SlideShare a Scribd company logo
Intro to Deep Learning and
TensorFlow
Data Riders Meetup 09/12/2018
Lean Plum San Francisco
Oswald Campesato
ocampesato@yahoo.com
Highlights/Overview
 intro to AI/ML/DL/NNs
 Hidden layers
 Initialization values
 Neurons per layer
 Activation function
 cost function
 gradient descent
 learning rate
 Dropout rate
 what are CNNs
 TensorFlow/tensorflow.js
The Data/AI Landscape
Use Cases for Deep Learning
computer vision
speech recognition
image processing
bioinformatics
social network filtering
drug design
Recommendation systems
Bioinformatics
Mobile Advertising
Many others
NN 3 Hidden Layers: Classifier
NN: 2 Hidden Layers (Regression)
Classification and Deep Learning
Euler’s Function (e: 2.71828. . .)
The sigmoid Activation Function
The tanh Activation Function
The ReLU Activation Function
The softmax Activation Function
Activation Functions in Python
import numpy as np
...
# Python sigmoid example:
z = 1/(1 + np.exp(-np.dot(W, x)))
...
# Python tanh example:
z = np.tanh(np.dot(W,x));
# Python ReLU example:
z = np.maximum(0, np.dot(W, x))
What’s the “Best” Activation Function?
Initially: sigmoid was popular
Then: tanh became popular
Now: RELU is preferred (better results)
Softmax: for FC (fully connected) layers
NB: sigmoid and tanh are used in LSTMs
Linear Regression
One of the simplest models in ML
Fits a line (y = m*x + b) to data in 2D
Finds best line by minimizing MSE:
m = slope of the best-fitting line
b = y-intercept of the best-fitting line
Linear Regression in 2D: example
Linear Regression in 2D: example
Sample Cost Function #1 (MSE)
Linear Regression: example #1
One feature (independent variable):
X = number of square feet
Predicted value (dependent variable):
Y = cost of a house
A very “coarse grained” model
We can devise a much better model
Linear Regression: example #2
Multiple features:
X1 = # of square feet
X2 = # of bedrooms
X3 = # of bathrooms (dependency?)
X4 = age of house
X5 = cost of nearby houses
X6 = corner lot (or not): Boolean
a much better model (6 features)
Linear Multivariate Analysis
General form of multivariate equation:
Y = w1*x1 + w2*x2 + . . . + wn*xn + b
w1, w2, . . . , wn are numeric values
x1, x2, . . . , xn are variables (features)
Properties of variables:
Can be independent (Naïve Bayes)
weak/strong dependencies can exist
Sample Cost Function #1 (MSE)
Sample Cost Function #2
Sample Cost Function #3
Types of Optimizers
SGD
rmsprop
Adagrad
Adam
Others
http://cs229.stanford.edu/notes/cs229-notes1.pdf
Deep Neural Network: summary
 input layer, multiple hidden layers, and output layer
 nonlinear processing via activation functions
 perform transformation and feature extraction
 gradient descent algorithm with back propagation
 each layer receives the output from previous layer
 results are comparable/superior to human experts
CNNs versus RNNs
CNNs (Convolutional NNs):
Good for image processing
2000: CNNs processed 10-20% of all checks
=> Approximately 60% of all NNs
RNNs (Recurrent NNs):
Good for NLP and audio
Used in hybrid networks
CNNs: Convolution, ReLU, and Max Pooling
CNNs: Convolution Calculations
https://docs.gimp.org/en/plug-in-convmatrix.html
CNNs: Convolution Matrices (examples)
Sharpen:
Blur:
CNNs: Convolution Matrices (examples)
Edge detect:
Emboss:
CNNs: Max Pooling Example
GANs: Generative Adversarial Networks
GANs: Generative Adversarial Networks
Make imperceptible changes to images
Can consistently defeat all NNs
Can have extremely high error rate
Some images create optical illusions
https://www.quora.com/What-are-the-pros-and-cons-
of-using-generative-adversarial-networks-a-type-of-
neural-network
GANs: Generative Adversarial Networks
Create your own GANs:
https://www.oreilly.com/learning/generative-adversarial-networks-for-
beginners
https://github.com/jonbruner/generative-adversarial-networks
GANs from MNIST:
http://edwardlib.org/tutorials/gan
GANs and Capsule networks?
CNN in Python/Keras (fragment)
 from keras.models import Sequential
 from keras.layers.core import Dense, Dropout, Activation
 from keras.layers.convolutional import Conv2D, MaxPooling2D
 from keras.optimizers import Adadelta
 input_shape = (3, 32, 32)
 nb_classes = 10
 model = Sequential()
 model.add(Conv2D(32,(3, 3),padding='same’,
input_shape=input_shape))
 model.add(Activation('relu'))
 model.add(Conv2D(32, (3, 3)))
 model.add(Activation('relu'))
 model.add(MaxPooling2D(pool_size=(2, 2)))
 model.add(Dropout(0.25))
What is TensorFlow?
An open source framework for ML and DL
A “computation” graph
Created by Google (released 11/2015)
Evolved from Google Brain
Linux and Mac OS X support (VM for Windows)
TF home page: https://www.tensorflow.org/
What is TensorFlow?
Support for Python, Java, C++
Desktop, server, mobile device (TensorFlow Lite)
CPU/GPU/TPU support
Visualization via TensorBoard
Can be embedded in Python scripts
Installation: pip install tensorflow
TensorFlow cluster:
https://www.tensorflow.org/deploy/distributed
TensorFlow Use Cases (Generic)
Image recognition
Computer vision
Voice/sound recognition
Time series analysis
Language detection
Language translation
Text-based processing
Handwriting Recognition
Aspects of TensorFlow
Graph: graph of operations (DAG)
Sessions: contains Graph(s)
lazy execution (default)
operations in parallel (default)
Nodes: operators/variables/constants
Edges: tensors
=> graphs are split into subgraphs and
executed in parallel (or multiple CPUs)
TensorFlow Graph Execution
Execute statements in a tf.Session() object
Invoke the “run” method of that object
“eager” execution is available (>= v1.4)
included in the mainline (v1.7)
Installation: pip install tensorflow
What is a Tensor?
TF tensors are n-dimensional arrays
TF tensors are very similar to numpy ndarrays
scalar number: a zeroth-order tensor
vector: a first-order tensor
matrix: a second-order tensor
3-dimensional array: a 3rd order tensor
https://dzone.com/articles/tensorflow-simplified-
examples
TensorFlow “primitive types”
tf.constant:
+ initialized immediately
+ immutable
tf.placeholder (a function):
+ initial value is not required
+ can have variable shape
+ assigned value via feed_dict at run time
+ receive data from “external” sources
TensorFlow “primitive types”
tf.Variable (a class):
+ initial value is required
+ updated during training
+ maintain state across calls to “run()”
+ in-memory buffer (saved/restored from disk)
+ can be shared in a distributed environment
+ they hold learned parameters of a model
TensorFlow: constants (immutable)
 import tensorflow as tf
 aconst = tf.constant(3.0)
 print(aconst)
# output: Tensor("Const:0", shape=(), dtype=float32)
 sess = tf.Session()
 print(sess.run(aconst))
# output: 3.0
 sess.close()
 # => there's a better way
TensorFlow: constants
import tensorflow as tf
aconst = tf.constant(3.0)
print(aconst)
Automatically close “sess”
with tf.Session() as sess:
 print(sess.run(aconst))
TensorFlow Arithmetic
import tensorflow as tf
a = tf.add(4, 2)
b = tf.subtract(8, 6)
c = tf.multiply(a, 3)
d = tf.div(a, 6)
with tf.Session() as sess:
print(sess.run(a)) # 6
print(sess.run(b)) # 2
print(sess.run(c)) # 18
print(sess.run(d)) # 1
TF placeholders and feed_dict
import tensorflow as tf
a = tf.placeholder("float")
b = tf.placeholder("float")
c = tf.multiply(a,b)
# initialize a and b:
feed_dict = {a:2, b:3}
# multiply a and b:
with tf.Session() as sess:
print(sess.run(c, feed_dict))
TensorFlow: Simple Equation
import tensorflow as tf
# W and x are 1d arrays
W = tf.constant([10,20], name='W')
X = tf.placeholder(tf.int32, name='x')
b = tf.placeholder(tf.int32, name='b')
Wx = tf.multiply(W, x, name='Wx')
y = tf.add(Wx, b, name='y') OR
y2 = tf.add(tf.multiply(W,x),b)
TensorFlow fetch/feed_dict
with tf.Session() as sess:
print("Result 1: Wx = ",
sess.run(Wx, feed_dict={x:[5,10]}))
print("Result 2: y = ",
sess.run(y,feed_dict={x:[5,10],b:[15,25]}))
 Result 1: Wx = [50 200]
 Result 2: y = [65 225]
Saving Graphs for TensorBoard
import tensorflow as tf
x = tf.constant(5,name="x")
y = tf.constant(8,name="y")
z = tf.Variable(2*x+3*y, name="z")
init = tf.global_variables_initializer()
with tf.Session() as session:
writer = tf.summary.FileWriter("./tf_logs",session.graph)
session.run(init)
print 'z = ',session.run(z) # => z = 34
# launch: tensorboard –logdir=./tf_logs
TensorFlow Eager Execution
An imperative interface to TF
Fast debugging & immediate run-time errors
Eager execution is “mainline” in v1.7 of TF
=> requires Python 3.x (not Python 2.x)
TensorFlow Eager Execution
integration with Python tools
Supports dynamic models + Python control flow
support for custom and higher-order gradients
Supports most TensorFlow operations
=> Default mode in TensorFlow 2.0 (2019)
https://research.googleblog.com/2017/10/eager-
execution-imperative-define-by.html
TensorFlow Eager Execution
import tensorflow as tf
import tensorflow.contrib.eager as tfe
tfe.enable_eager_execution()
x = [[2.]]
m = tf.matmul(x, x)
print(m)
# tf.Tensor([[4.]], shape=(1, 1), dtype=float32)
What is tensorflow.js?
 an ecosystem of JS tools for machine learning
 TensorFlow.js also includes a Layers API
 a library for building machine learning models
 tools to port TF SavedModels & Keras HDF5 models
 => https://js.tensorflow.org/
What is tensorflow.js?
 tensorflow.js evolved from deeplearn.js
 deeplearn.js is now called TensorFlow.js Core
 TensorFlow.js Core: a flexible low-level API
 TensorFlow.js Layers:
a high-level API similar to Keras
 TensorFlow.js Converter:
tools to import a TF SavedModel to TensorFlow.js
async keyword
keyword placed before JS functions
For functions that return a Promise
Trivial example:
async function f() {
return 1;
}
await keyword
Works only inside async JS functions
Trivial example:
let value = await mypromise;
async/await example
async function f() {
let promise = new Promise((resolve, reject) => {
setTimeout(() => resolve("done!"), 1000)
});
// wait till the promise resolves
let result = await promise
alert(result)
}
f()
Tensorflow.js Samples
1) tfjs-example.html (linear regression)
2) js.tensorflow.org (home page)
3) https://github.com/tensorflow/tfjs-examples-master
a)cd mnist-core
b) yarn
c) yarn watch
Deep Learning and Art/”Stuff”
“Convolutional Blending” images:
=> 19-layer Convolutional Neural Network
www.deepart.io
https://www.fastcodesign.com/90124942/this-google-
engineer-taught-an-algorithm-to-make-train-footage-
and-its-hypnotic
Some of my Books
1) HTML5 Canvas and CSS3 Graphics (2013)
2) jQuery, CSS3, and HTML5 for Mobile (2013)
3) HTML5 Pocket Primer (2013)
4) jQuery Pocket Primer (2013)
5) HTML5 Mobile Pocket Primer (2014)
6) D3 Pocket Primer (2015)
7) Python Pocket Primer (2015)
8) SVG Pocket Primer (2016)
9) CSS3 Pocket Primer (2016)
10) Android Pocket Primer (2017)
11) Angular Pocket Primer (2017)
12) Data Cleaning Pocket Primer (2018)
13) RegEx Pocket Primer (2018)
What I do (Training)
=> Instructor at UCSC:
Deep Learning with TensorFlow (10/2018 & 02/2019)
Machine Learning Introduction (01/18/2019)
=> Mobile and TensorFlow Lite (WIP)
=> R and Deep Learning (WIP)
=> Android for Beginners (multi-day workshops)

More Related Content

What's hot (20)

PPTX
Introduction to TensorFlow 2 and Keras
Oswald Campesato
 
PPTX
Introduction to TensorFlow 2
Oswald Campesato
 
PPTX
Introduction to TensorFlow 2
Oswald Campesato
 
PPTX
Deep Learning, Keras, and TensorFlow
Oswald Campesato
 
PPTX
Deep Learning in your Browser: powered by WebGL
Oswald Campesato
 
PPTX
C++ and Deep Learning
Oswald Campesato
 
PPTX
Scala and Deep Learning
Oswald Campesato
 
PPTX
TensorFlow for IITians
Ashish Bansal
 
PPTX
Machine Learning - Introduction to Tensorflow
Andrew Ferlitsch
 
PPTX
D3, TypeScript, and Deep Learning
Oswald Campesato
 
PPTX
D3, TypeScript, and Deep Learning
Oswald Campesato
 
PPTX
Tensor flow (1)
景逸 王
 
PPTX
Introduction to Tensorflow
Tzar Umang
 
PPTX
Java and Deep Learning (Introduction)
Oswald Campesato
 
PPTX
Deep Learning and TensorFlow
Oswald Campesato
 
DOC
Digital Signal Processing Lab Manual ECE students
UR11EC098
 
PDF
Google TensorFlow Tutorial
台灣資料科學年會
 
PDF
Tensor board
Sung Kim
 
PDF
Learning Financial Market Data with Recurrent Autoencoders and TensorFlow
Altoros
 
PDF
Dsp manual
Vijendrasingh Rathor
 
Introduction to TensorFlow 2 and Keras
Oswald Campesato
 
Introduction to TensorFlow 2
Oswald Campesato
 
Introduction to TensorFlow 2
Oswald Campesato
 
Deep Learning, Keras, and TensorFlow
Oswald Campesato
 
Deep Learning in your Browser: powered by WebGL
Oswald Campesato
 
C++ and Deep Learning
Oswald Campesato
 
Scala and Deep Learning
Oswald Campesato
 
TensorFlow for IITians
Ashish Bansal
 
Machine Learning - Introduction to Tensorflow
Andrew Ferlitsch
 
D3, TypeScript, and Deep Learning
Oswald Campesato
 
D3, TypeScript, and Deep Learning
Oswald Campesato
 
Tensor flow (1)
景逸 王
 
Introduction to Tensorflow
Tzar Umang
 
Java and Deep Learning (Introduction)
Oswald Campesato
 
Deep Learning and TensorFlow
Oswald Campesato
 
Digital Signal Processing Lab Manual ECE students
UR11EC098
 
Google TensorFlow Tutorial
台灣資料科學年會
 
Tensor board
Sung Kim
 
Learning Financial Market Data with Recurrent Autoencoders and TensorFlow
Altoros
 

Similar to Introduction to Deep Learning and TensorFlow (20)

PDF
Introduction to Deep Learning, Keras, and TensorFlow
Sri Ambati
 
PPTX
Deep Learning, Scala, and Spark
Oswald Campesato
 
PPTX
Introduction to Deep Learning and Tensorflow
Oswald Campesato
 
PDF
TensorFlow example for AI Ukraine2016
Andrii Babii
 
PPTX
Introduction to Deep Learning
Oswald Campesato
 
PDF
TensorFlow Tutorial.pdf
Antonio Espinosa
 
PDF
TensorFlow and Keras: An Overview
Poo Kuan Hoong
 
PDF
Introduction to TensorFlow, by Machine Learning at Berkeley
Ted Xiao
 
PDF
Language translation with Deep Learning (RNN) with TensorFlow
S N
 
PPTX
Tensorflow in practice by Engineer - donghwi cha
Donghwi Cha
 
PPTX
What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...
Simplilearn
 
PDF
Advanced Spark and TensorFlow Meetup May 26, 2016
Chris Fregly
 
PPTX
Deep Learning: R with Keras and TensorFlow
Oswald Campesato
 
PDF
Neural Networks in the Wild: Handwriting Recognition
John Liu
 
PPTX
Neural Networks with Google TensorFlow
Darshan Patel
 
PDF
Machine Learning with TensorFlow 2
Sarah Stemmler
 
PPTX
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
Simplilearn
 
PDF
Getting Started with Keras and TensorFlow - StampedeCon AI Summit 2017
StampedeCon
 
PPTX
Introduction to Tensor Flow-v1.pptx
Janagi Raman S
 
PDF
Introduction to Neural Networks in Tensorflow
Nicholas McClure
 
Introduction to Deep Learning, Keras, and TensorFlow
Sri Ambati
 
Deep Learning, Scala, and Spark
Oswald Campesato
 
Introduction to Deep Learning and Tensorflow
Oswald Campesato
 
TensorFlow example for AI Ukraine2016
Andrii Babii
 
Introduction to Deep Learning
Oswald Campesato
 
TensorFlow Tutorial.pdf
Antonio Espinosa
 
TensorFlow and Keras: An Overview
Poo Kuan Hoong
 
Introduction to TensorFlow, by Machine Learning at Berkeley
Ted Xiao
 
Language translation with Deep Learning (RNN) with TensorFlow
S N
 
Tensorflow in practice by Engineer - donghwi cha
Donghwi Cha
 
What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...
Simplilearn
 
Advanced Spark and TensorFlow Meetup May 26, 2016
Chris Fregly
 
Deep Learning: R with Keras and TensorFlow
Oswald Campesato
 
Neural Networks in the Wild: Handwriting Recognition
John Liu
 
Neural Networks with Google TensorFlow
Darshan Patel
 
Machine Learning with TensorFlow 2
Sarah Stemmler
 
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
Simplilearn
 
Getting Started with Keras and TensorFlow - StampedeCon AI Summit 2017
StampedeCon
 
Introduction to Tensor Flow-v1.pptx
Janagi Raman S
 
Introduction to Neural Networks in Tensorflow
Nicholas McClure
 
Ad

More from Oswald Campesato (8)

PPTX
"An Introduction to AI and Deep Learning"
Oswald Campesato
 
PPTX
Introduction to Deep Learning for Non-Programmers
Oswald Campesato
 
PPTX
Java and Deep Learning
Oswald Campesato
 
PPTX
Diving into Deep Learning (Silicon Valley Code Camp 2017)
Oswald Campesato
 
PPTX
Android and Deep Learning
Oswald Campesato
 
PPTX
Introduction to Kotlin
Oswald Campesato
 
PPTX
TypeScript and Deep Learning
Oswald Campesato
 
PPTX
Angular and Deep Learning
Oswald Campesato
 
"An Introduction to AI and Deep Learning"
Oswald Campesato
 
Introduction to Deep Learning for Non-Programmers
Oswald Campesato
 
Java and Deep Learning
Oswald Campesato
 
Diving into Deep Learning (Silicon Valley Code Camp 2017)
Oswald Campesato
 
Android and Deep Learning
Oswald Campesato
 
Introduction to Kotlin
Oswald Campesato
 
TypeScript and Deep Learning
Oswald Campesato
 
Angular and Deep Learning
Oswald Campesato
 
Ad

Recently uploaded (20)

PDF
The Builder’s Playbook - 2025 State of AI Report.pdf
jeroen339954
 
PDF
CIFDAQ Weekly Market Wrap for 11th July 2025
CIFDAQ
 
PPTX
OpenID AuthZEN - Analyst Briefing July 2025
David Brossard
 
PPTX
Building Search Using OpenSearch: Limitations and Workarounds
Sease
 
PPTX
Q2 FY26 Tableau User Group Leader Quarterly Call
lward7
 
PDF
Smart Trailers 2025 Update with History and Overview
Paul Menig
 
PDF
HubSpot Main Hub: A Unified Growth Platform
Jaswinder Singh
 
PDF
New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
PDF
Agentic AI lifecycle for Enterprise Hyper-Automation
Debmalya Biswas
 
PDF
Fl Studio 24.2.2 Build 4597 Crack for Windows Free Download 2025
faizk77g
 
PDF
Newgen 2022-Forrester Newgen TEI_13 05 2022-The-Total-Economic-Impact-Newgen-...
darshakparmar
 
PDF
Jak MŚP w Europie Środkowo-Wschodniej odnajdują się w świecie AI
dominikamizerska1
 
PDF
Blockchain Transactions Explained For Everyone
CIFDAQ
 
PDF
Transcript: New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
PDF
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
PDF
Exolore The Essential AI Tools in 2025.pdf
Srinivasan M
 
PDF
Chris Elwell Woburn, MA - Passionate About IT Innovation
Chris Elwell Woburn, MA
 
PDF
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
PDF
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 
PDF
July Patch Tuesday
Ivanti
 
The Builder’s Playbook - 2025 State of AI Report.pdf
jeroen339954
 
CIFDAQ Weekly Market Wrap for 11th July 2025
CIFDAQ
 
OpenID AuthZEN - Analyst Briefing July 2025
David Brossard
 
Building Search Using OpenSearch: Limitations and Workarounds
Sease
 
Q2 FY26 Tableau User Group Leader Quarterly Call
lward7
 
Smart Trailers 2025 Update with History and Overview
Paul Menig
 
HubSpot Main Hub: A Unified Growth Platform
Jaswinder Singh
 
New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
Agentic AI lifecycle for Enterprise Hyper-Automation
Debmalya Biswas
 
Fl Studio 24.2.2 Build 4597 Crack for Windows Free Download 2025
faizk77g
 
Newgen 2022-Forrester Newgen TEI_13 05 2022-The-Total-Economic-Impact-Newgen-...
darshakparmar
 
Jak MŚP w Europie Środkowo-Wschodniej odnajdują się w świecie AI
dominikamizerska1
 
Blockchain Transactions Explained For Everyone
CIFDAQ
 
Transcript: New from BookNet Canada for 2025: BNC BiblioShare - Tech Forum 2025
BookNet Canada
 
Newgen Beyond Frankenstein_Build vs Buy_Digital_version.pdf
darshakparmar
 
Exolore The Essential AI Tools in 2025.pdf
Srinivasan M
 
Chris Elwell Woburn, MA - Passionate About IT Innovation
Chris Elwell Woburn, MA
 
Building Real-Time Digital Twins with IBM Maximo & ArcGIS Indoors
Safe Software
 
CIFDAQ Token Spotlight for 9th July 2025
CIFDAQ
 
July Patch Tuesday
Ivanti
 

Introduction to Deep Learning and TensorFlow

  • 1. Intro to Deep Learning and TensorFlow Data Riders Meetup 09/12/2018 Lean Plum San Francisco Oswald Campesato [email protected]
  • 2. Highlights/Overview  intro to AI/ML/DL/NNs  Hidden layers  Initialization values  Neurons per layer  Activation function  cost function  gradient descent  learning rate  Dropout rate  what are CNNs  TensorFlow/tensorflow.js
  • 4. Use Cases for Deep Learning computer vision speech recognition image processing bioinformatics social network filtering drug design Recommendation systems Bioinformatics Mobile Advertising Many others
  • 5. NN 3 Hidden Layers: Classifier
  • 6. NN: 2 Hidden Layers (Regression)
  • 8. Euler’s Function (e: 2.71828. . .)
  • 13. Activation Functions in Python import numpy as np ... # Python sigmoid example: z = 1/(1 + np.exp(-np.dot(W, x))) ... # Python tanh example: z = np.tanh(np.dot(W,x)); # Python ReLU example: z = np.maximum(0, np.dot(W, x))
  • 14. What’s the “Best” Activation Function? Initially: sigmoid was popular Then: tanh became popular Now: RELU is preferred (better results) Softmax: for FC (fully connected) layers NB: sigmoid and tanh are used in LSTMs
  • 15. Linear Regression One of the simplest models in ML Fits a line (y = m*x + b) to data in 2D Finds best line by minimizing MSE: m = slope of the best-fitting line b = y-intercept of the best-fitting line
  • 16. Linear Regression in 2D: example
  • 17. Linear Regression in 2D: example
  • 19. Linear Regression: example #1 One feature (independent variable): X = number of square feet Predicted value (dependent variable): Y = cost of a house A very “coarse grained” model We can devise a much better model
  • 20. Linear Regression: example #2 Multiple features: X1 = # of square feet X2 = # of bedrooms X3 = # of bathrooms (dependency?) X4 = age of house X5 = cost of nearby houses X6 = corner lot (or not): Boolean a much better model (6 features)
  • 21. Linear Multivariate Analysis General form of multivariate equation: Y = w1*x1 + w2*x2 + . . . + wn*xn + b w1, w2, . . . , wn are numeric values x1, x2, . . . , xn are variables (features) Properties of variables: Can be independent (Naïve Bayes) weak/strong dependencies can exist
  • 26. Deep Neural Network: summary  input layer, multiple hidden layers, and output layer  nonlinear processing via activation functions  perform transformation and feature extraction  gradient descent algorithm with back propagation  each layer receives the output from previous layer  results are comparable/superior to human experts
  • 27. CNNs versus RNNs CNNs (Convolutional NNs): Good for image processing 2000: CNNs processed 10-20% of all checks => Approximately 60% of all NNs RNNs (Recurrent NNs): Good for NLP and audio Used in hybrid networks
  • 28. CNNs: Convolution, ReLU, and Max Pooling
  • 30. CNNs: Convolution Matrices (examples) Sharpen: Blur:
  • 31. CNNs: Convolution Matrices (examples) Edge detect: Emboss:
  • 32. CNNs: Max Pooling Example
  • 34. GANs: Generative Adversarial Networks Make imperceptible changes to images Can consistently defeat all NNs Can have extremely high error rate Some images create optical illusions https://www.quora.com/What-are-the-pros-and-cons- of-using-generative-adversarial-networks-a-type-of- neural-network
  • 35. GANs: Generative Adversarial Networks Create your own GANs: https://www.oreilly.com/learning/generative-adversarial-networks-for- beginners https://github.com/jonbruner/generative-adversarial-networks GANs from MNIST: http://edwardlib.org/tutorials/gan GANs and Capsule networks?
  • 36. CNN in Python/Keras (fragment)  from keras.models import Sequential  from keras.layers.core import Dense, Dropout, Activation  from keras.layers.convolutional import Conv2D, MaxPooling2D  from keras.optimizers import Adadelta  input_shape = (3, 32, 32)  nb_classes = 10  model = Sequential()  model.add(Conv2D(32,(3, 3),padding='same’, input_shape=input_shape))  model.add(Activation('relu'))  model.add(Conv2D(32, (3, 3)))  model.add(Activation('relu'))  model.add(MaxPooling2D(pool_size=(2, 2)))  model.add(Dropout(0.25))
  • 37. What is TensorFlow? An open source framework for ML and DL A “computation” graph Created by Google (released 11/2015) Evolved from Google Brain Linux and Mac OS X support (VM for Windows) TF home page: https://www.tensorflow.org/
  • 38. What is TensorFlow? Support for Python, Java, C++ Desktop, server, mobile device (TensorFlow Lite) CPU/GPU/TPU support Visualization via TensorBoard Can be embedded in Python scripts Installation: pip install tensorflow TensorFlow cluster: https://www.tensorflow.org/deploy/distributed
  • 39. TensorFlow Use Cases (Generic) Image recognition Computer vision Voice/sound recognition Time series analysis Language detection Language translation Text-based processing Handwriting Recognition
  • 40. Aspects of TensorFlow Graph: graph of operations (DAG) Sessions: contains Graph(s) lazy execution (default) operations in parallel (default) Nodes: operators/variables/constants Edges: tensors => graphs are split into subgraphs and executed in parallel (or multiple CPUs)
  • 41. TensorFlow Graph Execution Execute statements in a tf.Session() object Invoke the “run” method of that object “eager” execution is available (>= v1.4) included in the mainline (v1.7) Installation: pip install tensorflow
  • 42. What is a Tensor? TF tensors are n-dimensional arrays TF tensors are very similar to numpy ndarrays scalar number: a zeroth-order tensor vector: a first-order tensor matrix: a second-order tensor 3-dimensional array: a 3rd order tensor https://dzone.com/articles/tensorflow-simplified- examples
  • 43. TensorFlow “primitive types” tf.constant: + initialized immediately + immutable tf.placeholder (a function): + initial value is not required + can have variable shape + assigned value via feed_dict at run time + receive data from “external” sources
  • 44. TensorFlow “primitive types” tf.Variable (a class): + initial value is required + updated during training + maintain state across calls to “run()” + in-memory buffer (saved/restored from disk) + can be shared in a distributed environment + they hold learned parameters of a model
  • 45. TensorFlow: constants (immutable)  import tensorflow as tf  aconst = tf.constant(3.0)  print(aconst) # output: Tensor("Const:0", shape=(), dtype=float32)  sess = tf.Session()  print(sess.run(aconst)) # output: 3.0  sess.close()  # => there's a better way
  • 46. TensorFlow: constants import tensorflow as tf aconst = tf.constant(3.0) print(aconst) Automatically close “sess” with tf.Session() as sess:  print(sess.run(aconst))
  • 47. TensorFlow Arithmetic import tensorflow as tf a = tf.add(4, 2) b = tf.subtract(8, 6) c = tf.multiply(a, 3) d = tf.div(a, 6) with tf.Session() as sess: print(sess.run(a)) # 6 print(sess.run(b)) # 2 print(sess.run(c)) # 18 print(sess.run(d)) # 1
  • 48. TF placeholders and feed_dict import tensorflow as tf a = tf.placeholder("float") b = tf.placeholder("float") c = tf.multiply(a,b) # initialize a and b: feed_dict = {a:2, b:3} # multiply a and b: with tf.Session() as sess: print(sess.run(c, feed_dict))
  • 49. TensorFlow: Simple Equation import tensorflow as tf # W and x are 1d arrays W = tf.constant([10,20], name='W') X = tf.placeholder(tf.int32, name='x') b = tf.placeholder(tf.int32, name='b') Wx = tf.multiply(W, x, name='Wx') y = tf.add(Wx, b, name='y') OR y2 = tf.add(tf.multiply(W,x),b)
  • 50. TensorFlow fetch/feed_dict with tf.Session() as sess: print("Result 1: Wx = ", sess.run(Wx, feed_dict={x:[5,10]})) print("Result 2: y = ", sess.run(y,feed_dict={x:[5,10],b:[15,25]}))  Result 1: Wx = [50 200]  Result 2: y = [65 225]
  • 51. Saving Graphs for TensorBoard import tensorflow as tf x = tf.constant(5,name="x") y = tf.constant(8,name="y") z = tf.Variable(2*x+3*y, name="z") init = tf.global_variables_initializer() with tf.Session() as session: writer = tf.summary.FileWriter("./tf_logs",session.graph) session.run(init) print 'z = ',session.run(z) # => z = 34 # launch: tensorboard –logdir=./tf_logs
  • 52. TensorFlow Eager Execution An imperative interface to TF Fast debugging & immediate run-time errors Eager execution is “mainline” in v1.7 of TF => requires Python 3.x (not Python 2.x)
  • 53. TensorFlow Eager Execution integration with Python tools Supports dynamic models + Python control flow support for custom and higher-order gradients Supports most TensorFlow operations => Default mode in TensorFlow 2.0 (2019) https://research.googleblog.com/2017/10/eager- execution-imperative-define-by.html
  • 54. TensorFlow Eager Execution import tensorflow as tf import tensorflow.contrib.eager as tfe tfe.enable_eager_execution() x = [[2.]] m = tf.matmul(x, x) print(m) # tf.Tensor([[4.]], shape=(1, 1), dtype=float32)
  • 55. What is tensorflow.js?  an ecosystem of JS tools for machine learning  TensorFlow.js also includes a Layers API  a library for building machine learning models  tools to port TF SavedModels & Keras HDF5 models  => https://js.tensorflow.org/
  • 56. What is tensorflow.js?  tensorflow.js evolved from deeplearn.js  deeplearn.js is now called TensorFlow.js Core  TensorFlow.js Core: a flexible low-level API  TensorFlow.js Layers: a high-level API similar to Keras  TensorFlow.js Converter: tools to import a TF SavedModel to TensorFlow.js
  • 57. async keyword keyword placed before JS functions For functions that return a Promise Trivial example: async function f() { return 1; }
  • 58. await keyword Works only inside async JS functions Trivial example: let value = await mypromise;
  • 59. async/await example async function f() { let promise = new Promise((resolve, reject) => { setTimeout(() => resolve("done!"), 1000) }); // wait till the promise resolves let result = await promise alert(result) } f()
  • 60. Tensorflow.js Samples 1) tfjs-example.html (linear regression) 2) js.tensorflow.org (home page) 3) https://github.com/tensorflow/tfjs-examples-master a)cd mnist-core b) yarn c) yarn watch
  • 61. Deep Learning and Art/”Stuff” “Convolutional Blending” images: => 19-layer Convolutional Neural Network www.deepart.io https://www.fastcodesign.com/90124942/this-google- engineer-taught-an-algorithm-to-make-train-footage- and-its-hypnotic
  • 62. Some of my Books 1) HTML5 Canvas and CSS3 Graphics (2013) 2) jQuery, CSS3, and HTML5 for Mobile (2013) 3) HTML5 Pocket Primer (2013) 4) jQuery Pocket Primer (2013) 5) HTML5 Mobile Pocket Primer (2014) 6) D3 Pocket Primer (2015) 7) Python Pocket Primer (2015) 8) SVG Pocket Primer (2016) 9) CSS3 Pocket Primer (2016) 10) Android Pocket Primer (2017) 11) Angular Pocket Primer (2017) 12) Data Cleaning Pocket Primer (2018) 13) RegEx Pocket Primer (2018)
  • 63. What I do (Training) => Instructor at UCSC: Deep Learning with TensorFlow (10/2018 & 02/2019) Machine Learning Introduction (01/18/2019) => Mobile and TensorFlow Lite (WIP) => R and Deep Learning (WIP) => Android for Beginners (multi-day workshops)