SlideShare a Scribd company logo
Introduction to Deep
Learning using Python
Lino Coria
lino@wiivv.com
@linocoria
About Wiivv
Wiivv is a technology
company transforming
footwear and apparel for
every human body.
Wiivv Insoles and
Sandals are created
uniquely for you, based
on measurements taken
from the award-winning
Wiivv app.
Testing our sandals - Boston Marathon 2018
What is Deep Learning?
AI, Machine Learning, Deep Learning
Artificial Intelligence
Machine Learning
Deep Learning
Artificial Intelligence - Deep Learning
Machine Learning
Rules
Data
Answers
Rules
Data
Answers
Classical
Programming
Machine
Learning
The Power of Deep Neural Networks
Amount of Data
Performance
Traditional ML
Small NN
Medium NN
Large NN
Why is Deep Learning in Vogue?
● Hardware
○ GPUs
○ NVIDIA leading the way
● Tons of Data
○ ImageNet dataset: 1.4 million annotated images
● Better Algorithms
● Democratic
○ If you know Python, you can do deep learning
○ Many tutorials, pre-trained models
Deep Learning and Python
Open-Source Resources for Deep Learning
Keras
A good way to start
Keras
How to get Data
Example: MNIST Dataset
A classic Machine Learning problem
Input X
(Images)
Labels Y: 5 0 4
(Answers)
Training Data + Testing Data
Input X
(Images)
Labels Y
Training Data
Input X
(Images)
Labels Y
Testing Data
Neural Network
1. Input (image pixels)
2. Hidden layers (data
transformations)
3. Output (predicted
label)
Weights
Layer
(data transformation)
Input X
Weights
Layer
(data transformation)
Predictions Y’ True targets Y (Labels)
Loss function
Loss score
Optimizer
Weight
update
Load MNIST Data
>>> import keras
>>> from keras.datasets import mnist
>>> (train_images, train_labels), (test_images, test_labels) = mnist.load_data()
>>> train_images.shape
(60000, 28, 28)
>>> len(train_labels)
60000
Training input: 60,000 images (28 pixels * 28 pixels)
Training labels: 60,000
MNIST training data
>>> import matplotlib.pyplot as plt
>>> plt.imshow(train_images[0])
>>> plt.gray()
>>> plt.show()
>>> train_labels
array([5, 0, 4, ..., 5, 6, 8], dtype=uint8)
MNIST testing data
>>> test_images.shape
(10000, 28, 28)
>>> test_labels
array([7, 2, 1, ..., 4, 5, 6], dtype=uint8)
Testing input: 10,000 images (28 pixels * 28 pixels)
Testing labels: 10,000
Training
60,000 images
60,000 labels
Testing
10,000 images
10,000 labels
Data Reshaping (Input X)
# Train images
>>> train_images = train_images.reshape((60000, 28 * 28))
>>> train_images = train_images.astype('float32') / 255
# Test images
>>> test_images = test_images.reshape((10000, 28 * 28))
>>> test_images = test_images.astype('float32') / 255
1. 28 * 28 image (int values 0 -
255)
2. 28 * 28 = 784-element vector:
[row 0, row 1, …, row 27]
3. 784-element vectors with float
values in range 0 to 1
Data Reshaping (Labels Y)
>>> from keras.utils import to_categorical
# Train labels
>>> train_labels = to_categorical(train_labels)
# Test labels
>>> test_labels = to_categorical(test_labels)
1. train_labels = [5 0 4 ... 5 6 8]
2. train_labels =
[[0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
[1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
…
[0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]]
Building our Network
>>> from keras import models
>>> from keras import layers
>>> network = models.Sequential()
>>> network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))
>>> network.add(layers.Dense(512, activation='relu'))
>>> network.add(layers.Dense(10, activation='softmax'))
Neural Network
1. Input (28 * 28 = 784)
2. Hidden layers (data
transformations, 512
elements per layer)
3. Output (predicted
label: 10-element
vector with
probabilities)
Weights
Layer
(data transformation)
Input X
Weights
Layer
(data transformation)
Predictions Y’ True targets Y (Labels)
Loss function
Loss score
Optimizer
Weight
update
Network compilation
>>> network.compile(optimizer='rmsprop',
... loss='categorical_crossentropy',
... metrics=['accuracy'])
Weights
Layer
(data transformation)
Input X
Weights
Layer
(data transformation)
Predictions Y’ True targets Y (Labels)
Loss function
Loss score
Optimizer
Weight
update
Let’s train!
>>> network.fit(train_images, train_labels, epochs=5, batch_size=128)
Epoch 1/5
60000/60000 [==============================] - 2s 33us/step - loss: 0.2179 - acc: 0.9329
Epoch 2/5
60000/60000 [==============================] - 2s 31us/step - loss: 0.0805 - acc: 0.9750
Epoch 3/5
60000/60000 [==============================] - 2s 32us/step - loss: 0.0531 - acc: 0.9841
Epoch 4/5
60000/60000 [==============================] - 2s 31us/step - loss: 0.0385 - acc: 0.9883
Epoch 5/5
60000/60000 [==============================] - 2s 31us/step - loss: 0.0290 - acc: 0.9908
Train
Accuracy: 99.08%
Test Accuracy
>>> test_loss, test_acc = network.evaluate(test_images, test_labels)
10000/10000 [==============================] - 0s 47us/step
>>> print('Test accuracy: %s' % test_acc)
Test accuracy: 0.9799
Test Accuracy: 97.99%
Resources
Online
Udacity, Coursera
PyImageSearch
Book
Deep Learning with Python by Francois Chollet
Thanks!
Lino Coria
lino@wiivv.com
wiivv.com
We’re hiring!
Software Developers
https://try.wiivv.com/wiivvchallenge/
Ad

More Related Content

What's hot (13)

Object classification using deep neural network
Object classification using deep neural networkObject classification using deep neural network
Object classification using deep neural network
nishakushwah4
 
HDDM: Hierarchical Bayesian estimation of the Drift Diffusion Model
HDDM: Hierarchical Bayesian estimation of the Drift Diffusion ModelHDDM: Hierarchical Bayesian estimation of the Drift Diffusion Model
HDDM: Hierarchical Bayesian estimation of the Drift Diffusion Model
twiecki
 
Global Load Instruction Aggregation Based on Code Motion
Global Load Instruction Aggregation Based on Code MotionGlobal Load Instruction Aggregation Based on Code Motion
Global Load Instruction Aggregation Based on Code Motion
Yasunobu Sumikawa
 
Machine learning in R
Machine learning in RMachine learning in R
Machine learning in R
apolol92
 
The Ring programming language version 1.5.2 book - Part 59 of 181
The Ring programming language version 1.5.2 book - Part 59 of 181The Ring programming language version 1.5.2 book - Part 59 of 181
The Ring programming language version 1.5.2 book - Part 59 of 181
Mahmoud Samir Fayed
 
Using parallel programming to improve performance of image processing
Using parallel programming to improve performance of image processingUsing parallel programming to improve performance of image processing
Using parallel programming to improve performance of image processing
Chan Le
 
Back propagation
Back propagationBack propagation
Back propagation
San Kim
 
Viktor Tsykunov: Azure Machine Learning Service
Viktor Tsykunov: Azure Machine Learning ServiceViktor Tsykunov: Azure Machine Learning Service
Viktor Tsykunov: Azure Machine Learning Service
Lviv Startup Club
 
3D Brain Image Segmentation Model using Deep Learning and Hidden Markov Rando...
3D Brain Image Segmentation Model using Deep Learning and Hidden Markov Rando...3D Brain Image Segmentation Model using Deep Learning and Hidden Markov Rando...
3D Brain Image Segmentation Model using Deep Learning and Hidden Markov Rando...
EL-Hachemi Guerrout
 
Graph Analyses with Python and NetworkX
Graph Analyses with Python and NetworkXGraph Analyses with Python and NetworkX
Graph Analyses with Python and NetworkX
Benjamin Bengfort
 
The Ring programming language version 1.8 book - Part 67 of 202
The Ring programming language version 1.8 book - Part 67 of 202The Ring programming language version 1.8 book - Part 67 of 202
The Ring programming language version 1.8 book - Part 67 of 202
Mahmoud Samir Fayed
 
Machine learning and_nlp
Machine learning and_nlpMachine learning and_nlp
Machine learning and_nlp
ankit_ppt
 
Image Processing using Matlab ( using a built in Matlab function(Histogram eq...
Image Processing using Matlab ( using a built in Matlab function(Histogram eq...Image Processing using Matlab ( using a built in Matlab function(Histogram eq...
Image Processing using Matlab ( using a built in Matlab function(Histogram eq...
Majd Khaleel
 
Object classification using deep neural network
Object classification using deep neural networkObject classification using deep neural network
Object classification using deep neural network
nishakushwah4
 
HDDM: Hierarchical Bayesian estimation of the Drift Diffusion Model
HDDM: Hierarchical Bayesian estimation of the Drift Diffusion ModelHDDM: Hierarchical Bayesian estimation of the Drift Diffusion Model
HDDM: Hierarchical Bayesian estimation of the Drift Diffusion Model
twiecki
 
Global Load Instruction Aggregation Based on Code Motion
Global Load Instruction Aggregation Based on Code MotionGlobal Load Instruction Aggregation Based on Code Motion
Global Load Instruction Aggregation Based on Code Motion
Yasunobu Sumikawa
 
Machine learning in R
Machine learning in RMachine learning in R
Machine learning in R
apolol92
 
The Ring programming language version 1.5.2 book - Part 59 of 181
The Ring programming language version 1.5.2 book - Part 59 of 181The Ring programming language version 1.5.2 book - Part 59 of 181
The Ring programming language version 1.5.2 book - Part 59 of 181
Mahmoud Samir Fayed
 
Using parallel programming to improve performance of image processing
Using parallel programming to improve performance of image processingUsing parallel programming to improve performance of image processing
Using parallel programming to improve performance of image processing
Chan Le
 
Back propagation
Back propagationBack propagation
Back propagation
San Kim
 
Viktor Tsykunov: Azure Machine Learning Service
Viktor Tsykunov: Azure Machine Learning ServiceViktor Tsykunov: Azure Machine Learning Service
Viktor Tsykunov: Azure Machine Learning Service
Lviv Startup Club
 
3D Brain Image Segmentation Model using Deep Learning and Hidden Markov Rando...
3D Brain Image Segmentation Model using Deep Learning and Hidden Markov Rando...3D Brain Image Segmentation Model using Deep Learning and Hidden Markov Rando...
3D Brain Image Segmentation Model using Deep Learning and Hidden Markov Rando...
EL-Hachemi Guerrout
 
Graph Analyses with Python and NetworkX
Graph Analyses with Python and NetworkXGraph Analyses with Python and NetworkX
Graph Analyses with Python and NetworkX
Benjamin Bengfort
 
The Ring programming language version 1.8 book - Part 67 of 202
The Ring programming language version 1.8 book - Part 67 of 202The Ring programming language version 1.8 book - Part 67 of 202
The Ring programming language version 1.8 book - Part 67 of 202
Mahmoud Samir Fayed
 
Machine learning and_nlp
Machine learning and_nlpMachine learning and_nlp
Machine learning and_nlp
ankit_ppt
 
Image Processing using Matlab ( using a built in Matlab function(Histogram eq...
Image Processing using Matlab ( using a built in Matlab function(Histogram eq...Image Processing using Matlab ( using a built in Matlab function(Histogram eq...
Image Processing using Matlab ( using a built in Matlab function(Histogram eq...
Majd Khaleel
 

Similar to Introduction to deep learning using python (20)

Learning Predictive Modeling with TSA and Kaggle
Learning Predictive Modeling with TSA and KaggleLearning Predictive Modeling with TSA and Kaggle
Learning Predictive Modeling with TSA and Kaggle
Yvonne K. Matos
 
Session 4 start coding Tensorflow 2.0
Session 4 start coding Tensorflow 2.0Session 4 start coding Tensorflow 2.0
Session 4 start coding Tensorflow 2.0
Rajagopal A
 
Dimension reduction techniques[Feature Selection]
Dimension reduction techniques[Feature Selection]Dimension reduction techniques[Feature Selection]
Dimension reduction techniques[Feature Selection]
AAKANKSHA JAIN
 
Edge AI: Bringing Intelligence to Embedded Devices
Edge AI: Bringing Intelligence to Embedded DevicesEdge AI: Bringing Intelligence to Embedded Devices
Edge AI: Bringing Intelligence to Embedded Devices
Speck&Tech
 
Yufeng Guo | Coding the 7 steps of machine learning | Codemotion Madrid 2018
Yufeng Guo |  Coding the 7 steps of machine learning | Codemotion Madrid 2018 Yufeng Guo |  Coding the 7 steps of machine learning | Codemotion Madrid 2018
Yufeng Guo | Coding the 7 steps of machine learning | Codemotion Madrid 2018
Codemotion
 
DN 2017 | Multi-Paradigm Data Science - On the many dimensions of Knowledge D...
DN 2017 | Multi-Paradigm Data Science - On the many dimensions of Knowledge D...DN 2017 | Multi-Paradigm Data Science - On the many dimensions of Knowledge D...
DN 2017 | Multi-Paradigm Data Science - On the many dimensions of Knowledge D...
Dataconomy Media
 
IRJET- Unabridged Review of Supervised Machine Learning Regression and Classi...
IRJET- Unabridged Review of Supervised Machine Learning Regression and Classi...IRJET- Unabridged Review of Supervised Machine Learning Regression and Classi...
IRJET- Unabridged Review of Supervised Machine Learning Regression and Classi...
IRJET Journal
 
Power ai tensorflowworkloadtutorial-20171117
Power ai tensorflowworkloadtutorial-20171117Power ai tensorflowworkloadtutorial-20171117
Power ai tensorflowworkloadtutorial-20171117
Ganesan Narayanasamy
 
GANS Project for Image idetification.pdf
GANS Project for Image idetification.pdfGANS Project for Image idetification.pdf
GANS Project for Image idetification.pdf
VivekanandaGN1
 
Need an detailed analysis of what this code-model is doing- Thanks #St.pdf
Need an detailed analysis of what this code-model is doing- Thanks #St.pdfNeed an detailed analysis of what this code-model is doing- Thanks #St.pdf
Need an detailed analysis of what this code-model is doing- Thanks #St.pdf
actexerode
 
Feature Engineering - Getting most out of data for predictive models
Feature Engineering - Getting most out of data for predictive modelsFeature Engineering - Getting most out of data for predictive models
Feature Engineering - Getting most out of data for predictive models
Gabriel Moreira
 
Feature Engineering - Getting most out of data for predictive models - TDC 2017
Feature Engineering - Getting most out of data for predictive models - TDC 2017Feature Engineering - Getting most out of data for predictive models - TDC 2017
Feature Engineering - Getting most out of data for predictive models - TDC 2017
Gabriel Moreira
 
AIML4 CNN lab256 1hr (111-1).pdf
AIML4 CNN lab256 1hr (111-1).pdfAIML4 CNN lab256 1hr (111-1).pdf
AIML4 CNN lab256 1hr (111-1).pdf
ssuserb4d806
 
Image classification using cnn
Image classification using cnnImage classification using cnn
Image classification using cnn
Debarko De
 
Machine Learning : why we should know and how it works
Machine Learning : why we should know and how it worksMachine Learning : why we should know and how it works
Machine Learning : why we should know and how it works
Kevin Lee
 
Gradient Descent Code Implementation.pdf
Gradient Descent Code  Implementation.pdfGradient Descent Code  Implementation.pdf
Gradient Descent Code Implementation.pdf
MubashirHussain792093
 
Deep learning image classification aplicado al mundo de la moda
Deep learning image classification aplicado al mundo de la modaDeep learning image classification aplicado al mundo de la moda
Deep learning image classification aplicado al mundo de la moda
Javier Abadía
 
Machine Learning Algorithms
Machine Learning AlgorithmsMachine Learning Algorithms
Machine Learning Algorithms
Hichem Felouat
 
Pytorch and Machine Learning for the Math Impaired
Pytorch and Machine Learning for the Math ImpairedPytorch and Machine Learning for the Math Impaired
Pytorch and Machine Learning for the Math Impaired
Tyrel Denison
 
Baseball Prediction Model on Tensorflow
Baseball Prediction Model on TensorflowBaseball Prediction Model on Tensorflow
Baseball Prediction Model on Tensorflow
Jay Ryu
 
Learning Predictive Modeling with TSA and Kaggle
Learning Predictive Modeling with TSA and KaggleLearning Predictive Modeling with TSA and Kaggle
Learning Predictive Modeling with TSA and Kaggle
Yvonne K. Matos
 
Session 4 start coding Tensorflow 2.0
Session 4 start coding Tensorflow 2.0Session 4 start coding Tensorflow 2.0
Session 4 start coding Tensorflow 2.0
Rajagopal A
 
Dimension reduction techniques[Feature Selection]
Dimension reduction techniques[Feature Selection]Dimension reduction techniques[Feature Selection]
Dimension reduction techniques[Feature Selection]
AAKANKSHA JAIN
 
Edge AI: Bringing Intelligence to Embedded Devices
Edge AI: Bringing Intelligence to Embedded DevicesEdge AI: Bringing Intelligence to Embedded Devices
Edge AI: Bringing Intelligence to Embedded Devices
Speck&Tech
 
Yufeng Guo | Coding the 7 steps of machine learning | Codemotion Madrid 2018
Yufeng Guo |  Coding the 7 steps of machine learning | Codemotion Madrid 2018 Yufeng Guo |  Coding the 7 steps of machine learning | Codemotion Madrid 2018
Yufeng Guo | Coding the 7 steps of machine learning | Codemotion Madrid 2018
Codemotion
 
DN 2017 | Multi-Paradigm Data Science - On the many dimensions of Knowledge D...
DN 2017 | Multi-Paradigm Data Science - On the many dimensions of Knowledge D...DN 2017 | Multi-Paradigm Data Science - On the many dimensions of Knowledge D...
DN 2017 | Multi-Paradigm Data Science - On the many dimensions of Knowledge D...
Dataconomy Media
 
IRJET- Unabridged Review of Supervised Machine Learning Regression and Classi...
IRJET- Unabridged Review of Supervised Machine Learning Regression and Classi...IRJET- Unabridged Review of Supervised Machine Learning Regression and Classi...
IRJET- Unabridged Review of Supervised Machine Learning Regression and Classi...
IRJET Journal
 
Power ai tensorflowworkloadtutorial-20171117
Power ai tensorflowworkloadtutorial-20171117Power ai tensorflowworkloadtutorial-20171117
Power ai tensorflowworkloadtutorial-20171117
Ganesan Narayanasamy
 
GANS Project for Image idetification.pdf
GANS Project for Image idetification.pdfGANS Project for Image idetification.pdf
GANS Project for Image idetification.pdf
VivekanandaGN1
 
Need an detailed analysis of what this code-model is doing- Thanks #St.pdf
Need an detailed analysis of what this code-model is doing- Thanks #St.pdfNeed an detailed analysis of what this code-model is doing- Thanks #St.pdf
Need an detailed analysis of what this code-model is doing- Thanks #St.pdf
actexerode
 
Feature Engineering - Getting most out of data for predictive models
Feature Engineering - Getting most out of data for predictive modelsFeature Engineering - Getting most out of data for predictive models
Feature Engineering - Getting most out of data for predictive models
Gabriel Moreira
 
Feature Engineering - Getting most out of data for predictive models - TDC 2017
Feature Engineering - Getting most out of data for predictive models - TDC 2017Feature Engineering - Getting most out of data for predictive models - TDC 2017
Feature Engineering - Getting most out of data for predictive models - TDC 2017
Gabriel Moreira
 
AIML4 CNN lab256 1hr (111-1).pdf
AIML4 CNN lab256 1hr (111-1).pdfAIML4 CNN lab256 1hr (111-1).pdf
AIML4 CNN lab256 1hr (111-1).pdf
ssuserb4d806
 
Image classification using cnn
Image classification using cnnImage classification using cnn
Image classification using cnn
Debarko De
 
Machine Learning : why we should know and how it works
Machine Learning : why we should know and how it worksMachine Learning : why we should know and how it works
Machine Learning : why we should know and how it works
Kevin Lee
 
Gradient Descent Code Implementation.pdf
Gradient Descent Code  Implementation.pdfGradient Descent Code  Implementation.pdf
Gradient Descent Code Implementation.pdf
MubashirHussain792093
 
Deep learning image classification aplicado al mundo de la moda
Deep learning image classification aplicado al mundo de la modaDeep learning image classification aplicado al mundo de la moda
Deep learning image classification aplicado al mundo de la moda
Javier Abadía
 
Machine Learning Algorithms
Machine Learning AlgorithmsMachine Learning Algorithms
Machine Learning Algorithms
Hichem Felouat
 
Pytorch and Machine Learning for the Math Impaired
Pytorch and Machine Learning for the Math ImpairedPytorch and Machine Learning for the Math Impaired
Pytorch and Machine Learning for the Math Impaired
Tyrel Denison
 
Baseball Prediction Model on Tensorflow
Baseball Prediction Model on TensorflowBaseball Prediction Model on Tensorflow
Baseball Prediction Model on Tensorflow
Jay Ryu
 
Ad

Recently uploaded (20)

Modern_Distribution_Presentation.pptx Aa
Modern_Distribution_Presentation.pptx AaModern_Distribution_Presentation.pptx Aa
Modern_Distribution_Presentation.pptx Aa
MuhammadAwaisKamboh
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
Defense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptxDefense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptx
Greg Makowski
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docxMASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
santosh162
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Data Analytics Overview and its applications
Data Analytics Overview and its applicationsData Analytics Overview and its applications
Data Analytics Overview and its applications
JanmejayaMishra7
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
Process Mining and Data Science in the Financial Industry
Process Mining and Data Science in the Financial IndustryProcess Mining and Data Science in the Financial Industry
Process Mining and Data Science in the Financial Industry
Process mining Evangelist
 
chapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptxchapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptx
justinebandajbn
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
Customer Segmentation using K-Means clustering
Customer Segmentation using K-Means clusteringCustomer Segmentation using K-Means clustering
Customer Segmentation using K-Means clustering
Ingrid Nyakerario
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
Deloitte - A Framework for Process Mining Projects
Deloitte - A Framework for Process Mining ProjectsDeloitte - A Framework for Process Mining Projects
Deloitte - A Framework for Process Mining Projects
Process mining Evangelist
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
Modern_Distribution_Presentation.pptx Aa
Modern_Distribution_Presentation.pptx AaModern_Distribution_Presentation.pptx Aa
Modern_Distribution_Presentation.pptx Aa
MuhammadAwaisKamboh
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
Defense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptxDefense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptx
Greg Makowski
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docxMASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
MASAkkjjkttuyrdquesjhjhjfc44dddtions.docx
santosh162
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Data Analytics Overview and its applications
Data Analytics Overview and its applicationsData Analytics Overview and its applications
Data Analytics Overview and its applications
JanmejayaMishra7
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
Process Mining and Data Science in the Financial Industry
Process Mining and Data Science in the Financial IndustryProcess Mining and Data Science in the Financial Industry
Process Mining and Data Science in the Financial Industry
Process mining Evangelist
 
chapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptxchapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptx
justinebandajbn
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
Customer Segmentation using K-Means clustering
Customer Segmentation using K-Means clusteringCustomer Segmentation using K-Means clustering
Customer Segmentation using K-Means clustering
Ingrid Nyakerario
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
Deloitte - A Framework for Process Mining Projects
Deloitte - A Framework for Process Mining ProjectsDeloitte - A Framework for Process Mining Projects
Deloitte - A Framework for Process Mining Projects
Process mining Evangelist
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
Ad

Introduction to deep learning using python