SlideShare a Scribd company logo
Wen Phan
April 20, 2017
Introduction to GPUs for
Machine Learning
Agenda
• Context and Why GPUs?
– Matrix Multiplication Example
• CUDA
• GPU and Machine Learning
– Deep Learning
– Parallel Computing: GBM, GLM
• Getting Started
• Others
Need for More Compute
• Lots of Data
• Complex Architectures
• Many Models
Historic Ways for More Compute
• Faster Clock Rates
• Multi-Core
• Distributed Computing
CPU Trends
Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten,
dotted line extrapolations by C. Moore
Distributed Computing
Why GPUs?
GPU Accelerated Computing
GPUCPU
nVIDIA
GPUs for Parallel Tasks
Traditional CPUs are
not economically feasible
2.3 PFlops 7000 homes
7.0
Megawatts
7.0
Megawatts
CPU
Optimized for
Serial Tasks
GPU Accelerator
Optimized for Many
Parallel Tasks
10x performance/socket
> 5x energy efficiency
Era of GPU-accelerated
computing is here
nVIDIA
GPU Devotes More Transistors to Data Processing
CUDA	C	Programming	Guide
CPU VS GPU
https://videocardz.com/39721/nvidia-geforce-gtx-titan-released
Latency Versus Throughput
• Latency: Time to do a task.
• Throughput: Number of tasks per unit time.
• Fictitious Example:
– CPU
• Latency: 1 ns per task
• Throughput: (1 task per ns) x (6 cores) = 6 task per ns
– GPU
• Latency: 10 ns per task
• Throughput: (0.1 task per ns) x (2000 cores) = 200 task per ns
• CPUs are latency optimized; GPUs are throughput optimized
Introduction to GPUs for Machine Learning
NVIDIA Latest GPUs
http://www.anandtech.com/show/11172/nvidia-unveils-geforce-gtx-1080-ti-next-week-699
CUDA	C	Programming	Guide
Matrix Multiplication
Matrix Multiplication
2
4 A
3
5
m ⇥ k
2
4 B
3
5
k ⇥ n
=
2
4 C
3
5
m ⇥ n
Matrix Multiplication
2
6
6
6
6
6
4
a1,1 a1,2 a1,3 . . . a1,k
a2,1 a2,2 a2,3 . . . a2,k
a3,1 a3,2 a3,3 . . . a3,k
...
...
...
...
...
am,1 am,2 am,3 . . . am,k
3
7
7
7
7
7
5
A
2
6
6
6
6
6
4
b1,1 b1,2 b1,3 . . . b1,n
b2,1 b2,2 b2,3 . . . b2,n
b3,1 b3,2 b3,3 . . . b3,n
...
...
...
...
...
bk,1 bk,2 bk,3 . . . bk,n
3
7
7
7
7
7
5
B
=
2
6
6
6
6
6
4
c1,1 c1,2 c1,3 . . . c1,n
c2,1 c2,2 c2,3 . . . c2,n
c3,1 c3,2 c3,3 . . . c3,n
...
...
...
...
...
cm,1 cm,2 cm,3 . . . cm,n
3
7
7
7
7
7
5
C
ci,j =
kX
h=1
ai,hbh,j
CUDA
CUDA
• Historically, GPUs were used for, well, graphics processing. But, people realized that the fine-
grained parallelism inherently in GPU architecture could be exploited for general purpose
computing.
• CUDA (Compute Unified Device Architecture)
– Parallel computing platform
– Programming model and API
– Allows enabled GPUs for general purpose processing
Speed Up Parallelizable Code
Application Code
GPU
Use GPU to
Parallelize
Compute-Intensive
Functions
CPU
Rest of Sequential
CPU Code
nVIDIA
Matrix Multiplication
CUDA	C	Programming	Guide
CUDA Matrix Multiplication
CUDA	C	Programming	Guide
CPU
GPU
CPU	
Memory
GPU	
Memory
CUDA	C	Programming	Guide
CUDA	C	Programming	Guide
CUDA	C	Programming	Guide
Matrix Multiplication Kernel
CUDA	C	Programming	Guide
CUDA Ecosystem
SC12	Demo:	Using	CUDA	Library	to	accelerate	applications
SC12	Demo:	Using	CUDA	Library	to	accelerate	applications
SC12	Demo:	Using	CUDA	Library	to	accelerate	applications
GPUs and Machine
Learning
GPUs and Machine Learning
• Poster Child: Deep Learning
• Parallel Computing
– Model Parallelism
– Data Parallelism
– Training Parallelism
Deep Learning
Multi-Layer Perceptron Neural Network
Efron	and	Hastie.	Computer	Age	Statistical	Inference.
MNIST
MNIST	Database
Image as a Tensor
TensorFlow
Training
TensorFlow
Supervised Learning
TensorFlow
Neuron
Activation Functions
Efron	and	Hastie.	Computer	Age	Statistical	Inference.
Layer of Neurons
Layer of Neurons
Matrix Multiplication!
Hidden Layers
Convolutional Neural Networks
• Leverages the fact that data has spatial structure
– Add idea of locality
• Tremendous success with computer vision tasks
• “Put deep learning on the map”
Frobenius Inner Product
X =
2
4
2 2 1
2 0 1
2 1 2
3
5 , K =
2
4
1 1 1
1 1 1
1 1 1
3
5
hX, KiF =
X
i,j
xi,jki,j
= (2 ⇤ 1) + (2 ⇤ 1) + (1 ⇤ 1) + (2 ⇤ 1) + (0 ⇤ 1) + (1 ⇤ 1) + (2 ⇤ 1) + (1 ⇤ 1) + (2 ⇤ 1)
= 2 + 2 + 1 2 + 0 1 2 + 1 + 2
= 3
Convolution Layer
Andrej	Karpathy.	CS231n	Convolutional	Neural	Networks	for	Visual	Recognition.
Convolutional Layer
w
d
h
g
0
@
X
d
X
i,j
xi,j,dki,j,d + b
1
A
X
Kf
X
d
X
i,j
xi,j,dki,j,d
¯
b
g(·)
¯
Convolutional Layer
w
d
h
X
d
X
i,j
xi,j,dki,j,d
b
g
0
@
X
d
X
i,j
xi,j,dki,j,d + b
1
A
g(·)
f
X
K
Convolutional Layer
w
d
h
X
Input Image Activation Maps
Convolution
Convolutional Layer
• f = receptive field
(filter size)
• p = padding
• s = stride
• m = number of filters
Input Volume Output Volume
Convolution
wI
hI
dI
wO
dO
hO
wO =
wI f + 2p
s
+ 1
hO =
wI f + 2p
s
+ 1
dO = m
Example: LeNet
Inception ResNet V2
ImageNet
Introduction to GPUs for Machine Learning
cuDNN
ImageNet Results
http://kaiminghe.com/ilsvrc15/ilsvrc2015_deep_residual_learning_kaiminghe.pdf
ImageNet Entries Using GPUs
https://devblogs.nvidia.com/parallelforall/nvidia-ibm-cloud-support-imagenet-large-scale-visual-recognition-challenge/
Deep Water: Next-Gen Distributed Deep Learning
One Interface - GPU Enabled - Significant Performance Gains
Inherits All H2O Properties in Scalability, Ease of Use and Deployment
Recurrent Neural Networks
enabling natural language
processing, sequences, time series,
and more
Convolutional Neural Networks
enabling Image, video, speech
recognition
Hybrid Neural Network Architectures
enabling speech to text translation,
image captioning, scene parsing and
more
H2O integrates with existing GPU
backends for significant performance
gains
H2O Deep Learning Algo
Introduction to GPUs for Machine Learning
Cat, Dog, or Mouse?
Parallel Computing
Parallel Computing
• Model Parallelism: Split up a single model
Random Forest
T1(x) T2(x) T3(x) TB(x)
ˆy = f(x; T1, . . . , TB)
Random Forest
T1(x) T2(x) T3(x) TB(x)
Deep Learning Model Parallelism
Large	Scale	Distributed	Deep	Networks.	J.	Dean,	et.	al.
Parallel Computing
• Model Parallelism: Split up a single model
• Data Parallelism: Split up data to train a single model
Deep Learning Data Parallelism
Large	Scale	Distributed	Deep	Networks.	J.	Dean,	et.	al.
H2O Deep Learning Architecture
Gradient Boosting Machine (GBM)
T1(x) T2(x) T3(x) TM (x)
fM (x) =
MX
i=1
Ti(x)
Gradient Boosting Machine (GBM)
T1(x) T2(x) T3(x) TM (x)
fi(x) = fi 1(x) + Ti(x; ˆ⇥i)
Gradient Boosting Machine (GBM)
T1(x) T2(x) T3(x) TM (x)
Decision Tree
R1
R2
Hastie,	Tibshirani,	Friedman.	Elements	of	Statistical	Learning
GBM Data Parallelism
1
2
K
x1 x2 x3 xp y
X = {X1, . . . , XK}
X1
X2
XK
{Xi; ti}?
GBM Data Parallelism
1
2
K
X = {X1, . . . , XK}
X1
X2
XK
{Xi; ti}?
GBM Data Parallelism
1
2
K
X = {X1, . . . , XK}
math (X1)
math (X2)
math (XK)
{Xi; ti} = f(math (X1) , . . . , math (XK))
GBM Data Parallelism
1
2
K
X = {X1, . . . , XK}
math (X1)
math (X2)
math (XK)
{Xi; ti} = f(math (X1) , . . . , math (XK))
Full	Data	Parallelism	for	Each	Level	of	Tree	Growth!
CPU Cluster
GPU Cluster
• Level GPUs to accelerate processing and fine-grain parallelism on each node
CPU
GPU
math (X1) math (X2) math (XK)math (X3)
GBM on GPU
T1(x) T2(x) T3(x) TM (x)
Application Code
GPU
Use GPU to
Compute-Intensive
Functions
CPU
Rest of Sequential
CPU Code
Parallel Computing
• Model Parallelism: Split up a single model
• Data Parallelism: Split up data to train a single model
• Training Parallelism: Split up different parts of the training process
– Ensemble Base Learners
– Cross-Validation
– Hyperparameters
Linear Regression
Hastie,	Tibshirani,	Friedman.	Elements	of	Statistical	Learning
X =
2
6
6
6
4
x1,1 x1,2 . . . x1,p
x2,1 x2,2 . . . x2,p
...
...
...
...
xn,1 xn,2 . . . xn,p
3
7
7
7
5
minimize
nX
i=1
0
@yi 0
pX
j=1
xi,j j
1
A
2
minimize ||y X ||2
2
Ridge Regression
Hastie,	Tibshirani,	Wainwright.	Statistical	Learning	with	Sparsity
minimize
0,
||y X ||2
2
subject to || ||2
2  t
Ridge Regression
Hastie,	Tibshirani,	Wainwright.	Statistical	Learning	with	Sparsity
minimize ||y X ||2
2 + || ||2
Lasso Regression
Hastie,	Tibshirani,	Wainwright.	Statistical	Learning	with	Sparsity
minimize
0,
||y X ||2
2
subject to || ||1  t
Lasso Regression
Hastie,	Tibshirani,	Wainwright.	Statistical	Learning	with	Sparsity
minimize ||y X ||2
2 + || ||1
Elastic Net Regression
minimize ||y X ||2
2 +
✓
↵|| ||1 +
1
2
(1 ↵)|| ||2
2
◆
Single Node GPU
CPU
GPU
Single Node Multi-GPU
CPU
GPU
Elastic Net Regression Training Parallelism
J( ; , ↵) = ||y X ||2
2 +
✓
↵|| ||1 +
1
2
(1 ↵)|| ||2
2
◆
minimize J( ; i, ↵1) minimize J( ; i, ↵2) minimize J( ; i, ↵G)
GPU1 GPU2 GPUG
i 2 {0, . . . , 1}
Elastic Net Regression Training Parallelism
Getting Started
CUDA
https://developer.nvidia.com/cuda-downloads
cuDNN
https://developer.nvidia.com/cudnn
Deep Water AMI
https://docs.h2o.ai
Others
Multi-GPU Multi-Node Cluster
Others
• Efficient CPU-GPU Utilization
• Communication Link and Overhead
NVLink
Others
• Efficient CPU-GPU Utilization
• Communication Link and Overhead
• Inference
GTC 2017: ML and AI on GPUs
Train Deep Learning Models Using H2O Deep Water
Questions?

More Related Content

What's hot (20)

PDF
Sky X Tech Report
Shubham Rokade
 
PPSX
Fuzzy expert system
Hsuvas Borkakoty
 
PDF
NB-IoT: a sustainable technology for connecting billions of devices
Ericsson
 
PPTX
Simplified Fuzzy ARTMAP
PradipBankar
 
PPTX
Green Networks
Neenu Ks
 
PDF
Sayan CESC HT Report.pdf
SayanBasak15
 
PPTX
Radial basis function network ppt bySheetal,Samreen and Dhanashri
sheetal katkar
 
PDF
Connected Intelligence
Mills Davis
 
PDF
Artificial Intelligence Notes Unit 2
DigiGurukul
 
PDF
Computing DFT using Matrix method
Sarang Joshi
 
PPTX
Laplace transformation
Wasim Shah
 
PPTX
Fuzzy logic member functions
Dr. C.V. Suresh Babu
 
PDF
Controllability and observability
jawaharramaya
 
PDF
Machine Learning Applications to IoT
Förderverein Technische Fakultät
 
PPTX
SKY X TECHNOLOGY
Udirmaan Deka
 
PDF
Green internet of things for smart world(2)
Divas K Das
 
PPTX
Fuzzy Logic Controller
vinayvickky
 
PPTX
Properties of dft
HeraldRufus1
 
PDF
Maker of Things - the open IoT cloud for makers chapter.
Jollen Chen
 
PPTX
Ibm truenorth
Sam varghese
 
Sky X Tech Report
Shubham Rokade
 
Fuzzy expert system
Hsuvas Borkakoty
 
NB-IoT: a sustainable technology for connecting billions of devices
Ericsson
 
Simplified Fuzzy ARTMAP
PradipBankar
 
Green Networks
Neenu Ks
 
Sayan CESC HT Report.pdf
SayanBasak15
 
Radial basis function network ppt bySheetal,Samreen and Dhanashri
sheetal katkar
 
Connected Intelligence
Mills Davis
 
Artificial Intelligence Notes Unit 2
DigiGurukul
 
Computing DFT using Matrix method
Sarang Joshi
 
Laplace transformation
Wasim Shah
 
Fuzzy logic member functions
Dr. C.V. Suresh Babu
 
Controllability and observability
jawaharramaya
 
Machine Learning Applications to IoT
Förderverein Technische Fakultät
 
SKY X TECHNOLOGY
Udirmaan Deka
 
Green internet of things for smart world(2)
Divas K Das
 
Fuzzy Logic Controller
vinayvickky
 
Properties of dft
HeraldRufus1
 
Maker of Things - the open IoT cloud for makers chapter.
Jollen Chen
 
Ibm truenorth
Sam varghese
 

Similar to Introduction to GPUs for Machine Learning (20)

PDF
Intro to Machine Learning for GPUs
Sri Ambati
 
PDF
Computing using GPUs
Shree Kumar
 
PDF
The Rise of Parallel Computing
bakers84
 
PPTX
lecture11_GPUArchCUDA01.pptx
ssuser413a98
 
PDF
[db analytics showcase Sapporo 2018] B33 H2O4GPU and GoAI: harnessing the pow...
Insight Technology, Inc.
 
PPT
hjjyjtjrtjrthjrtjr6usfgnfgngdngnrthrthrth.ppt
SagnikMondal32
 
PPT
Graphics Processing Unit (GPU) system.ppt
TeddyIswahyudi1
 
PPT
Monte Carlo on GPUs
fcassier
 
PPT
Current Trends in HPC
Putchong Uthayopas
 
PPTX
From Hours to Minutes: The Journey of Optimizing Mask-RCNN and BERT Using MXNet
Eric Haibin Lin
 
PDF
Mauricio breteernitiz hpc-exascale-iscte
mbreternitz
 
PPTX
APSys Presentation Final copy2
Junli Gu
 
PDF
Backend.AI Technical Introduction (19.09 / 2019 Autumn)
Lablup Inc.
 
PPTX
Gpu with cuda architecture
Dhaval Kaneria
 
PDF
Toronto meetup 20190917
Bill Liu
 
PPTX
Stream Processing
arnamoy10
 
PDF
Fast data in times of crisis with GPU accelerated database QikkDB | Business ...
Matej Misik
 
PDF
19564926 graphics-processing-unit
Dayakar Siddula
 
PDF
Netflix machine learning
Amer Ather
 
PDF
Report on GPGPU at FCA (Lyon, France, 11-15 October, 2010)
PhtRaveller
 
Intro to Machine Learning for GPUs
Sri Ambati
 
Computing using GPUs
Shree Kumar
 
The Rise of Parallel Computing
bakers84
 
lecture11_GPUArchCUDA01.pptx
ssuser413a98
 
[db analytics showcase Sapporo 2018] B33 H2O4GPU and GoAI: harnessing the pow...
Insight Technology, Inc.
 
hjjyjtjrtjrthjrtjr6usfgnfgngdngnrthrthrth.ppt
SagnikMondal32
 
Graphics Processing Unit (GPU) system.ppt
TeddyIswahyudi1
 
Monte Carlo on GPUs
fcassier
 
Current Trends in HPC
Putchong Uthayopas
 
From Hours to Minutes: The Journey of Optimizing Mask-RCNN and BERT Using MXNet
Eric Haibin Lin
 
Mauricio breteernitiz hpc-exascale-iscte
mbreternitz
 
APSys Presentation Final copy2
Junli Gu
 
Backend.AI Technical Introduction (19.09 / 2019 Autumn)
Lablup Inc.
 
Gpu with cuda architecture
Dhaval Kaneria
 
Toronto meetup 20190917
Bill Liu
 
Stream Processing
arnamoy10
 
Fast data in times of crisis with GPU accelerated database QikkDB | Business ...
Matej Misik
 
19564926 graphics-processing-unit
Dayakar Siddula
 
Netflix machine learning
Amer Ather
 
Report on GPGPU at FCA (Lyon, France, 11-15 October, 2010)
PhtRaveller
 
Ad

More from Sri Ambati (20)

PDF
H2O Label Genie Starter Track - Support Presentation
Sri Ambati
 
PDF
H2O.ai Agents : From Theory to Practice - Support Presentation
Sri Ambati
 
PDF
H2O Generative AI Starter Track - Support Presentation Slides.pdf
Sri Ambati
 
PDF
H2O Gen AI Ecosystem Overview - Level 1 - Slide Deck
Sri Ambati
 
PDF
An In-depth Exploration of Enterprise h2oGPTe Slide Deck
Sri Ambati
 
PDF
Intro to Enterprise h2oGPTe Presentation Slides
Sri Ambati
 
PDF
Enterprise h2o GPTe Learning Path Slide Deck
Sri Ambati
 
PDF
H2O Wave Course Starter - Presentation Slides
Sri Ambati
 
PDF
Large Language Models (LLMs) - Level 3 Slides
Sri Ambati
 
PDF
Data Science and Machine Learning Platforms (2024) Slides
Sri Ambati
 
PDF
Data Prep for H2O Driverless AI - Slides
Sri Ambati
 
PDF
H2O Cloud AI Developer Services - Slides (2024)
Sri Ambati
 
PDF
LLM Learning Path Level 2 - Presentation Slides
Sri Ambati
 
PDF
LLM Learning Path Level 1 - Presentation Slides
Sri Ambati
 
PDF
Hydrogen Torch - Starter Course - Presentation Slides
Sri Ambati
 
PDF
Presentation Resources - H2O Gen AI Ecosystem Overview - Level 2
Sri Ambati
 
PDF
H2O Driverless AI Starter Course - Slides and Assignments
Sri Ambati
 
PPTX
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
Sri Ambati
 
PDF
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
Sri Ambati
 
PPTX
Generative AI Masterclass - Model Risk Management.pptx
Sri Ambati
 
H2O Label Genie Starter Track - Support Presentation
Sri Ambati
 
H2O.ai Agents : From Theory to Practice - Support Presentation
Sri Ambati
 
H2O Generative AI Starter Track - Support Presentation Slides.pdf
Sri Ambati
 
H2O Gen AI Ecosystem Overview - Level 1 - Slide Deck
Sri Ambati
 
An In-depth Exploration of Enterprise h2oGPTe Slide Deck
Sri Ambati
 
Intro to Enterprise h2oGPTe Presentation Slides
Sri Ambati
 
Enterprise h2o GPTe Learning Path Slide Deck
Sri Ambati
 
H2O Wave Course Starter - Presentation Slides
Sri Ambati
 
Large Language Models (LLMs) - Level 3 Slides
Sri Ambati
 
Data Science and Machine Learning Platforms (2024) Slides
Sri Ambati
 
Data Prep for H2O Driverless AI - Slides
Sri Ambati
 
H2O Cloud AI Developer Services - Slides (2024)
Sri Ambati
 
LLM Learning Path Level 2 - Presentation Slides
Sri Ambati
 
LLM Learning Path Level 1 - Presentation Slides
Sri Ambati
 
Hydrogen Torch - Starter Course - Presentation Slides
Sri Ambati
 
Presentation Resources - H2O Gen AI Ecosystem Overview - Level 2
Sri Ambati
 
H2O Driverless AI Starter Course - Slides and Assignments
Sri Ambati
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
Sri Ambati
 
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
Sri Ambati
 
Generative AI Masterclass - Model Risk Management.pptx
Sri Ambati
 
Ad

Recently uploaded (20)

PPTX
Digital Circuits, important subject in CS
contactparinay1
 
PDF
Transforming Utility Networks: Large-scale Data Migrations with FME
Safe Software
 
PDF
Newgen 2022-Forrester Newgen TEI_13 05 2022-The-Total-Economic-Impact-Newgen-...
darshakparmar
 
PPTX
Agentforce World Tour Toronto '25 - MCP with MuleSoft
Alexandra N. Martinez
 
PPTX
AI Penetration Testing Essentials: A Cybersecurity Guide for 2025
defencerabbit Team
 
PDF
The 2025 InfraRed Report - Redpoint Ventures
Razin Mustafiz
 
PPTX
Seamless Tech Experiences Showcasing Cross-Platform App Design.pptx
presentifyai
 
PPTX
New ThousandEyes Product Innovations: Cisco Live June 2025
ThousandEyes
 
PDF
“Computer Vision at Sea: Automated Fish Tracking for Sustainable Fishing,” a ...
Edge AI and Vision Alliance
 
PDF
NLJUG Speaker academy 2025 - first session
Bert Jan Schrijver
 
PDF
Kit-Works Team Study_20250627_한달만에만든사내서비스키링(양다윗).pdf
Wonjun Hwang
 
PDF
“Voice Interfaces on a Budget: Building Real-time Speech Recognition on Low-c...
Edge AI and Vision Alliance
 
PDF
AI Agents in the Cloud: The Rise of Agentic Cloud Architecture
Lilly Gracia
 
PDF
NASA A Researcher’s Guide to International Space Station : Physical Sciences ...
Dr. PANKAJ DHUSSA
 
PDF
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
PDF
Future-Proof or Fall Behind? 10 Tech Trends You Can’t Afford to Ignore in 2025
DIGITALCONFEX
 
PDF
POV_ Why Enterprises Need to Find Value in ZERO.pdf
darshakparmar
 
PPTX
Mastering ODC + Okta Configuration - Chennai OSUG
HathiMaryA
 
PDF
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
PDF
Transcript: Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 
Digital Circuits, important subject in CS
contactparinay1
 
Transforming Utility Networks: Large-scale Data Migrations with FME
Safe Software
 
Newgen 2022-Forrester Newgen TEI_13 05 2022-The-Total-Economic-Impact-Newgen-...
darshakparmar
 
Agentforce World Tour Toronto '25 - MCP with MuleSoft
Alexandra N. Martinez
 
AI Penetration Testing Essentials: A Cybersecurity Guide for 2025
defencerabbit Team
 
The 2025 InfraRed Report - Redpoint Ventures
Razin Mustafiz
 
Seamless Tech Experiences Showcasing Cross-Platform App Design.pptx
presentifyai
 
New ThousandEyes Product Innovations: Cisco Live June 2025
ThousandEyes
 
“Computer Vision at Sea: Automated Fish Tracking for Sustainable Fishing,” a ...
Edge AI and Vision Alliance
 
NLJUG Speaker academy 2025 - first session
Bert Jan Schrijver
 
Kit-Works Team Study_20250627_한달만에만든사내서비스키링(양다윗).pdf
Wonjun Hwang
 
“Voice Interfaces on a Budget: Building Real-time Speech Recognition on Low-c...
Edge AI and Vision Alliance
 
AI Agents in the Cloud: The Rise of Agentic Cloud Architecture
Lilly Gracia
 
NASA A Researcher’s Guide to International Space Station : Physical Sciences ...
Dr. PANKAJ DHUSSA
 
Bitcoin for Millennials podcast with Bram, Power Laws of Bitcoin
Stephen Perrenod
 
Future-Proof or Fall Behind? 10 Tech Trends You Can’t Afford to Ignore in 2025
DIGITALCONFEX
 
POV_ Why Enterprises Need to Find Value in ZERO.pdf
darshakparmar
 
Mastering ODC + Okta Configuration - Chennai OSUG
HathiMaryA
 
[Newgen] NewgenONE Marvin Brochure 1.pdf
darshakparmar
 
Transcript: Book industry state of the nation 2025 - Tech Forum 2025
BookNet Canada
 

Introduction to GPUs for Machine Learning