Introduction to MongoDB
MongoDB Database
Document Model
BSON
Data Model
CRUD operations
High Availability and Scalability
Replication
Sharding
Hands-On MongoDB
MongoDB Aggregations Indexing and ProfilingManish Kapoor
This deck consists of following operations in MongoDB: aggregation through aggregation pipeline, map reduce, operations, indexes and profiling of slow queries.
Engineers often ask "how do I know if I should build my application on MongoDB?" IT executives ask a similar question, "which applications in my application portfolio should I migrate to MongoDB?" This presentation will present a framework for answering these questions.
We will cover two sets of criteria: (1) how to determine when to migrate a legacy application to MongoDB and (2) when should MongoDB be used for new applications? The presentation will also include a brief introduction to MongoDB to provide enough MongoDB technical background for analyzing when to use MongoDB?
Learning Objectives:
The basics of MongoDB document model, query capabilities, and architecture required for analyzing when to use MongoDB?
Criteria for determining when to use MongoDB to re-platform legacy applications
Criteria for determining when to use MongoDB for new applications
MongoDB is an open source document database, and the leading NoSQL database. MongoDB is a document oriented database that provides high performance, high availability, and easy scalability. It is Maintained and supported by 10gen.
This document provides an overview of querying and aggregation on MongoDB. It discusses querying concepts like find(), indexes, and $where queries. It also covers aggregation methods like count, sum, distinct, and group to perform more complex aggregation by grouping documents. Examples are given for common queries and aggregations including counting documents, finding population sums by state, and finding largest/smallest cities by state.
- MongoDB is a document-oriented, non-relational database that scales horizontally and uses JSON-like documents with dynamic schemas.
- It offers features like embedded documents, indexing, replication, and sharding.
- Documents are stored and queried using simple statements in a JavaScript-like syntax interface.
The document discusses MongoDB's Aggregation Framework, which allows users to perform ad-hoc queries and reshape data in MongoDB. It describes the key components of the aggregation pipeline including $match, $project, $group, $sort operators. It provides examples of how to filter, reshape, and summarize document data using the aggregation framework. The document also covers usage and limitations of aggregation as well as how it can be used to enable more flexible data analysis and reporting compared to MapReduce.
Webinar: Back to Basics: Thinking in DocumentsMongoDB
New applications, users and inputs demand new types of data, like unstructured, semi-structured and polymorphic data. Adopting MongoDB means adopting to a new, document-based data model.
While most developers have internalized the rules of thumb for designing schemas for relational databases, these rules don't apply to MongoDB. Documents can represent rich data structures, providing lots of viable alternatives to the standard, normalized, relational model. In addition, MongoDB has several unique features, such as atomic updates and indexed array keys, that greatly influence the kinds of schemas that make sense.
In this session, Buzz Moschetti explores how you can take advantage of MongoDB's document model to build modern applications.
This document summarizes a presentation on best practices for extracting, transforming, and loading (ETL) large amounts of data from relational databases into MongoDB documents. The presentation discusses common mistakes made in ETL processes, including making nested database queries, building documents within the database, and loading all data into memory at once. It then analyzes a case study involving importing order, item, and tracking data from relational tables into normalized MongoDB documents.
This document introduces MongoDB, a non-relational database that uses flexible, JSON-like documents with dynamic queries and indexing. MongoDB is horizontally scalable, supports replication and auto-sharding. It is suitable for caching, the web, and high-volume applications, but less suitable for highly transactional or offline business intelligence workloads. The document provides examples of basic CRUD operations and queries in MongoDB.
This document provides an overview of MongoDB administration commands and CRUD operations. It discusses how to select databases, show collections, import/export data, and perform basic CRUD operations like insert, find, update, and remove in MongoDB. It also covers additional find methods like logical operators, array operations, and accessing embedded documents. Methods for updating include $set, $inc, $unset, and multi updates.
MongoDB offers two native data processing tools: MapReduce and the Aggregation Framework. MongoDB’s built-in aggregation framework is a powerful tool for performing analytics and statistical analysis in real-time and generating pre-aggregated reports for dashboarding. In this session, we will demonstrate how to use the aggregation framework for different types of data processing including ad-hoc queries, pre-aggregated reports, and more. At the end of this talk, you should walk aways with a greater understanding of the built-in data processing options in MongoDB and how to use the aggregation framework in your next project.
MongoDB Europe 2016 - Advanced MongoDB Aggregation PipelinesMongoDB
We will do a deep dive into the powerful query capabilities of MongoDB's Aggregation Framework, and show you how you can use MongoDB's built-in features to inspect the execution and tune the performance of your queries. And, last but not least, we will also give you a brief outlook into MongoDB 3.4's awesome new Aggregation Framework additions.
This document provides an overview of MongoDB, a document-oriented NoSQL database. It discusses how MongoDB can efficiently store and process large amounts of data from companies like Walmart, Facebook, and Twitter. It also describes some of the problems with relational databases and how MongoDB addresses them through its flexible document model and scalable architecture. Key features of MongoDB discussed include storing data as JSON-like documents, dynamic schemas, load balancing across multiple servers, and its CRUD operations for creating, reading, updating, and deleting documents.
Development time is wasted as the bulk of the work shifts from adding business features to struggling with the RDBMS. MongoDB, the leading NoSQL database, offers a flexible and scalable solution.
MongoDB is a document-oriented database that bridges the gap between key-value stores and traditional relational databases. It uses collections of BSON documents (similar to JSON objects) rather than tables. Queries in MongoDB use JSON-like documents rather than SQL. MongoDB also supports features like embedded documents, dynamic schemas, rich queries and indexing to improve performance.
MongoDB Java Development - MongoBoston 2010Eliot Horowitz
This document summarizes Java development options for MongoDB, including simple Java usage, the Morphia ORM, concurrency patterns, write concerns, data types, custom encoding/decoding, GridFS for file storage, and running MapReduce jobs on MongoDB data using Hadoop. Code examples are provided for common operations like inserting documents, querying with Morphia, and running a word count MapReduce job.
Webinar: Exploring the Aggregation FrameworkMongoDB
Developers love MongoDB because its flexible document model enhances their productivity. But did you know that MongoDB supports rich queries and lets you accomplish some of the same things you currently do with SQL statements? And that MongoDB's powerful aggregation framework makes it possible to perform real-time analytics for dashboards and reports?
Watch this webinar for an introduction to the MongoDB aggregation framework and a walk through of what you can do with it. We'll also demo an analysis of U.S. census data.
Developers love MongoDB because its flexible document model enhances their productivity. But did you know that MongoDB supports rich queries and lets you accomplish some of the same things you currently do with SQL statements? And that MongoDB's powerful aggregation framework makes it possible to perform real-time analytics for dashboards and reports?
Attend this webinar for an introduction to the MongoDB aggregation framework and a walk through of what you can do with it. We'll also demo using it to analyze U.S. census data.
The document discusses different approaches for efficiently migrating large amounts of data into MongoDB. It begins by covering MongoDB's document model and some schema design principles. It then outlines three common approaches to migrating data: 1) nested queries, 2) building documents in the database, and 3) loading all data into memory first before insertion. The document provides examples and compares the performance of each approach.
Speaker: Asya Kamsky
MongoDB Aggregation Language has been getting more powerful and expressive with every release. In this talk we'll review how to create powerful aggregation pipelines and how to leverage aggregation expressions in your queries.
This document discusses MongoDB, a document-oriented NoSQL database. It begins with an introduction to NoSQL databases and their advantages over relational databases. MongoDB is then described in more detail, including its features like storing dynamic JSON documents, indexing, replication, querying and MapReduce capabilities. Examples of CRUD operations on MongoDB documents are provided. The document concludes by discussing when MongoDB may be applicable and who uses it, as well as comparing MongoDB to SQL databases.
How can you use PosgreSQL as a schemaless (NoSQL) database? Here we cover our use case and highlight upcoming features in postgres 9.4 and its integration with Django 1.7
Working with JSON Data in PostgreSQL vs. MongoDBScaleGrid.io
In this post, we are going to show you tips and techniques on how to effectively store and index JSON data in PostgreSQL vs. MongoDB. Learn more in the blog post: https://scalegrid.io/blog/using-jsonb-in-postgresql-how-to-effectively-store-index-json-data-in-postgresql
Getting Started with Geospatial Data in MongoDBMongoDB
MongoDB supports geospatial data and specialized indexes that make building location-aware applications easy and scalable.
In this session, you will learn the fundamentals of working with geospatial data in MongoDB. We will explore how to store and index geospatial data and best practices for using geospatial query operators and methods. By the end of this session, you should be able to implement basic geolocation functionality in an application.
In this webinar, you will learn:
- Getting geospatial data into MongoDB and how to build geospatial indexes.
- The fundamentals of MongoDB's geospatial query operators and how to design queries that meet the needs of your application.
- Advanced geospatial capabilities with Java geospatial libraries and MongoDB.
A presentation by Aicha Khabil (Responsable IT à l'université Alger 3) done during the 11th edition of Algiers Tech Meetup on October 8th 2016, at Djezzy Training Center (Algiers)
Recent releases of the .NET driver have added lots of cool new features. In this webinar we will highlight some of the most important ones. We will begin by discussing serialization. We will describe how serialization is normally handled, and how you can customize the process when you need to, including some tips on migration strategies when your class definitions change. We will continue with a discussion of the new Query builder, which now includes support for typed queries. A major new feature of recent releases is support for LINQ queries. We will show you how the .NET driver supports LINQ and discuss what kinds of LINQ queries are supported. Finally, we will discuss what you need to do differently in your application when authentication is enabled at the server.
Redis Memory Optimization
Store More Data in Less Memory
The document discusses 25 techniques for optimizing Redis memory usage:
1) Normalize data to avoid duplication and store related data together
2) Use more efficient serializers like MsgPack or ProtoBuf instead of JSON
3) Compress data using algorithms like Snappy or Brotli to reduce memory usage
4) Combine small objects into hashes to improve memory efficiency
Some specific techniques include using integer IDs instead of strings, sharding large hashes, enabling compression on lists, upgrading to Redis 3.2 for its more efficient list encoding, and using bitfields to pack integer and fixed-width data. The document also provides tips on configuration options and using specialized data
Building web applications with mongo db presentationMurat Çakal
The document introduces building web applications using MongoDB, a document-oriented database. It discusses MongoDB's data modeling and querying capabilities, including examples of modeling user and location data for a check-in application. The document also covers indexing, insertion, updating, and analytics queries for the sample location and user data models.
Webinar: Back to Basics: Thinking in DocumentsMongoDB
New applications, users and inputs demand new types of data, like unstructured, semi-structured and polymorphic data. Adopting MongoDB means adopting to a new, document-based data model.
While most developers have internalized the rules of thumb for designing schemas for relational databases, these rules don't apply to MongoDB. Documents can represent rich data structures, providing lots of viable alternatives to the standard, normalized, relational model. In addition, MongoDB has several unique features, such as atomic updates and indexed array keys, that greatly influence the kinds of schemas that make sense.
In this session, Buzz Moschetti explores how you can take advantage of MongoDB's document model to build modern applications.
This document summarizes a presentation on best practices for extracting, transforming, and loading (ETL) large amounts of data from relational databases into MongoDB documents. The presentation discusses common mistakes made in ETL processes, including making nested database queries, building documents within the database, and loading all data into memory at once. It then analyzes a case study involving importing order, item, and tracking data from relational tables into normalized MongoDB documents.
This document introduces MongoDB, a non-relational database that uses flexible, JSON-like documents with dynamic queries and indexing. MongoDB is horizontally scalable, supports replication and auto-sharding. It is suitable for caching, the web, and high-volume applications, but less suitable for highly transactional or offline business intelligence workloads. The document provides examples of basic CRUD operations and queries in MongoDB.
This document provides an overview of MongoDB administration commands and CRUD operations. It discusses how to select databases, show collections, import/export data, and perform basic CRUD operations like insert, find, update, and remove in MongoDB. It also covers additional find methods like logical operators, array operations, and accessing embedded documents. Methods for updating include $set, $inc, $unset, and multi updates.
MongoDB offers two native data processing tools: MapReduce and the Aggregation Framework. MongoDB’s built-in aggregation framework is a powerful tool for performing analytics and statistical analysis in real-time and generating pre-aggregated reports for dashboarding. In this session, we will demonstrate how to use the aggregation framework for different types of data processing including ad-hoc queries, pre-aggregated reports, and more. At the end of this talk, you should walk aways with a greater understanding of the built-in data processing options in MongoDB and how to use the aggregation framework in your next project.
MongoDB Europe 2016 - Advanced MongoDB Aggregation PipelinesMongoDB
We will do a deep dive into the powerful query capabilities of MongoDB's Aggregation Framework, and show you how you can use MongoDB's built-in features to inspect the execution and tune the performance of your queries. And, last but not least, we will also give you a brief outlook into MongoDB 3.4's awesome new Aggregation Framework additions.
This document provides an overview of MongoDB, a document-oriented NoSQL database. It discusses how MongoDB can efficiently store and process large amounts of data from companies like Walmart, Facebook, and Twitter. It also describes some of the problems with relational databases and how MongoDB addresses them through its flexible document model and scalable architecture. Key features of MongoDB discussed include storing data as JSON-like documents, dynamic schemas, load balancing across multiple servers, and its CRUD operations for creating, reading, updating, and deleting documents.
Development time is wasted as the bulk of the work shifts from adding business features to struggling with the RDBMS. MongoDB, the leading NoSQL database, offers a flexible and scalable solution.
MongoDB is a document-oriented database that bridges the gap between key-value stores and traditional relational databases. It uses collections of BSON documents (similar to JSON objects) rather than tables. Queries in MongoDB use JSON-like documents rather than SQL. MongoDB also supports features like embedded documents, dynamic schemas, rich queries and indexing to improve performance.
MongoDB Java Development - MongoBoston 2010Eliot Horowitz
This document summarizes Java development options for MongoDB, including simple Java usage, the Morphia ORM, concurrency patterns, write concerns, data types, custom encoding/decoding, GridFS for file storage, and running MapReduce jobs on MongoDB data using Hadoop. Code examples are provided for common operations like inserting documents, querying with Morphia, and running a word count MapReduce job.
Webinar: Exploring the Aggregation FrameworkMongoDB
Developers love MongoDB because its flexible document model enhances their productivity. But did you know that MongoDB supports rich queries and lets you accomplish some of the same things you currently do with SQL statements? And that MongoDB's powerful aggregation framework makes it possible to perform real-time analytics for dashboards and reports?
Watch this webinar for an introduction to the MongoDB aggregation framework and a walk through of what you can do with it. We'll also demo an analysis of U.S. census data.
Developers love MongoDB because its flexible document model enhances their productivity. But did you know that MongoDB supports rich queries and lets you accomplish some of the same things you currently do with SQL statements? And that MongoDB's powerful aggregation framework makes it possible to perform real-time analytics for dashboards and reports?
Attend this webinar for an introduction to the MongoDB aggregation framework and a walk through of what you can do with it. We'll also demo using it to analyze U.S. census data.
The document discusses different approaches for efficiently migrating large amounts of data into MongoDB. It begins by covering MongoDB's document model and some schema design principles. It then outlines three common approaches to migrating data: 1) nested queries, 2) building documents in the database, and 3) loading all data into memory first before insertion. The document provides examples and compares the performance of each approach.
Speaker: Asya Kamsky
MongoDB Aggregation Language has been getting more powerful and expressive with every release. In this talk we'll review how to create powerful aggregation pipelines and how to leverage aggregation expressions in your queries.
This document discusses MongoDB, a document-oriented NoSQL database. It begins with an introduction to NoSQL databases and their advantages over relational databases. MongoDB is then described in more detail, including its features like storing dynamic JSON documents, indexing, replication, querying and MapReduce capabilities. Examples of CRUD operations on MongoDB documents are provided. The document concludes by discussing when MongoDB may be applicable and who uses it, as well as comparing MongoDB to SQL databases.
How can you use PosgreSQL as a schemaless (NoSQL) database? Here we cover our use case and highlight upcoming features in postgres 9.4 and its integration with Django 1.7
Working with JSON Data in PostgreSQL vs. MongoDBScaleGrid.io
In this post, we are going to show you tips and techniques on how to effectively store and index JSON data in PostgreSQL vs. MongoDB. Learn more in the blog post: https://scalegrid.io/blog/using-jsonb-in-postgresql-how-to-effectively-store-index-json-data-in-postgresql
Getting Started with Geospatial Data in MongoDBMongoDB
MongoDB supports geospatial data and specialized indexes that make building location-aware applications easy and scalable.
In this session, you will learn the fundamentals of working with geospatial data in MongoDB. We will explore how to store and index geospatial data and best practices for using geospatial query operators and methods. By the end of this session, you should be able to implement basic geolocation functionality in an application.
In this webinar, you will learn:
- Getting geospatial data into MongoDB and how to build geospatial indexes.
- The fundamentals of MongoDB's geospatial query operators and how to design queries that meet the needs of your application.
- Advanced geospatial capabilities with Java geospatial libraries and MongoDB.
A presentation by Aicha Khabil (Responsable IT à l'université Alger 3) done during the 11th edition of Algiers Tech Meetup on October 8th 2016, at Djezzy Training Center (Algiers)
Recent releases of the .NET driver have added lots of cool new features. In this webinar we will highlight some of the most important ones. We will begin by discussing serialization. We will describe how serialization is normally handled, and how you can customize the process when you need to, including some tips on migration strategies when your class definitions change. We will continue with a discussion of the new Query builder, which now includes support for typed queries. A major new feature of recent releases is support for LINQ queries. We will show you how the .NET driver supports LINQ and discuss what kinds of LINQ queries are supported. Finally, we will discuss what you need to do differently in your application when authentication is enabled at the server.
Redis Memory Optimization
Store More Data in Less Memory
The document discusses 25 techniques for optimizing Redis memory usage:
1) Normalize data to avoid duplication and store related data together
2) Use more efficient serializers like MsgPack or ProtoBuf instead of JSON
3) Compress data using algorithms like Snappy or Brotli to reduce memory usage
4) Combine small objects into hashes to improve memory efficiency
Some specific techniques include using integer IDs instead of strings, sharding large hashes, enabling compression on lists, upgrading to Redis 3.2 for its more efficient list encoding, and using bitfields to pack integer and fixed-width data. The document also provides tips on configuration options and using specialized data
Building web applications with mongo db presentationMurat Çakal
The document introduces building web applications using MongoDB, a document-oriented database. It discusses MongoDB's data modeling and querying capabilities, including examples of modeling user and location data for a check-in application. The document also covers indexing, insertion, updating, and analytics queries for the sample location and user data models.
Norberto Leite gives an introduction to MongoDB. He discusses that MongoDB is a document database that is open source, high performance, and horizontally scalable. He demonstrates how to install MongoDB, insert documents into collections, query documents, and update documents. Leite emphasizes that MongoDB allows for flexible schema design and the ability to evolve schemas over time to match application needs.
MongoDB .local Chicago 2019: Practical Data Modeling for MongoDB: TutorialMongoDB
For 30 years, developers have been taught that relational data modeling was THE way to model, but as more companies adopt MongoDB as their data platform, the approaches that work well in relational design actually work against you in a document model design. In this talk, we will discuss how to conceptually approach modeling data with MongoDB, focusing on practical foundational techniques, paired with tips and tricks, and wrapping with discussing design patterns to solve common real world problems.
MongoDB.local DC 2018: Tutorial - Data Analytics with MongoDBMongoDB
Data analytics can offer insights into your business and help take it to the next level. In this talk you'll learn about MongoDB tools for building visualizations, dashboards and interacting with your data. We'll start with exploratory data analysis using MongoDB Compass. Then, in a matter of minutes, we'll take you from 0 to 1 - connecting to your Atlas cluster via BI Connector and running analytical queries against it in Microsoft Excel. We'll also showcase the new MongoDB Charts product and you'll see how quick, easy and intuitive analytics can be on the MongoDB platform without flattening the data or spending time and effort on complicated and fragile ETL.
This document discusses using MongoDB to build location-based applications. It describes how to model location and check-in data, perform queries and analytics on that data, and deploy MongoDB in both unsharded and sharded configurations to scale the application. Examples of using MongoDB for a location application include storing location documents with name, address, tags, latitude/longitude, and user tips, and user documents with check-in arrays referencing location IDs.
MongoDB Schema Design: Practical Applications and ImplicationsMongoDB
Presented by Austin Zellner, Solutions Architect, MongoDB
Schema design is as much art as it is science, but it is central to understanding how to get the most out of MongoDB. Attendees will walk away with an understanding of how to approach schema design, what influences it, and the science behind the art. After this session, attendees will be ready to design new schemas, as well as re-evaluate existing schemas with a new mental model.
Intro to MongoDB
Get a jumpstart on MongoDB, use cases, and next steps for building your first app with Buzz Moschetti, MongoDB Enterprise Architect.
@BuzzMoschetti
Dev Jumpstart: Build Your First App with MongoDBMongoDB
New to MongoDB? This talk will introduce the philosophy and features of MongoDB. We’ll discuss the benefits of the document-based data model that MongoDB offers by walking through how one can build a simple app to store books. We’ll cover inserting, updating, and querying the database of books. This session will jumpstart your knowledge of MongoDB development, providing you with context for the rest of the day's content.
Analytics with MongoDB Aggregation Framework and Hadoop ConnectorHenrik Ingo
This document provides an overview of analytics with MongoDB and Hadoop Connector. It discusses how to collect and explore data, use visualization and aggregation, and make predictions. It describes how MongoDB can be used for data collection, pre-aggregation, and real-time queries. The Aggregation Framework and MapReduce in MongoDB are explained. It also covers using the Hadoop Connector to process large amounts of MongoDB data in Hadoop and writing results back to MongoDB. Examples of analytics use cases like recommendations, A/B testing, and personalization are briefly outlined.
This document discusses MongoDB and the needs of Rivera Group, an IT services company. It notes that Rivera Group has been using MongoDB since 2012 to store large, multi-dimensional datasets with heavy read/write and audit requirements. The document outlines some of the challenges Rivera Group faces around indexing, aggregation, and flexibility in querying datasets.
Eagle6 is a product that use system artifacts to create a replica model that represents a near real-time view of system architecture. Eagle6 was built to collect system data (log files, application source code, etc.) and to link system behaviors in such a way that the user is able to quickly identify risks associated with unknown or unwanted behavioral events that may result in unknown impacts to seemingly unrelated down-stream systems. This session is designed to present the capabilities of the Eagle6 modeling product and how we are using MongoDB to support near-real-time analysis of large disparate datasets.
OSDC 2012 | Building a first application on MongoDB by Ross LawleyNETWAYS
MongoDB – from "humongous" – is an open source, non-relational, document-oriented database. Trading off a few traditional features of databases (notably joins and transactions) in order to achieve much better performance, MongoDB is fast, scalable, and designed for web development. The goal of the MongoDB project is to bridge the gap between key-value stores (which are fast and highly scalable) and traditional RDBMS systems (which provide rich queries and deep functionality).
This talk will introduce the features of MongoDB by walking through how one can building a simple location-based application using MongoDB. The talk will cover the basics of MongoDB's document model, query language, map-reduce framework and deployment architecture.
Simplifying & accelerating application development with MongoDB's intelligent...Maxime Beugnet
The document discusses MongoDB's Intelligent Operational Data Platform and how it allows developers to simplify application development. It highlights how MongoDB uses a document model which is more flexible than a relational database and allows for embedding of related data. MongoDB also provides features like multi-document transactions, full indexing capabilities, advanced aggregations, and change streams for building reactive applications in real-time.
MongoDB.local DC 2018: Ch-Ch-Ch-Ch-Changes: Taking Your MongoDB Stitch Applic...MongoDB
MongoDB Stitch is a serverless platform designed to help you easily and securely build an application on top of MongoDB Atlas. It lets developers focus on building applications rather than on managing data manipulation code, service integration, or backend infrastructure. MongoDB Stitch also makes it simple to respond to backend changes immediately, allowing you to simplify client side code and build complex flows more easily. This talk will cover ways that MongoDB Stitch helps you respond to changes in your database and take your applications to the next level.
This document provides an overview of MongoDB, including its key features such as document-oriented storage, full index support, replication and high availability, auto sharding, querying capabilities, and fast in-place updates. It also discusses MongoDB's architecture for replication, sharding, and configuration servers.
This document provides an introduction to MongoDB, a non-relational NoSQL database. It discusses what NoSQL databases are and their benefits compared to SQL databases, such as being more scalable and able to handle large, changing datasets. It then describes key features of MongoDB like high performance, rich querying, and horizontal scalability. The document outlines concepts like document structure, collections, and CRUD operations in MongoDB. It also covers topics such as replication, sharding, and installing MongoDB.
In this session, I will discuss some of the practical uses of JSON in MySQL, focusing on version 5.7 but also discussing options for previous versions, and briefly discussing MySQL 8.0. I will discuss several specific use cases, as well as some JSON antipatterns that should be avoided.
Some topics I will address:
- The evolution of JSON parsing in MySQL: from stored routines to UDFs to native functions
- Real-life use cases: Custom fields, flexible rollups, nested objects, etc.
- The power of JSON + virtual columns
- Storing JSON as text versus using new JSON data types
- Read/write balance considerations
- Disk storage implications
- Indexing JSON documents in MySQL
- Additional JSON features in MySQL 8.0
Data analytics can offer insights into your business and help take it to the next level. In this talk you'll learn about MongoDB tools for building visualizations, dashboards and interacting with your data. We'll start with exploratory data analysis using MongoDB Compass.
This document summarizes a PyMongo talk that was part of the PyCon India 2017 conference. The talk was given by Ankur Raina on November 2, 2017 and was about using the PyMongo driver to interact with MongoDB from Python. Additional details provided include the conference location in New Delhi, India and a link to the conference website.
The document discusses MongoDB performance tuning. It begins by distinguishing between optimizing, which involves restructuring applications and data, and performance tuning, which experiments with system modifications. It recommends investigating performance using log files, the profiler, and explain queries. Creating an index on first_name and last_name fields improved the performance of a query searching on first_name from 480ms to 7ms by enabling an index scan instead of a collection scan. The document suggests continuing performance monitoring and investigating other issues at future meetings.
The document summarizes a MongoDB user group meetup that took place on July 20, 2017 in Gurugram, India. There were two speakers - Ankit Kakkar spoke about MongoDB Stitch (Backend as a Service) and Ankur Raina spoke about PyMongo, the MongoDB Python driver. The meetup was held at Regus Spaces in DLF Cyber City, Gurugram and was sponsored by Regus Spaces.
The document is a speech given on Engineer's Day celebrating engineers and the profession of engineering. It discusses how Engineer's Day honors Sir M. Visvesvaraya for his work developing dams, bridges and irrigation systems. It questions whether India, which produces millions of engineers each year, is utilizing them effectively. It argues that engineering should be more of an interest and passion rather than just a profession. The speech calls on educators to improve teaching methodologies and ensure students learn how they should. It concludes with a pledge for engineers to pursue their profession with passion and honesty, for the benefit of humanity.
This document provides an introduction and overview of Oracle Database including:
1. Key features of Oracle Database such as supporting E.F. Codd's rules for relational databases and the Oracle Internet Platform.
2. The physical structures that make up an Oracle Database including data files, redo log files, and tablespaces.
3. The memory structures of an Oracle Instance including the system global area and process/background memory.
4. An overview of basic SQL statements for data retrieval, manipulation, and schema object management.
This document discusses cloud computing. It begins with an introduction and provides definitions of cloud computing from experts including John Markoff of the New York Times, Princeton University, and Wikipedia. It discusses oscillating trends in cloud computing and common cloud services. It also lists some major cloud service providers and references other issues discussed in the document.
This document discusses the growth of data and the need for big data solutions. It defines big data as information that cannot be processed using traditional tools. It describes how Hadoop provides a platform for storing and analyzing large, unstructured data through distributed processing and HDFS for storage. Key components of Hadoop include MapReduce for parallel processing and HDFS for redundancy and high throughput access to data.
Procurement Insights Cost To Value Guide.pptxJon Hansen
Procurement Insights integrated Historic Procurement Industry Archives, serves as a powerful complement — not a competitor — to other procurement industry firms. It fills critical gaps in depth, agility, and contextual insight that most traditional analyst and association models overlook.
Learn more about this value- driven proprietary service offering here.
Dev Dives: Automate and orchestrate your processes with UiPath MaestroUiPathCommunity
This session is designed to equip developers with the skills needed to build mission-critical, end-to-end processes that seamlessly orchestrate agents, people, and robots.
📕 Here's what you can expect:
- Modeling: Build end-to-end processes using BPMN.
- Implementing: Integrate agentic tasks, RPA, APIs, and advanced decisioning into processes.
- Operating: Control process instances with rewind, replay, pause, and stop functions.
- Monitoring: Use dashboards and embedded analytics for real-time insights into process instances.
This webinar is a must-attend for developers looking to enhance their agentic automation skills and orchestrate robust, mission-critical processes.
👨🏫 Speaker:
Andrei Vintila, Principal Product Manager @UiPath
This session streamed live on April 29, 2025, 16:00 CET.
Check out all our upcoming Dev Dives sessions at https://community.uipath.com/dev-dives-automation-developer-2025/.
Big Data Analytics Quick Research Guide by Arthur MorganArthur Morgan
This is a Quick Research Guide (QRG).
QRGs include the following:
- A brief, high-level overview of the QRG topic.
- A milestone timeline for the QRG topic.
- Links to various free online resource materials to provide a deeper dive into the QRG topic.
- Conclusion and a recommendation for at least two books available in the SJPL system on the QRG topic.
QRGs planned for the series:
- Artificial Intelligence QRG
- Quantum Computing QRG
- Big Data Analytics QRG
- Spacecraft Guidance, Navigation & Control QRG (coming 2026)
- UK Home Computing & The Birth of ARM QRG (coming 2027)
Any questions or comments?
- Please contact Arthur Morgan at [email protected].
100% human made.
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Aqusag Technologies
In late April 2025, a significant portion of Europe, particularly Spain, Portugal, and parts of southern France, experienced widespread, rolling power outages that continue to affect millions of residents, businesses, and infrastructure systems.
AI and Data Privacy in 2025: Global TrendsInData Labs
In this infographic, we explore how businesses can implement effective governance frameworks to address AI data privacy. Understanding it is crucial for developing effective strategies that ensure compliance, safeguard customer trust, and leverage AI responsibly. Equip yourself with insights that can drive informed decision-making and position your organization for success in the future of data privacy.
This infographic contains:
-AI and data privacy: Key findings
-Statistics on AI data privacy in the today’s world
-Tips on how to overcome data privacy challenges
-Benefits of AI data security investments.
Keep up-to-date on how AI is reshaping privacy standards and what this entails for both individuals and organizations.
TrsLabs - Fintech Product & Business ConsultingTrs Labs
Hybrid Growth Mandate Model with TrsLabs
Strategic Investments, Inorganic Growth, Business Model Pivoting are critical activities that business don't do/change everyday. In cases like this, it may benefit your business to choose a temporary external consultant.
An unbiased plan driven by clearcut deliverables, market dynamics and without the influence of your internal office equations empower business leaders to make right choices.
Getting things done within a budget within a timeframe is key to Growing Business - No matter whether you are a start-up or a big company
Talk to us & Unlock the competitive advantage
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungenpanagenda
Webinar Recording: https://www.panagenda.com/webinars/hcl-nomad-web-best-practices-und-verwaltung-von-multiuser-umgebungen/
HCL Nomad Web wird als die nächste Generation des HCL Notes-Clients gefeiert und bietet zahlreiche Vorteile, wie die Beseitigung des Bedarfs an Paketierung, Verteilung und Installation. Nomad Web-Client-Updates werden “automatisch” im Hintergrund installiert, was den administrativen Aufwand im Vergleich zu traditionellen HCL Notes-Clients erheblich reduziert. Allerdings stellt die Fehlerbehebung in Nomad Web im Vergleich zum Notes-Client einzigartige Herausforderungen dar.
Begleiten Sie Christoph und Marc, während sie demonstrieren, wie der Fehlerbehebungsprozess in HCL Nomad Web vereinfacht werden kann, um eine reibungslose und effiziente Benutzererfahrung zu gewährleisten.
In diesem Webinar werden wir effektive Strategien zur Diagnose und Lösung häufiger Probleme in HCL Nomad Web untersuchen, einschließlich
- Zugriff auf die Konsole
- Auffinden und Interpretieren von Protokolldateien
- Zugriff auf den Datenordner im Cache des Browsers (unter Verwendung von OPFS)
- Verständnis der Unterschiede zwischen Einzel- und Mehrbenutzerszenarien
- Nutzung der Client Clocking-Funktion
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersToradex
Toradex brings robust Linux support to SMARC (Smart Mobility Architecture), ensuring high performance and long-term reliability for embedded applications. Here’s how:
• Optimized Torizon OS & Yocto Support – Toradex provides Torizon OS, a Debian-based easy-to-use platform, and Yocto BSPs for customized Linux images on SMARC modules.
• Seamless Integration with i.MX 8M Plus and i.MX 95 – Toradex SMARC solutions leverage NXP’s i.MX 8 M Plus and i.MX 95 SoCs, delivering power efficiency and AI-ready performance.
• Secure and Reliable – With Secure Boot, over-the-air (OTA) updates, and LTS kernel support, Toradex ensures industrial-grade security and longevity.
• Containerized Workflows for AI & IoT – Support for Docker, ROS, and real-time Linux enables scalable AI, ML, and IoT applications.
• Strong Ecosystem & Developer Support – Toradex offers comprehensive documentation, developer tools, and dedicated support, accelerating time-to-market.
With Toradex’s Linux support for SMARC, developers get a scalable, secure, and high-performance solution for industrial, medical, and AI-driven applications.
Do you have a specific project or application in mind where you're considering SMARC? We can help with Free Compatibility Check and help you with quick time-to-market
For more information: https://www.toradex.com/computer-on-modules/smarc-arm-family
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxJustin Reock
Building 10x Organizations with Modern Productivity Metrics
10x developers may be a myth, but 10x organizations are very real, as proven by the influential study performed in the 1980s, ‘The Coding War Games.’
Right now, here in early 2025, we seem to be experiencing YAPP (Yet Another Productivity Philosophy), and that philosophy is converging on developer experience. It seems that with every new method we invent for the delivery of products, whether physical or virtual, we reinvent productivity philosophies to go alongside them.
But which of these approaches actually work? DORA? SPACE? DevEx? What should we invest in and create urgency behind today, so that we don’t find ourselves having the same discussion again in a decade?
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfSoftware Company
Explore the benefits and features of advanced logistics management software for businesses in Riyadh. This guide delves into the latest technologies, from real-time tracking and route optimization to warehouse management and inventory control, helping businesses streamline their logistics operations and reduce costs. Learn how implementing the right software solution can enhance efficiency, improve customer satisfaction, and provide a competitive edge in the growing logistics sector of Riyadh.
Artificial Intelligence is providing benefits in many areas of work within the heritage sector, from image analysis, to ideas generation, and new research tools. However, it is more critical than ever for people, with analogue intelligence, to ensure the integrity and ethical use of AI. Including real people can improve the use of AI by identifying potential biases, cross-checking results, refining workflows, and providing contextual relevance to AI-driven results.
News about the impact of AI often paints a rosy picture. In practice, there are many potential pitfalls. This presentation discusses these issues and looks at the role of analogue intelligence and analogue interfaces in providing the best results to our audiences. How do we deal with factually incorrect results? How do we get content generated that better reflects the diversity of our communities? What roles are there for physical, in-person experiences in the digital world?
Mobile App Development Company in Saudi ArabiaSteve Jonas
EmizenTech is a globally recognized software development company, proudly serving businesses since 2013. With over 11+ years of industry experience and a team of 200+ skilled professionals, we have successfully delivered 1200+ projects across various sectors. As a leading Mobile App Development Company In Saudi Arabia we offer end-to-end solutions for iOS, Android, and cross-platform applications. Our apps are known for their user-friendly interfaces, scalability, high performance, and strong security features. We tailor each mobile application to meet the unique needs of different industries, ensuring a seamless user experience. EmizenTech is committed to turning your vision into a powerful digital product that drives growth, innovation, and long-term success in the competitive mobile landscape of Saudi Arabia.
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul
Artificial intelligence is changing how businesses operate. Companies are using AI agents to automate tasks, reduce time spent on repetitive work, and focus more on high-value activities. Noah Loul, an AI strategist and entrepreneur, has helped dozens of companies streamline their operations using smart automation. He believes AI agents aren't just tools—they're workers that take on repeatable tasks so your human team can focus on what matters. If you want to reduce time waste and increase output, AI agents are the next move.
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxAnoop Ashok
In today's fast-paced retail environment, efficiency is key. Every minute counts, and every penny matters. One tool that can significantly boost your store's efficiency is a well-executed planogram. These visual merchandising blueprints not only enhance store layouts but also save time and money in the process.
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveScyllaDB
Want to learn practical tips for designing systems that can scale efficiently without compromising speed?
Join us for a workshop where we’ll address these challenges head-on and explore how to architect low-latency systems using Rust. During this free interactive workshop oriented for developers, engineers, and architects, we’ll cover how Rust’s unique language features and the Tokio async runtime enable high-performance application development.
As you explore key principles of designing low-latency systems with Rust, you will learn how to:
- Create and compile a real-world app with Rust
- Connect the application to ScyllaDB (NoSQL data store)
- Negotiate tradeoffs related to data modeling and querying
- Manage and monitor the database for consistently low latencies
7. Advantages
• Documents (i.e objects) correspond to native datatypes in many
programming languages
• Reduce expensive joins by embedding
• Dynamic schema - change on the fly
10. JSON? BSON?
• BSON is a binary-encoded serialization of JSON-like documents ( bsonspec.org )
• More data types such as BinData and Date
• Lightweight, Traversable, Efficient
11. Data Model
• Flexible Schema
• Collections do not enforce Document structure
• Consider the application usage patterns of data
• Normalisation rules do not apply directly!
• References and Embedding
• 16 MB size limit of documents
• Operation are atomic at document level
14. New Requirement
• update() PAN numbers of citizens
• Single PAN number of “some” citizens - Not everyone has a PAN card!
• None of our documents has a “pan_card” field
15. • update() phone numbers of all citizens. Multiple phone numbers.
• Note that we are using an array to store these
16. New Requirement
• update() complete “permanent address” of citizens
• A field named permanent_address containing sub-fields:
– house_no
– street
– landmark
– locality
– district
– state
– pincode
– map i.e. long-lat
34. Pros:
● Most of the software can easily take
advantage of vertical scaling
● Easy to manage and install hardware
within a single machine
Pros:
● Increases performance in small steps as needed
● Can scale out the system as much as you need
Cons:
● Requires substantial financial investment
● Not possible to scale up vertically after a
certain limit
Cons:
● Need to set up the additional servers to handle
the data distribution and parallel processing
capabilities
39. mongo shell
• Download from MongoDB Atlas (MongoDB database-as-a-service)
• Connect to mongo shell - an interactive JavaScript interface to MongoDB
• https://docs.atlas.mongodb.com/getting-started/
40. Let’s first restore data from an existing dump
Don’t worry, if you don’t get this. Just follow the steps !
• Go to https://github.com/Ankur10gen/SampleDataMongoDB
• Download the zip file and extract it
• cd SampleDataMongoDB-master/mongodump-citizendata_09_10/
mongorestore --db <DBNAME> --host <”ReplicaSetName/Hosts1,Host2,Host3”> --
authenticationDatabase admin --ssl --username admin --password <PASSWORD
e.g.: mongorestore --db demo1 demo1/ --host "Cluster0-shard-0/cluster0-shard-
00-00-ydjii.mongodb.net:27017,cluster0-shard-00-01-
ydjii.mongodb.net:27017,cluster0-shard-00-02-ydjii.mongodb.net:27017" --
authenticationDatabase admin --ssl --username admin --password <PASSWORD>
41. Great! You have made it! You are ready to use the mongo shell now!
Let’s see which databases exist, connect to a database & see the
collections inside it.
Note: There can be many databases in one mongod deployment and each database can have
several collections.
• show dbs
• use demo1
• show collections
42. Ex1: Find one citizen with last_name ‘SHARMA’
> db.citizendata.findOne({last_name:"SHARMA"})
SELECT * FROM citizendata WHERE last_name = “SHARMA” LIMIT 1;
Ex2: Find citizens with first_name ‘AJAY’
> db.citizendata.find({"first_name":"AJAY"})
SELECT * FROM citizendata WHERE first_name = “AJAY”
Ex3: Limit the previous result set to 5 documents
> db.citizendata.find({"first_name":"AJAY"}).limit(5)
SELECT * FROM citizendata WHERE first_name = “AJAY” LIMIT 5
43. Ex4: When was person with "_id" : "678943212601" registered?
> db.citizendata.find( { "_id": "678943212601" } , { "registered_on":1 } )
SELECT registered_on FROM citizendata WHERE _id = "678943212601";
Ex5: Find the count of people with state ‘HARYANA’. Note that state is a
field inside permanent_address.
> db.citizendata.find( { "permanent_address.state": "HARYANA" } ).count()
YOU MAY NEED TO DO A JOIN AND WE DON’T WANT TO GO THERE.
======================================= enjoying?
44. Ex6: CREATE AN INDEX ON phone_numbers
> db.citizendata.createIndex( { phone_numbers: 1 } )
CREATE INDEX phone_numbers_1 ON citizendata (phone_numbers)
Ex7: Find details of a person with phone_number 8855915314. Note that
phone_numbers is an array type field.
> db.citizendata.find( { "phone_numbers": "8855915314" } ).pretty()
Ex8: Find _id of citizens with first_name REVA or ABEER
> db.citizendata.find( { "first_name": { "$in" : [ "REVA", "ABEER" ] } }, { _id: 1 } )
45. Ex9: Find the count of people with first_name SANDEEP in each state. We are
using the MongoDB Aggregation Pipeline.
> db.citizendata.aggregate(
[
{ $match : { "first_name":'SANDEEP' } },
{ $group : { _id : "$permanent_address.state", count: {$sum: 1} } }
]
)
In SQL, you’ll use a GROUP BY clause for it. And may be some joins to bring in
this state info from another table.
46. Ex10: Let’s sort our citizens in descending order with last_name ‘VERMA’ on
the basis of pan_card information using aggregation pipeline and limit our
result set to 10. Project only the phone numbers with NO _id field.
> db.citizendata.aggregate(
[
{ $match : { "last_name":'VERMA' } },
{ $sort : { "pan_card" : -1 } },
{ $project : { "_id": 0, "pan_card":1,"phone_numbers":1 } },
{ $limit : 10 }
]
)
47. I hope you enjoyed this session!
Share your experience on the social networks! @MongoDB