar(x,y, width=0.4, color=“y”, align= “edge” (or center),
edgecolor=“r”, linewidth=10, linestyle=“:”, alpha=0.4,
label=“Popularity”)
plt.bar(x,z, width=0.4, color=“g”, align=edge, edgecolor=“r”,
linewidth=10, linestyle=“:”, alpha=0.4, label=“Popularity1”)...for
multiple bar graphs
plt.legend()
plt.show( )
plt.xlabel (“languages”, fontsize=10)
plt.ylabel(“No.” ”, font size=10)
plt.title(“Graph1” ”, font size=10)
Note- To apply the label we must apply for legend.
Ø Matplotlib Bar Plot-
• import matplotlib.pyplot as plt
x=[ ]
y=[ ]
z=[ ]
plt.bar(x,y, width=0.4, color=“y”,label=“Popularity”)
plt.bar(x,z, width=0.4, color=“g”, label=“Popularity1”)...for
multiple bar graphs.....overlapped
plt.legend()
plt.show( )
plt.xlabel (“languages”, fontsize=10)
plt.ylabel(“No.” ”, font size=10)
plt.title(“Graph1” ”, font size=10)
Note- To apply the label we must apply for legend.
Ø Matplotlib Bar Plot- Side by Side Graph
• import matplotlib.pyplot as plt
• import numpy as np
x=[ “python”, “c”, “c++”, “java”]
y=[80,70,60,82 ]
z=[ 20,30,40,50]
p = [0,1,2,3].....indexing of x
OR
p = np.arange(len(x))...by importing numpy also we can create an array of indexing
width = 0.4
plt.bar(p,y, width, color=“y”,label=“Popularity”)....x replaced with ‘p’
plt.bar(p,z, width, color=“g”, label=“Popularity1”)....x replaced with ‘p’
plt.legend()
plt.show( )
plt.xlabel (“languages”, fontsize=10)
plt.ylabel(“No.” ”, font size=10)
plt.title(“Graph1” ”, font size=10)
Note- To apply the label we must apply for legend.
gives number
at x-axis and
is over lapped
Ø Matplotlib Bar Plot- Side by Side Graph
• import matplotlib.pyplot as plt
• import numpy as np
x=[ “python”, “c”, “c++”, “java”]
y=[80,70,60,82 ]
z=[ 20,30,40,50]
width = 0.4
p = np.arange(len(x))
p1=[ j+width for j in p]...will create another graph of same width on side
plt.bar(p,y, width, color=“y”,label=“Popularity”)....x replaced with ‘p’
plt.bar(p1,z, width, color=“g”, label=“Popularity1”)....x replaced with ‘p’
plt.legend()
plt.show( )
plt.xlabel (“languages”, fontsize=10)
plt.ylabel(“No.” ”, font size=10)
plt.title(“Graph1” ”, font size=10)
Note- To apply the label we must apply for legend.
gives number
at x-axis
Ø Matplotlib Bar Plot- Side by Side Graph
• import matplotlib.pyplot as plt
• import numpy as np
x=[ “python”, “c”, “c++”, “java”]
y=[80,70,60,82 ]
z=[ 20,30,40,50]
width = 0.4
p = np.arange(len(x))
p1=[ j+width for j in p]...will create another graph of same width on side
plt.bar(p,y, width, color=“y”,label=“Popularity”)....x replaced with ‘p’
plt.bar(p1,z, width, color=“g”, label=“Popularity1”)....x replaced with ‘p’
plt.xticks(p+width,x)......to show name at x-axisand at right hand side
plt.legend()
plt.show( )
plt.xlabel (“languages”, fontsize=10)
plt.ylabel(“No.” ”, font size=10)
plt.title(“Graph1” ”, font size=10)
Note- To apply the label we must apply for legend.
gives name at
RHS
Ø Matplotlib Bar Plot- Side by Side Graph
• import matplotlib.pyplot as plt
• import numpy as np
x=[ “python”, “c”, “c++”, “java”]
y=[80,70,60,82 ]
z=[ 20,30,40,50]
width = 0.4
p = np.arange(len(x))
p1=[ j+width for j in p]...will create another graph of same width on side
plt.bar(p,y, width, color=“y”,label=“Popularity”)....x replaced with ‘p’
plt.bar(p1,z, width, color=“g”, label=“Popularity1”)....x replaced with ‘p’
plt.xticks(p+width/2,x,rotation=10)......to show name at x-axis and at
center
plt.legend()
plt.show( )
plt.xlabel (“languages”, fontsize=10)
plt.ylabel(“No.” ”, font size=10)
plt.title(“Graph1” ”, font size=10)
Note- To apply the label we must apply for legend.
gives name in
rotation
Ø Matplotlib Bar Plot- Horizontal Graph
• import matplotlib.pyplot as plt
• import numpy as np
• x=['Python','C','C++', 'Java']
• y=[90,65,82,85]
• z=[23,52,29,20]
• width = 0.8
• p=np.arange(len(x))
• p1=[j+width for j in p]
• plt.barh(p,y, width, color='r')
• plt.bar(p1,z, width, color='k')
• plt.xticks(p+width/2,x,rotation=50)
• plt.show ()
Ø Matplotlib Step Plot-
• import matplotlib.pyplot as plt
x=[ ]
y=[ ]
plt.step(x,y,marker= “o”, color= “r”, ms=10, mfc=
“g”)
plt.legend()
plt.grid()
plt.show( )
plt.xlabel (“languages”, font size=10)
plt.ylabel(“No.” ”, font size=10)
plt.title(“Graph1” ”, font size=10)
Note-To align the bars on the right edge pass a negative
width and align='edge'
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• plt.pie(x)
• plt.show ()
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• plt.pie(x,labels=y)
• plt.show ()
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• plt.pie(x,labels=y,explode=z)
• plt.show ()
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• var1=["r","c","g","orange"]
• plt.pie(x,labels=y,explode=z,colors=var1)
• plt.show ()
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• var1=["r","c","g","orange"]
• plt.pie(x,labels=y,explode=z,colors=var1,autopct="%0.
1f%%")
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• var1=["r","c","g","orange"]
• plt.pie(x,labels=y,explode=z,colors=var1,autopct="%0.
3f%%")
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",shad
ow=True)
• plt.show ()
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",radiu
s=1.5)
• plt.show ()
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",label
distance=1.3)
• plt.show ()
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",start
angle=90)
• plt.show ()
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",textp
rops={"fontsize":15})
• plt.show ()
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",textp
rops={"fontsize":15},counterclock=False)
• plt.show ()
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",shad
ow=True,textprops={"fontsize":15},wedgeprops={"line
width":5})
• plt.show ()
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",shad
ow=True,textprops={"fontsize":15},wedgeprops={"line
width":5,"edgecolor":"c"})
• plt.show ()
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",shad
ow=True,textprops={"fontsize":15},wedgeprops={"line
width":5},rotatelabels=True)
• plt.show ()
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",radiu
s=0.9,shadow=True,textprops={"fontsize":15},wedgep
rops={"linewidth":5},rotatelabels=True)
• plt.title("Computers and Structures")
• plt.show ()
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",radiu
s=0.9,shadow=True,textprops={"fontsize":15},wedgep
rops={"linewidth":5},rotatelabels=True)
• plt.title("Computers and Structures")
• plt.legend(loc=1).....loc=1 to 10
• plt.show ()
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• x1=[40,30,20,10]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• plt.pie(x,labels=y,radius=1.5)
• plt.pie(x1,radius=1)
• plt.show ()
Ø Matplotlib Pie Plot-
• import matplotlib.pyplot as plt
• x=[1,2,3,4]
• x1=[40,30,20,10]
• y=["C","C++","Java","Python"]
• z=[0.4,0.0,0.0,0.0]
• plt.pie(x,labels=y,radius=1.5)
• plt.pie([1],colors="w",radius=1)
• plt.show ()
Ø Matplotlib Save Figure-
• import matplotlib.pyplot as plt
x=[ ]
y=[ ]
plt.plot(x,y)
plt.savefig(“fname”, dpi=1000, facecolor= “g”,
transparent=True)
plt.savefig(fname.pdf)......save in format as per
requirement
plt.show( )
Ex-
import matplotlib.pyplot as plt
x=[1,2,3,4,5]
y=[90,65,82,85,80]
plt.plot(x,y)
plt.savefig("line")
plt.show()
Note- File gets saved in a folder location
Ø Matplotlib Work With Axes-
• import matplotlib.pyplot as plt
• x=[1,2,3,4,5]
• y=[3,2,1,3,4]
• plt.plot(x,y)
• plt.xticks(x)
• plt.yticks(x)
• plt.show ()
Ø Matplotlib Work With Axes-
• import matplotlib.pyplot as plt
• x=[1,2,3,4,5]
• y=[3,2,1,3,4]
• plt.plot(x,y)
• plt.xticks(x,labels=["Python","Java","C","C++","HTML"])
• plt.yticks(x)
• plt.show ()
Ø Matplotlib Work With Axes-
• import matplotlib.pyplot as plt
• x=[1,2,3,4,5]
• y=[3,2,1,3,4]
• plt.plot(x,y)
• plt.xlim(0,10)
• plt.show ()
Ø Matplotlib Work With Axes-
• import matplotlib.pyplot as plt
• x=[1,2,3,4,5]
• y=[3,2,1,3,4]
• plt.plot(x,y)
• plt.axis([0,10,0,7])
• plt.show ()
Ø Text in Matplotlib-
text- Add text at an arbitrary location of the axes.
annotate- Add an annotation with an optional arrow at an
arbitrary location of the axes
xlabel- Add a label to the axes’s along x-axis
ylabel- Add a label to the axes’s along y-axis
title- Add a title to the axes
Ø Text in Matplotlib-
Ex-
import matplotlib.pyplot as plt
x=[1,2,3,4,5]
y=[3,2,1,3,4]
plt.plot(x,y)
plt.text(2,3,"java",style="italic",bbox={"facecolor":"c"})
plt.annotate("python",xy=(2,1),xytext=(4,4),arrowprops=dict(facec
olor="green"))
plt.legend(["up"],loc=9,facecolor="red",edgecolor="c",framealpha
=0.5,shadow=True)
plt.show ()
text position on x and y
axis
THANK YOU....

More Related Content

What's hot (20)

PDF
[기초개념] Graph Convolutional Network (GCN)
Donghyeon Kim
 
PPTX
Simple perceptron by TJO
Takashi J OZAKI
 
PDF
Introduction to Polyhedral Compilation
Akihiro Hayashi
 
PPTX
Unit 1 Operation on signals
Dr.SHANTHI K.G
 
PDF
ゼロから作るDeepLearning 4章 輪読
KCS Keio Computer Society
 
PPTX
Fractional cascading
Nariaki Tateiwa
 
PPTX
Matlab ppt
chestialtaff
 
PDF
線形計画法入門
Shunji Umetani
 
PPT
Simulink Presentation.ppt
hodeeeeee1
 
PDF
不遇の標準ライブラリ - valarray
Ryosuke839
 
PDF
VTU DSA Lab Manual
AkhilaaReddy
 
PPTX
Introduction to matlab lecture 1 of 4
Randa Elanwar
 
PDF
Matrix calculus
Sungbin Lim
 
PDF
大規模グラフアルゴリズムの最先端
Takuya Akiba
 
PDF
直交領域探索
okuraofvegetable
 
DOCX
Unit step function
Kifaru Malale
 
PDF
AtCoder Regular Contest 037 解説
AtCoder Inc.
 
PDF
Neural Processes Family
Kota Matsui
 
PPTX
音響メディア信号処理における独立成分分析の発展と応用, History of independent component analysis for sou...
Daichi Kitamura
 
PDF
クックパッド春の超絶技巧パンまつり 超絶技巧プログラミング編 資料
mametter
 
[기초개념] Graph Convolutional Network (GCN)
Donghyeon Kim
 
Simple perceptron by TJO
Takashi J OZAKI
 
Introduction to Polyhedral Compilation
Akihiro Hayashi
 
Unit 1 Operation on signals
Dr.SHANTHI K.G
 
ゼロから作るDeepLearning 4章 輪読
KCS Keio Computer Society
 
Fractional cascading
Nariaki Tateiwa
 
Matlab ppt
chestialtaff
 
線形計画法入門
Shunji Umetani
 
Simulink Presentation.ppt
hodeeeeee1
 
不遇の標準ライブラリ - valarray
Ryosuke839
 
VTU DSA Lab Manual
AkhilaaReddy
 
Introduction to matlab lecture 1 of 4
Randa Elanwar
 
Matrix calculus
Sungbin Lim
 
大規模グラフアルゴリズムの最先端
Takuya Akiba
 
直交領域探索
okuraofvegetable
 
Unit step function
Kifaru Malale
 
AtCoder Regular Contest 037 解説
AtCoder Inc.
 
Neural Processes Family
Kota Matsui
 
音響メディア信号処理における独立成分分析の発展と応用, History of independent component analysis for sou...
Daichi Kitamura
 
クックパッド春の超絶技巧パンまつり 超絶技巧プログラミング編 資料
mametter
 

Similar to Introduction to Data Visualization,Matplotlib.pdf (20)

PDF
Py lecture5 python plots
Yoshiki Satotani
 
PPTX
Python chart plotting using Matplotlib.pptx
sonali sonavane
 
PPTX
matplotlib.pptxdsfdsfdsfdsdsfdsdfdsfsdf cvvf
zmulani8
 
PPTX
Matplotlib yayyyyyyyyyyyyyin Python.pptx
AamnaRaza1
 
PPTX
Python Visualization API Primersubplots
VidhyaB10
 
PPTX
BASIC OF PYTHON MATPLOTLIB USED IN ARTIFICIAL INTELLIGENCE AND ML
AbhaysinhVansadia
 
PPTX
Unit3-v1-Plotting and Visualization.pptx
yerrasaniayyapparedd
 
PDF
UNit-III. part 2.pdf
MastiCreation
 
PPTX
MatplotLib.pptx
Paras Intotech
 
PDF
slides_python_ for basic operation of it
sachinjadhav990783
 
PDF
Presentation: Plotting Systems in R
Ilya Zhbannikov
 
PDF
Use the Matplotlib, Luke @ PyCon Taiwan 2012
Wen-Wei Liao
 
PPTX
UNIT-5-II IT-DATA VISUALIZATION TECHNIQUES
hemalathab24
 
PPTX
Seaborn for data visualization using python.pptx
sjcdsdocs
 
PPTX
matplotlib _
swati463221
 
PPTX
DDU Workshop Day-2 presentation (1).pptx
ritu23mts5729
 
PDF
16. Data VIsualization using PyPlot.pdf
RrCreations5
 
PPT
Tools for research plotting
Nimrita Koul
 
PPT
Tools for research plotting
Nimrita Koul
 
PPTX
Data Visualization 2020_21
Sangita Panchal
 
Py lecture5 python plots
Yoshiki Satotani
 
Python chart plotting using Matplotlib.pptx
sonali sonavane
 
matplotlib.pptxdsfdsfdsfdsdsfdsdfdsfsdf cvvf
zmulani8
 
Matplotlib yayyyyyyyyyyyyyin Python.pptx
AamnaRaza1
 
Python Visualization API Primersubplots
VidhyaB10
 
BASIC OF PYTHON MATPLOTLIB USED IN ARTIFICIAL INTELLIGENCE AND ML
AbhaysinhVansadia
 
Unit3-v1-Plotting and Visualization.pptx
yerrasaniayyapparedd
 
UNit-III. part 2.pdf
MastiCreation
 
MatplotLib.pptx
Paras Intotech
 
slides_python_ for basic operation of it
sachinjadhav990783
 
Presentation: Plotting Systems in R
Ilya Zhbannikov
 
Use the Matplotlib, Luke @ PyCon Taiwan 2012
Wen-Wei Liao
 
UNIT-5-II IT-DATA VISUALIZATION TECHNIQUES
hemalathab24
 
Seaborn for data visualization using python.pptx
sjcdsdocs
 
matplotlib _
swati463221
 
DDU Workshop Day-2 presentation (1).pptx
ritu23mts5729
 
16. Data VIsualization using PyPlot.pdf
RrCreations5
 
Tools for research plotting
Nimrita Koul
 
Tools for research plotting
Nimrita Koul
 
Data Visualization 2020_21
Sangita Panchal
 
Ad

More from sumitt6_25730773 (10)

PDF
GUI Programming with TKinter and Tkinter Widgets.pdf
sumitt6_25730773
 
PDF
Panda data structures and its importance in Python.pdf
sumitt6_25730773
 
PDF
Introduction to Python and its basics.pdf
sumitt6_25730773
 
PDF
Formwork Supports, Scaffolds and Failure.pdf
sumitt6_25730773
 
PDF
Formwork Design-Introduction.pdf
sumitt6_25730773
 
PDF
Bending stresses and shear stresses
sumitt6_25730773
 
PDF
Shear Force and Bending Moment Diagram
sumitt6_25730773
 
PDF
Flow Through Pipe
sumitt6_25730773
 
PPTX
Concept of Boundary Layer
sumitt6_25730773
 
PPT
Flow through pipes
sumitt6_25730773
 
GUI Programming with TKinter and Tkinter Widgets.pdf
sumitt6_25730773
 
Panda data structures and its importance in Python.pdf
sumitt6_25730773
 
Introduction to Python and its basics.pdf
sumitt6_25730773
 
Formwork Supports, Scaffolds and Failure.pdf
sumitt6_25730773
 
Formwork Design-Introduction.pdf
sumitt6_25730773
 
Bending stresses and shear stresses
sumitt6_25730773
 
Shear Force and Bending Moment Diagram
sumitt6_25730773
 
Flow Through Pipe
sumitt6_25730773
 
Concept of Boundary Layer
sumitt6_25730773
 
Flow through pipes
sumitt6_25730773
 
Ad

Recently uploaded (20)

PPT
New_school_Engineering_presentation_011707.ppt
VinayKumar304579
 
PPTX
What is Shot Peening | Shot Peening is a Surface Treatment Process
Vibra Finish
 
PPTX
Damage of stability of a ship and how its change .pptx
ehamadulhaque
 
PDF
MAD Unit - 2 Activity and Fragment Management in Android (Diploma IT)
JappanMavani
 
PPTX
Lecture 1 Shell and Tube Heat exchanger-1.pptx
mailforillegalwork
 
PDF
SERVERLESS PERSONAL TO-DO LIST APPLICATION
anushaashraf20
 
PPTX
Worm gear strength and wear calculation as per standard VB Bhandari Databook.
shahveer210504
 
PDF
Water Industry Process Automation & Control Monthly July 2025
Water Industry Process Automation & Control
 
PPTX
2025 CGI Congres - Surviving agile v05.pptx
Derk-Jan de Grood
 
PDF
Viol_Alessandro_Presentazione_prelaurea.pdf
dsecqyvhbowrzxshhf
 
PPTX
MATLAB : Introduction , Features , Display Windows, Syntax, Operators, Graph...
Amity University, Patna
 
PPTX
How Industrial Project Management Differs From Construction.pptx
jamespit799
 
PPTX
GitOps_Without_K8s_Training_detailed git repository
DanialHabibi2
 
PDF
Halide Perovskites’ Multifunctional Properties: Coordination Engineering, Coo...
TaameBerhe2
 
PPTX
Introduction to Design of Machine Elements
PradeepKumarS27
 
PDF
AN EMPIRICAL STUDY ON THE USAGE OF SOCIAL MEDIA IN GERMAN B2C-ONLINE STORES
ijait
 
PPTX
美国电子版毕业证南卡罗莱纳大学上州分校水印成绩单USC学费发票定做学位证书编号怎么查
Taqyea
 
PPTX
DATA BASE MANAGEMENT AND RELATIONAL DATA
gomathisankariv2
 
PDF
Pressure Measurement training for engineers and Technicians
AIESOLUTIONS
 
PDF
REINFORCEMENT LEARNING IN DECISION MAKING SEMINAR REPORT
anushaashraf20
 
New_school_Engineering_presentation_011707.ppt
VinayKumar304579
 
What is Shot Peening | Shot Peening is a Surface Treatment Process
Vibra Finish
 
Damage of stability of a ship and how its change .pptx
ehamadulhaque
 
MAD Unit - 2 Activity and Fragment Management in Android (Diploma IT)
JappanMavani
 
Lecture 1 Shell and Tube Heat exchanger-1.pptx
mailforillegalwork
 
SERVERLESS PERSONAL TO-DO LIST APPLICATION
anushaashraf20
 
Worm gear strength and wear calculation as per standard VB Bhandari Databook.
shahveer210504
 
Water Industry Process Automation & Control Monthly July 2025
Water Industry Process Automation & Control
 
2025 CGI Congres - Surviving agile v05.pptx
Derk-Jan de Grood
 
Viol_Alessandro_Presentazione_prelaurea.pdf
dsecqyvhbowrzxshhf
 
MATLAB : Introduction , Features , Display Windows, Syntax, Operators, Graph...
Amity University, Patna
 
How Industrial Project Management Differs From Construction.pptx
jamespit799
 
GitOps_Without_K8s_Training_detailed git repository
DanialHabibi2
 
Halide Perovskites’ Multifunctional Properties: Coordination Engineering, Coo...
TaameBerhe2
 
Introduction to Design of Machine Elements
PradeepKumarS27
 
AN EMPIRICAL STUDY ON THE USAGE OF SOCIAL MEDIA IN GERMAN B2C-ONLINE STORES
ijait
 
美国电子版毕业证南卡罗莱纳大学上州分校水印成绩单USC学费发票定做学位证书编号怎么查
Taqyea
 
DATA BASE MANAGEMENT AND RELATIONAL DATA
gomathisankariv2
 
Pressure Measurement training for engineers and Technicians
AIESOLUTIONS
 
REINFORCEMENT LEARNING IN DECISION MAKING SEMINAR REPORT
anushaashraf20
 

Introduction to Data Visualization,Matplotlib.pdf

  • 1. Sanjivani Rural Education Society's Sanjivani College of Engineering, Kopargaon 423603. -Department of Strucutral Engineering- By Mr. Sumit S. Kolapkar (Assistant Professor) Mail Id- [email protected]
  • 2. Ø Why data visualization in Python- • Is a quick and easy way to convey the concepts in a universal manner. Ø What is data visualization- • Is a graphical way of representing information and data. Ø Types of data visualization in Python- • Plotting Libraries- • Matplotlib- • Pandas Visualization- • Seaborn- • ggplot- • Plotly-
  • 3. Ø What is Matplotlib- • Is a plotting library for Python and it is numerical mathematical extension of Numpy • Is 2D and 3D plotting Python library • It was introduced by John Hunter in the year 2002 Ø Matplotlib graphs-
  • 4. Ø Importing Matplotlib in Python- • import matplotlib.pyplot as plt OR • from matplotlib import pyplot as plt Example- import matplotlib.pyplot as plt x=[1,2,3,4,5] y=[6,7,8,9,10] plt.plot(x,y) plt.show () Example- import matplotlib.pyplot as plt x=[1,2,3,4,5] y=[6,7,8,9,10] plt.bar(x,y) plt.show ()
  • 5. Ø Importing Matplotlib in Python- Example- import matplotlib.pyplot as plt x=[1,2,3,4,5] y=[6,7,8,9,10] Z=['b','g','r','black','pink'] plt.bar(x,y,color=Z) plt.show () Base Color-
  • 7. Ø Matplotlib Bar Plot- • import matplotlib.pyplot as plt x = ['Python','C','C++', 'Java'] y = [90,65,82,85] plt.bar(x,y) plt.show ()
  • 8. Ø Matplotlib Bar Plot- • import matplotlib.pyplot as plt x=[ ] y=[ ] z=[ ] plt.bar(x,y, width=0.4, color=“y”, align= “edge” (or center), edgecolor=“r”, linewidth=10, linestyle=“:”, alpha=0.4, label=“Popularity”) plt.bar(x,z, width=0.4, color=“g”, align=edge, edgecolor=“r”, linewidth=10, linestyle=“:”, alpha=0.4, label=“Popularity1”)...for multiple bar graphs plt.legend() plt.show( ) plt.xlabel (“languages”, fontsize=10) plt.ylabel(“No.” ”, font size=10) plt.title(“Graph1” ”, font size=10) Note- To apply the label we must apply for legend.
  • 9. Ø Matplotlib Bar Plot- • import matplotlib.pyplot as plt x=[ ] y=[ ] z=[ ] plt.bar(x,y, width=0.4, color=“y”,label=“Popularity”) plt.bar(x,z, width=0.4, color=“g”, label=“Popularity1”)...for multiple bar graphs.....overlapped plt.legend() plt.show( ) plt.xlabel (“languages”, fontsize=10) plt.ylabel(“No.” ”, font size=10) plt.title(“Graph1” ”, font size=10) Note- To apply the label we must apply for legend.
  • 10. Ø Matplotlib Bar Plot- Side by Side Graph • import matplotlib.pyplot as plt • import numpy as np x=[ “python”, “c”, “c++”, “java”] y=[80,70,60,82 ] z=[ 20,30,40,50] p = [0,1,2,3].....indexing of x OR p = np.arange(len(x))...by importing numpy also we can create an array of indexing width = 0.4 plt.bar(p,y, width, color=“y”,label=“Popularity”)....x replaced with ‘p’ plt.bar(p,z, width, color=“g”, label=“Popularity1”)....x replaced with ‘p’ plt.legend() plt.show( ) plt.xlabel (“languages”, fontsize=10) plt.ylabel(“No.” ”, font size=10) plt.title(“Graph1” ”, font size=10) Note- To apply the label we must apply for legend. gives number at x-axis and is over lapped
  • 11. Ø Matplotlib Bar Plot- Side by Side Graph • import matplotlib.pyplot as plt • import numpy as np x=[ “python”, “c”, “c++”, “java”] y=[80,70,60,82 ] z=[ 20,30,40,50] width = 0.4 p = np.arange(len(x)) p1=[ j+width for j in p]...will create another graph of same width on side plt.bar(p,y, width, color=“y”,label=“Popularity”)....x replaced with ‘p’ plt.bar(p1,z, width, color=“g”, label=“Popularity1”)....x replaced with ‘p’ plt.legend() plt.show( ) plt.xlabel (“languages”, fontsize=10) plt.ylabel(“No.” ”, font size=10) plt.title(“Graph1” ”, font size=10) Note- To apply the label we must apply for legend. gives number at x-axis
  • 12. Ø Matplotlib Bar Plot- Side by Side Graph • import matplotlib.pyplot as plt • import numpy as np x=[ “python”, “c”, “c++”, “java”] y=[80,70,60,82 ] z=[ 20,30,40,50] width = 0.4 p = np.arange(len(x)) p1=[ j+width for j in p]...will create another graph of same width on side plt.bar(p,y, width, color=“y”,label=“Popularity”)....x replaced with ‘p’ plt.bar(p1,z, width, color=“g”, label=“Popularity1”)....x replaced with ‘p’ plt.xticks(p+width,x)......to show name at x-axisand at right hand side plt.legend() plt.show( ) plt.xlabel (“languages”, fontsize=10) plt.ylabel(“No.” ”, font size=10) plt.title(“Graph1” ”, font size=10) Note- To apply the label we must apply for legend. gives name at RHS
  • 13. Ø Matplotlib Bar Plot- Side by Side Graph • import matplotlib.pyplot as plt • import numpy as np x=[ “python”, “c”, “c++”, “java”] y=[80,70,60,82 ] z=[ 20,30,40,50] width = 0.4 p = np.arange(len(x)) p1=[ j+width for j in p]...will create another graph of same width on side plt.bar(p,y, width, color=“y”,label=“Popularity”)....x replaced with ‘p’ plt.bar(p1,z, width, color=“g”, label=“Popularity1”)....x replaced with ‘p’ plt.xticks(p+width/2,x,rotation=10)......to show name at x-axis and at center plt.legend() plt.show( ) plt.xlabel (“languages”, fontsize=10) plt.ylabel(“No.” ”, font size=10) plt.title(“Graph1” ”, font size=10) Note- To apply the label we must apply for legend. gives name in rotation
  • 14. Ø Matplotlib Bar Plot- Horizontal Graph • import matplotlib.pyplot as plt • import numpy as np • x=['Python','C','C++', 'Java'] • y=[90,65,82,85] • z=[23,52,29,20] • width = 0.8 • p=np.arange(len(x)) • p1=[j+width for j in p] • plt.barh(p,y, width, color='r') • plt.bar(p1,z, width, color='k') • plt.xticks(p+width/2,x,rotation=50) • plt.show ()
  • 15. Ø Matplotlib Step Plot- • import matplotlib.pyplot as plt x=[ ] y=[ ] plt.step(x,y,marker= “o”, color= “r”, ms=10, mfc= “g”) plt.legend() plt.grid() plt.show( ) plt.xlabel (“languages”, font size=10) plt.ylabel(“No.” ”, font size=10) plt.title(“Graph1” ”, font size=10) Note-To align the bars on the right edge pass a negative width and align='edge'
  • 16. Ø Matplotlib Pie Plot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • plt.pie(x) • plt.show () • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • plt.pie(x,labels=y) • plt.show ()
  • 17. Ø Matplotlib Pie Plot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • plt.pie(x,labels=y,explode=z) • plt.show () • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • var1=["r","c","g","orange"] • plt.pie(x,labels=y,explode=z,colors=var1) • plt.show ()
  • 18. Ø Matplotlib Pie Plot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • var1=["r","c","g","orange"] • plt.pie(x,labels=y,explode=z,colors=var1,autopct="%0. 1f%%")
  • 19. Ø Matplotlib Pie Plot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • var1=["r","c","g","orange"] • plt.pie(x,labels=y,explode=z,colors=var1,autopct="%0. 3f%%")
  • 20. Ø Matplotlib Pie Plot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",shad ow=True) • plt.show ()
  • 21. Ø Matplotlib Pie Plot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",radiu s=1.5) • plt.show ()
  • 22. Ø Matplotlib Pie Plot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",label distance=1.3) • plt.show ()
  • 23. Ø Matplotlib Pie Plot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",start angle=90) • plt.show ()
  • 24. Ø Matplotlib Pie Plot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",textp rops={"fontsize":15}) • plt.show ()
  • 25. Ø Matplotlib Pie Plot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",textp rops={"fontsize":15},counterclock=False) • plt.show ()
  • 26. Ø Matplotlib Pie Plot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",shad ow=True,textprops={"fontsize":15},wedgeprops={"line width":5}) • plt.show ()
  • 27. Ø Matplotlib Pie Plot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",shad ow=True,textprops={"fontsize":15},wedgeprops={"line width":5,"edgecolor":"c"}) • plt.show ()
  • 28. Ø Matplotlib Pie Plot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",shad ow=True,textprops={"fontsize":15},wedgeprops={"line width":5},rotatelabels=True) • plt.show ()
  • 29. Ø Matplotlib Pie Plot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",radiu s=0.9,shadow=True,textprops={"fontsize":15},wedgep rops={"linewidth":5},rotatelabels=True) • plt.title("Computers and Structures") • plt.show ()
  • 30. Ø Matplotlib Pie Plot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • plt.pie(x,labels=y,explode=z,autopct="%0.3f%%",radiu s=0.9,shadow=True,textprops={"fontsize":15},wedgep rops={"linewidth":5},rotatelabels=True) • plt.title("Computers and Structures") • plt.legend(loc=1).....loc=1 to 10 • plt.show ()
  • 31. Ø Matplotlib Pie Plot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • x1=[40,30,20,10] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • plt.pie(x,labels=y,radius=1.5) • plt.pie(x1,radius=1) • plt.show ()
  • 32. Ø Matplotlib Pie Plot- • import matplotlib.pyplot as plt • x=[1,2,3,4] • x1=[40,30,20,10] • y=["C","C++","Java","Python"] • z=[0.4,0.0,0.0,0.0] • plt.pie(x,labels=y,radius=1.5) • plt.pie([1],colors="w",radius=1) • plt.show ()
  • 33. Ø Matplotlib Save Figure- • import matplotlib.pyplot as plt x=[ ] y=[ ] plt.plot(x,y) plt.savefig(“fname”, dpi=1000, facecolor= “g”, transparent=True) plt.savefig(fname.pdf)......save in format as per requirement plt.show( ) Ex- import matplotlib.pyplot as plt x=[1,2,3,4,5] y=[90,65,82,85,80] plt.plot(x,y) plt.savefig("line") plt.show() Note- File gets saved in a folder location
  • 34. Ø Matplotlib Work With Axes- • import matplotlib.pyplot as plt • x=[1,2,3,4,5] • y=[3,2,1,3,4] • plt.plot(x,y) • plt.xticks(x) • plt.yticks(x) • plt.show ()
  • 35. Ø Matplotlib Work With Axes- • import matplotlib.pyplot as plt • x=[1,2,3,4,5] • y=[3,2,1,3,4] • plt.plot(x,y) • plt.xticks(x,labels=["Python","Java","C","C++","HTML"]) • plt.yticks(x) • plt.show ()
  • 36. Ø Matplotlib Work With Axes- • import matplotlib.pyplot as plt • x=[1,2,3,4,5] • y=[3,2,1,3,4] • plt.plot(x,y) • plt.xlim(0,10) • plt.show ()
  • 37. Ø Matplotlib Work With Axes- • import matplotlib.pyplot as plt • x=[1,2,3,4,5] • y=[3,2,1,3,4] • plt.plot(x,y) • plt.axis([0,10,0,7]) • plt.show ()
  • 38. Ø Text in Matplotlib- text- Add text at an arbitrary location of the axes. annotate- Add an annotation with an optional arrow at an arbitrary location of the axes xlabel- Add a label to the axes’s along x-axis ylabel- Add a label to the axes’s along y-axis title- Add a title to the axes
  • 39. Ø Text in Matplotlib- Ex- import matplotlib.pyplot as plt x=[1,2,3,4,5] y=[3,2,1,3,4] plt.plot(x,y) plt.text(2,3,"java",style="italic",bbox={"facecolor":"c"}) plt.annotate("python",xy=(2,1),xytext=(4,4),arrowprops=dict(facec olor="green")) plt.legend(["up"],loc=9,facecolor="red",edgecolor="c",framealpha =0.5,shadow=True) plt.show () text position on x and y axis