SlideShare a Scribd company logo
Machine Learning
CS5122 DESCRIPTIVE & PREDICTIVE ANALYTICS
DILUM BANDARA
Dilum.Bandara@uom.lk
Some slides extracted from CSE 446 Machine Learning by Pedro
Domingos
2
Traditional Programming
Machine Learning
Computer
Data
Program
Output
Computer
Data
Output
Program
Getting computers to program themselves based on data
ML in a Nutshell
• 10s of 1000s of machine learning algorithms
• 100s new every year
• Every machine learning algorithm has 3
components:
◦ Representation
◦ Evaluation
◦ Optimization
3
Representation
• Sets of rules / Logic programs
• Decision trees
• Instances
• Graphical models (Bayes/Markov nets)
• Neural networks
• Support Vector Machines (SVM)
• Model ensembles
4
Evaluation
• Accuracy
• Precision & recall
• Squared error
• Likelihood
• Posterior probability
• Cost / Utility
• Margin
• Entropy
• K-L divergence
5
Optimization
• E.g., Greedy search
Combinatorial
optimization
• E.g., Gradient descent
Convex
optimization
• E.g., Linear programming
Constrained
optimization
6
Types of Learning
• Association Analysis
• Supervised (inductive) learning
• Training data includes desired outputs
• Classification
• Regression/Prediction
• Unsupervised learning
• Training data does not include desired outputs
• Semi-supervised learning
• Training data includes a few desired outputs
• Reinforcement learning
• Rewards from sequence of actions
7
Learning Associations
Basket analysis:
P (Y | X ) probability that somebody who buys X also buys Y
where X and Y are products/services.
Example: P ( milk | beer ) = 0.66
8
Market-Basket transactions
TID Items
1 Bread, Milk
2 Bread, Diaper, Beer, Eggs
3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer
5 Bread, Milk, Diaper, Coke
Inductive Learning
Given examples of a function (X, F(X))
Predict function F(X) for new examples X
◦ Discrete F(X): Classification
◦ Continuous F(X): Regression
◦ F(X) = Probability(X): Probability estimation
9
Classification
10
 Example: Credit
scoring
 Differentiating
between low-risk and
high-risk customers
from their income and
savings
Discriminant: IF income > θ1 AND savings > θ2
THEN low-risk ELSE high-risk
Model
Prediction: Regression
11
 Example: Price of a used car
 x : car attributes
y : price
y = g (x | θ )
g ( ) model,
θ parameters
y = wx+w0
Supervised Learning
• Decision tree induction
• Rule induction
• Instance-based learning
• Bayesian learning
• Neural networks
• Support Vector Machines
• Model ensembles
• Learning theory
12
Unsupervised Learning
• Clustering
• Dimensionality reduction
13
R Examples
• Support Vector Machines
◦ Supervised learning methods
◦ Used for classification & regression tasks
◦ Generates non-overlapping partitions & usually employs
all attributes
• Decision tree
◦ Random forest
14
Ad

More Related Content

Similar to Introduction to Machine Learning (20)

DataMining dgfg dfg fg dsfg dfg- Copy.ppt
DataMining dgfg dfg fg  dsfg  dfg- Copy.pptDataMining dgfg dfg fg  dsfg  dfg- Copy.ppt
DataMining dgfg dfg fg dsfg dfg- Copy.ppt
JITENDER773791
 
Database fundamentals and concepts and theory
Database fundamentals and concepts and theoryDatabase fundamentals and concepts and theory
Database fundamentals and concepts and theory
Mozamel Jawad
 
Chapter 4 Classification in data sience .pdf
Chapter 4 Classification in data sience .pdfChapter 4 Classification in data sience .pdf
Chapter 4 Classification in data sience .pdf
AschalewAyele2
 
ML Basics
ML BasicsML Basics
ML Basics
SrujanaMerugu1
 
230208 MLOps Getting from Good to Great.pptx
230208 MLOps Getting from Good to Great.pptx230208 MLOps Getting from Good to Great.pptx
230208 MLOps Getting from Good to Great.pptx
Arthur240715
 
The Power of Auto ML and How Does it Work
The Power of Auto ML and How Does it WorkThe Power of Auto ML and How Does it Work
The Power of Auto ML and How Does it Work
Ivo Andreev
 
Ml topic1 a
Ml topic1 aMl topic1 a
Ml topic1 a
bosycs1
 
Data science: DATA MINING AND DATA WHEREHOUSE.ppt
Data science: DATA MINING AND DATA WHEREHOUSE.pptData science: DATA MINING AND DATA WHEREHOUSE.ppt
Data science: DATA MINING AND DATA WHEREHOUSE.ppt
shubhanshussm10
 
Machine Learning in Production
Machine Learning in ProductionMachine Learning in Production
Machine Learning in Production
Ben Freundorfer
 
machine learning
machine learningmachine learning
machine learning
soundaryasarya
 
Spark MLlib - Training Material
Spark MLlib - Training Material Spark MLlib - Training Material
Spark MLlib - Training Material
Bryan Yang
 
Predicting user demographics in social networks - Invited Talk at University ...
Predicting user demographics in social networks - Invited Talk at University ...Predicting user demographics in social networks - Invited Talk at University ...
Predicting user demographics in social networks - Invited Talk at University ...
Nikolaos Aletras
 
ML-Topic1A.ppteeweqeqeqeqeqeqwewqqwwqeeqeqw
ML-Topic1A.ppteeweqeqeqeqeqeqwewqqwwqeeqeqwML-Topic1A.ppteeweqeqeqeqeqeqwewqqwwqeeqeqw
ML-Topic1A.ppteeweqeqeqeqeqeqwewqqwwqeeqeqw
YumnaShahzaad
 
intro to ML by the way m toh phasee movie Punjabi
intro to ML by the way m toh phasee movie Punjabiintro to ML by the way m toh phasee movie Punjabi
intro to ML by the way m toh phasee movie Punjabi
botvillain45
 
Traditional Machine Learning and Deep Learning on OpenPOWER/POWER systems
Traditional Machine Learning and Deep Learning on OpenPOWER/POWER systemsTraditional Machine Learning and Deep Learning on OpenPOWER/POWER systems
Traditional Machine Learning and Deep Learning on OpenPOWER/POWER systems
Ganesan Narayanasamy
 
Machine learning
Machine learning Machine learning
Machine learning
Aarthi Srinivasan
 
Introduction to machine learning and model building using linear regression
Introduction to machine learning and model building using linear regressionIntroduction to machine learning and model building using linear regression
Introduction to machine learning and model building using linear regression
Girish Gore
 
Introduction overviewmachinelearning sig Door Lucas Jellema
Introduction overviewmachinelearning sig Door Lucas JellemaIntroduction overviewmachinelearning sig Door Lucas Jellema
Introduction overviewmachinelearning sig Door Lucas Jellema
Getting value from IoT, Integration and Data Analytics
 
Surface features with nonparametric machine learning
Surface features with nonparametric machine learningSurface features with nonparametric machine learning
Surface features with nonparametric machine learning
Sylvain Ferrandiz
 
1 - Introduction to Machine Learning.pdf
1 - Introduction to Machine Learning.pdf1 - Introduction to Machine Learning.pdf
1 - Introduction to Machine Learning.pdf
khaiziliyahkhalid
 
DataMining dgfg dfg fg dsfg dfg- Copy.ppt
DataMining dgfg dfg fg  dsfg  dfg- Copy.pptDataMining dgfg dfg fg  dsfg  dfg- Copy.ppt
DataMining dgfg dfg fg dsfg dfg- Copy.ppt
JITENDER773791
 
Database fundamentals and concepts and theory
Database fundamentals and concepts and theoryDatabase fundamentals and concepts and theory
Database fundamentals and concepts and theory
Mozamel Jawad
 
Chapter 4 Classification in data sience .pdf
Chapter 4 Classification in data sience .pdfChapter 4 Classification in data sience .pdf
Chapter 4 Classification in data sience .pdf
AschalewAyele2
 
230208 MLOps Getting from Good to Great.pptx
230208 MLOps Getting from Good to Great.pptx230208 MLOps Getting from Good to Great.pptx
230208 MLOps Getting from Good to Great.pptx
Arthur240715
 
The Power of Auto ML and How Does it Work
The Power of Auto ML and How Does it WorkThe Power of Auto ML and How Does it Work
The Power of Auto ML and How Does it Work
Ivo Andreev
 
Ml topic1 a
Ml topic1 aMl topic1 a
Ml topic1 a
bosycs1
 
Data science: DATA MINING AND DATA WHEREHOUSE.ppt
Data science: DATA MINING AND DATA WHEREHOUSE.pptData science: DATA MINING AND DATA WHEREHOUSE.ppt
Data science: DATA MINING AND DATA WHEREHOUSE.ppt
shubhanshussm10
 
Machine Learning in Production
Machine Learning in ProductionMachine Learning in Production
Machine Learning in Production
Ben Freundorfer
 
Spark MLlib - Training Material
Spark MLlib - Training Material Spark MLlib - Training Material
Spark MLlib - Training Material
Bryan Yang
 
Predicting user demographics in social networks - Invited Talk at University ...
Predicting user demographics in social networks - Invited Talk at University ...Predicting user demographics in social networks - Invited Talk at University ...
Predicting user demographics in social networks - Invited Talk at University ...
Nikolaos Aletras
 
ML-Topic1A.ppteeweqeqeqeqeqeqwewqqwwqeeqeqw
ML-Topic1A.ppteeweqeqeqeqeqeqwewqqwwqeeqeqwML-Topic1A.ppteeweqeqeqeqeqeqwewqqwwqeeqeqw
ML-Topic1A.ppteeweqeqeqeqeqeqwewqqwwqeeqeqw
YumnaShahzaad
 
intro to ML by the way m toh phasee movie Punjabi
intro to ML by the way m toh phasee movie Punjabiintro to ML by the way m toh phasee movie Punjabi
intro to ML by the way m toh phasee movie Punjabi
botvillain45
 
Traditional Machine Learning and Deep Learning on OpenPOWER/POWER systems
Traditional Machine Learning and Deep Learning on OpenPOWER/POWER systemsTraditional Machine Learning and Deep Learning on OpenPOWER/POWER systems
Traditional Machine Learning and Deep Learning on OpenPOWER/POWER systems
Ganesan Narayanasamy
 
Introduction to machine learning and model building using linear regression
Introduction to machine learning and model building using linear regressionIntroduction to machine learning and model building using linear regression
Introduction to machine learning and model building using linear regression
Girish Gore
 
Surface features with nonparametric machine learning
Surface features with nonparametric machine learningSurface features with nonparametric machine learning
Surface features with nonparametric machine learning
Sylvain Ferrandiz
 
1 - Introduction to Machine Learning.pdf
1 - Introduction to Machine Learning.pdf1 - Introduction to Machine Learning.pdf
1 - Introduction to Machine Learning.pdf
khaiziliyahkhalid
 

More from Dilum Bandara (20)

Designing for Multiple Blockchains in Industry Ecosystems
Designing for Multiple Blockchains in Industry EcosystemsDesigning for Multiple Blockchains in Industry Ecosystems
Designing for Multiple Blockchains in Industry Ecosystems
Dilum Bandara
 
Time Series Analysis and Forecasting in Practice
Time Series Analysis and Forecasting in PracticeTime Series Analysis and Forecasting in Practice
Time Series Analysis and Forecasting in Practice
Dilum Bandara
 
Introduction to Dimension Reduction with PCA
Introduction to Dimension Reduction with PCAIntroduction to Dimension Reduction with PCA
Introduction to Dimension Reduction with PCA
Dilum Bandara
 
Introduction to Descriptive & Predictive Analytics
Introduction to Descriptive & Predictive AnalyticsIntroduction to Descriptive & Predictive Analytics
Introduction to Descriptive & Predictive Analytics
Dilum Bandara
 
Introduction to Concurrent Data Structures
Introduction to Concurrent Data StructuresIntroduction to Concurrent Data Structures
Introduction to Concurrent Data Structures
Dilum Bandara
 
Hard to Paralelize Problems: Matrix-Vector and Matrix-Matrix
Hard to Paralelize Problems: Matrix-Vector and Matrix-MatrixHard to Paralelize Problems: Matrix-Vector and Matrix-Matrix
Hard to Paralelize Problems: Matrix-Vector and Matrix-Matrix
Dilum Bandara
 
Introduction to Map-Reduce Programming with Hadoop
Introduction to Map-Reduce Programming with HadoopIntroduction to Map-Reduce Programming with Hadoop
Introduction to Map-Reduce Programming with Hadoop
Dilum Bandara
 
Embarrassingly/Delightfully Parallel Problems
Embarrassingly/Delightfully Parallel ProblemsEmbarrassingly/Delightfully Parallel Problems
Embarrassingly/Delightfully Parallel Problems
Dilum Bandara
 
Introduction to Warehouse-Scale Computers
Introduction to Warehouse-Scale ComputersIntroduction to Warehouse-Scale Computers
Introduction to Warehouse-Scale Computers
Dilum Bandara
 
Introduction to Thread Level Parallelism
Introduction to Thread Level ParallelismIntroduction to Thread Level Parallelism
Introduction to Thread Level Parallelism
Dilum Bandara
 
CPU Memory Hierarchy and Caching Techniques
CPU Memory Hierarchy and Caching TechniquesCPU Memory Hierarchy and Caching Techniques
CPU Memory Hierarchy and Caching Techniques
Dilum Bandara
 
Data-Level Parallelism in Microprocessors
Data-Level Parallelism in MicroprocessorsData-Level Parallelism in Microprocessors
Data-Level Parallelism in Microprocessors
Dilum Bandara
 
Instruction Level Parallelism – Hardware Techniques
Instruction Level Parallelism – Hardware TechniquesInstruction Level Parallelism – Hardware Techniques
Instruction Level Parallelism – Hardware Techniques
Dilum Bandara
 
Instruction Level Parallelism – Compiler Techniques
Instruction Level Parallelism – Compiler TechniquesInstruction Level Parallelism – Compiler Techniques
Instruction Level Parallelism – Compiler Techniques
Dilum Bandara
 
CPU Pipelining and Hazards - An Introduction
CPU Pipelining and Hazards - An IntroductionCPU Pipelining and Hazards - An Introduction
CPU Pipelining and Hazards - An Introduction
Dilum Bandara
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
Dilum Bandara
 
High Performance Networking with Advanced TCP
High Performance Networking with Advanced TCPHigh Performance Networking with Advanced TCP
High Performance Networking with Advanced TCP
Dilum Bandara
 
Introduction to Content Delivery Networks
Introduction to Content Delivery NetworksIntroduction to Content Delivery Networks
Introduction to Content Delivery Networks
Dilum Bandara
 
Peer-to-Peer Networking Systems and Streaming
Peer-to-Peer Networking Systems and StreamingPeer-to-Peer Networking Systems and Streaming
Peer-to-Peer Networking Systems and Streaming
Dilum Bandara
 
Mobile Services
Mobile ServicesMobile Services
Mobile Services
Dilum Bandara
 
Designing for Multiple Blockchains in Industry Ecosystems
Designing for Multiple Blockchains in Industry EcosystemsDesigning for Multiple Blockchains in Industry Ecosystems
Designing for Multiple Blockchains in Industry Ecosystems
Dilum Bandara
 
Time Series Analysis and Forecasting in Practice
Time Series Analysis and Forecasting in PracticeTime Series Analysis and Forecasting in Practice
Time Series Analysis and Forecasting in Practice
Dilum Bandara
 
Introduction to Dimension Reduction with PCA
Introduction to Dimension Reduction with PCAIntroduction to Dimension Reduction with PCA
Introduction to Dimension Reduction with PCA
Dilum Bandara
 
Introduction to Descriptive & Predictive Analytics
Introduction to Descriptive & Predictive AnalyticsIntroduction to Descriptive & Predictive Analytics
Introduction to Descriptive & Predictive Analytics
Dilum Bandara
 
Introduction to Concurrent Data Structures
Introduction to Concurrent Data StructuresIntroduction to Concurrent Data Structures
Introduction to Concurrent Data Structures
Dilum Bandara
 
Hard to Paralelize Problems: Matrix-Vector and Matrix-Matrix
Hard to Paralelize Problems: Matrix-Vector and Matrix-MatrixHard to Paralelize Problems: Matrix-Vector and Matrix-Matrix
Hard to Paralelize Problems: Matrix-Vector and Matrix-Matrix
Dilum Bandara
 
Introduction to Map-Reduce Programming with Hadoop
Introduction to Map-Reduce Programming with HadoopIntroduction to Map-Reduce Programming with Hadoop
Introduction to Map-Reduce Programming with Hadoop
Dilum Bandara
 
Embarrassingly/Delightfully Parallel Problems
Embarrassingly/Delightfully Parallel ProblemsEmbarrassingly/Delightfully Parallel Problems
Embarrassingly/Delightfully Parallel Problems
Dilum Bandara
 
Introduction to Warehouse-Scale Computers
Introduction to Warehouse-Scale ComputersIntroduction to Warehouse-Scale Computers
Introduction to Warehouse-Scale Computers
Dilum Bandara
 
Introduction to Thread Level Parallelism
Introduction to Thread Level ParallelismIntroduction to Thread Level Parallelism
Introduction to Thread Level Parallelism
Dilum Bandara
 
CPU Memory Hierarchy and Caching Techniques
CPU Memory Hierarchy and Caching TechniquesCPU Memory Hierarchy and Caching Techniques
CPU Memory Hierarchy and Caching Techniques
Dilum Bandara
 
Data-Level Parallelism in Microprocessors
Data-Level Parallelism in MicroprocessorsData-Level Parallelism in Microprocessors
Data-Level Parallelism in Microprocessors
Dilum Bandara
 
Instruction Level Parallelism – Hardware Techniques
Instruction Level Parallelism – Hardware TechniquesInstruction Level Parallelism – Hardware Techniques
Instruction Level Parallelism – Hardware Techniques
Dilum Bandara
 
Instruction Level Parallelism – Compiler Techniques
Instruction Level Parallelism – Compiler TechniquesInstruction Level Parallelism – Compiler Techniques
Instruction Level Parallelism – Compiler Techniques
Dilum Bandara
 
CPU Pipelining and Hazards - An Introduction
CPU Pipelining and Hazards - An IntroductionCPU Pipelining and Hazards - An Introduction
CPU Pipelining and Hazards - An Introduction
Dilum Bandara
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
Dilum Bandara
 
High Performance Networking with Advanced TCP
High Performance Networking with Advanced TCPHigh Performance Networking with Advanced TCP
High Performance Networking with Advanced TCP
Dilum Bandara
 
Introduction to Content Delivery Networks
Introduction to Content Delivery NetworksIntroduction to Content Delivery Networks
Introduction to Content Delivery Networks
Dilum Bandara
 
Peer-to-Peer Networking Systems and Streaming
Peer-to-Peer Networking Systems and StreamingPeer-to-Peer Networking Systems and Streaming
Peer-to-Peer Networking Systems and Streaming
Dilum Bandara
 
Ad

Recently uploaded (20)

What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Ad

Introduction to Machine Learning

  • 1. Machine Learning CS5122 DESCRIPTIVE & PREDICTIVE ANALYTICS DILUM BANDARA [email protected] Some slides extracted from CSE 446 Machine Learning by Pedro Domingos
  • 3. ML in a Nutshell • 10s of 1000s of machine learning algorithms • 100s new every year • Every machine learning algorithm has 3 components: ◦ Representation ◦ Evaluation ◦ Optimization 3
  • 4. Representation • Sets of rules / Logic programs • Decision trees • Instances • Graphical models (Bayes/Markov nets) • Neural networks • Support Vector Machines (SVM) • Model ensembles 4
  • 5. Evaluation • Accuracy • Precision & recall • Squared error • Likelihood • Posterior probability • Cost / Utility • Margin • Entropy • K-L divergence 5
  • 6. Optimization • E.g., Greedy search Combinatorial optimization • E.g., Gradient descent Convex optimization • E.g., Linear programming Constrained optimization 6
  • 7. Types of Learning • Association Analysis • Supervised (inductive) learning • Training data includes desired outputs • Classification • Regression/Prediction • Unsupervised learning • Training data does not include desired outputs • Semi-supervised learning • Training data includes a few desired outputs • Reinforcement learning • Rewards from sequence of actions 7
  • 8. Learning Associations Basket analysis: P (Y | X ) probability that somebody who buys X also buys Y where X and Y are products/services. Example: P ( milk | beer ) = 0.66 8 Market-Basket transactions TID Items 1 Bread, Milk 2 Bread, Diaper, Beer, Eggs 3 Milk, Diaper, Beer, Coke 4 Bread, Milk, Diaper, Beer 5 Bread, Milk, Diaper, Coke
  • 9. Inductive Learning Given examples of a function (X, F(X)) Predict function F(X) for new examples X ◦ Discrete F(X): Classification ◦ Continuous F(X): Regression ◦ F(X) = Probability(X): Probability estimation 9
  • 10. Classification 10  Example: Credit scoring  Differentiating between low-risk and high-risk customers from their income and savings Discriminant: IF income > θ1 AND savings > θ2 THEN low-risk ELSE high-risk Model
  • 11. Prediction: Regression 11  Example: Price of a used car  x : car attributes y : price y = g (x | θ ) g ( ) model, θ parameters y = wx+w0
  • 12. Supervised Learning • Decision tree induction • Rule induction • Instance-based learning • Bayesian learning • Neural networks • Support Vector Machines • Model ensembles • Learning theory 12
  • 13. Unsupervised Learning • Clustering • Dimensionality reduction 13
  • 14. R Examples • Support Vector Machines ◦ Supervised learning methods ◦ Used for classification & regression tasks ◦ Generates non-overlapping partitions & usually employs all attributes • Decision tree ◦ Random forest 14