SlideShare a Scribd company logo
Semantic
Segmentation
Hello!
I am Frederick Apina
Machine Learning Engineer @ParrotAI
I am here because I love to give
presentations.
2
“When I think about strong
innovations in term of
automation, cognitive computing,
and artificial intelligence, they will
be coming a lot from Tanzania as
well.”
3
1.
What is semantic
segmentation?
5
6
Limitations
Still a bit rough since we’re only
drawing bounding boxes and don’t
really get an accurate idea of
object shape.
7
What if!?
8
Semantic Segmentation
Semantic Segmentation is to
label each pixel of an image with a
corresponding class of what is being
represented.
✗ commonly referred to as dense prediction.
2.
Applications of
Semantic
Segmentation
10
Autonomous Vehicles
11
Medical Surgeries
12
Medical Surgeries
13
Medical Images Diagnostics
3.
Representing the
Task
15
Our goal is to take either a RGB color image or a grayscale image and
output a segmentation map where each pixel contains a class label
represented as an integer.
16
We create our target by one-hot encoding the class labels - essentially
creating an output channel for each of the possible classes.
17
We can easily inspect a target by overlaying it onto the observation.
When we overlay a single channel of our target (or prediction), we refer to this
as a mask which illuminates the regions of an image where a specific class is
present.
3.
Constructing an
Architecture
A naive approach…
20
✗ Recall that for deep convolutional networks,
earlier layers tend to learn low-level concepts
while later layers develop more high-level (and
specialized) feature mappings. In order to
maintain expressiveness, we typically need to
increase the number of feature maps (channels)
as we get deeper in the network.
21
Solution?
Lucky for us..
One popular approach for image segmentation models is to follow
an encoder/decoder structure.
U-Net Architecture..
Consists of a
contracting path
to capture
context and
a symmetric expa
nding path that
enables precise
localization.
Advanced U-Net variants
The standard U-Net model consists of a series of
convolution operations for each "block" in the architecture.
Proposed: swap out the basic stacked convolution blocks in
favor of residual blocks. This residual block introduces short skip
connections (within the block) alongside the existing long skip
connections (between the corresponding feature maps of
encoder and decoder modules) found in the standard U-Net
structure.
Tiramisu: Full Convolution DenseNet
Tiramisu adopts the UNet design with downsampling, bottleneck, and upsampling paths
and skip connections. It replaces convolution and max pooling layers with Dense blocks
from the DenseNet architecture. Dense blocks contain residual connections.
Defining loss function
The most commonly used loss function for the task of image segmentation is a pixel-wise cross
entropy loss. This loss examines each pixel individually, comparing the class predictions (depth-wise
pixel vector) to our one-hot encoded target vector.
Deep Learning is an continuously-growing and a
relatively new concept, the vast amount of
resources can be a touch overwhelming for those
either looking to get into the field, or those
already engraved in it. A good way of cooping is to
get a good general knowledge of machine learning
and then find a good structured path to follow (be
a project or research).
27
Conclusion
28
Thanks!
Any questions?
You can find me at:
✗ Fred@parrotai.co.tz
Ad

More Related Content

What's hot (20)

Digit recognition using neural network
Digit recognition using neural networkDigit recognition using neural network
Digit recognition using neural network
shachibattar
 
Machine Learning - Convolutional Neural Network
Machine Learning - Convolutional Neural NetworkMachine Learning - Convolutional Neural Network
Machine Learning - Convolutional Neural Network
Richard Kuo
 
Computer Vision for Beginners
Computer Vision for BeginnersComputer Vision for Beginners
Computer Vision for Beginners
Sanghamitra Deb
 
Offline Character Recognition Using Monte Carlo Method and Neural Network
Offline Character Recognition Using Monte Carlo Method and Neural NetworkOffline Character Recognition Using Monte Carlo Method and Neural Network
Offline Character Recognition Using Monte Carlo Method and Neural Network
ijaia
 
Person re-identification, PhD Day 2011
Person re-identification, PhD Day 2011Person re-identification, PhD Day 2011
Person re-identification, PhD Day 2011
Riccardo Satta
 
Dissimilarity-based people re-identification and search for intelligent video...
Dissimilarity-based people re-identification and search for intelligent video...Dissimilarity-based people re-identification and search for intelligent video...
Dissimilarity-based people re-identification and search for intelligent video...
Riccardo Satta
 
Exploiting Dissimilarity Representations for Person Re-Identification
Exploiting Dissimilarity Representations for Person Re-IdentificationExploiting Dissimilarity Representations for Person Re-Identification
Exploiting Dissimilarity Representations for Person Re-Identification
Riccardo Satta
 
Using Multi-layered Feed-forward Neural Network (MLFNN) Architecture as Bidir...
Using Multi-layered Feed-forward Neural Network (MLFNN) Architecture as Bidir...Using Multi-layered Feed-forward Neural Network (MLFNN) Architecture as Bidir...
Using Multi-layered Feed-forward Neural Network (MLFNN) Architecture as Bidir...
IOSR Journals
 
Handwritten Digit Recognition using Convolutional Neural Networks
Handwritten Digit Recognition using Convolutional Neural  NetworksHandwritten Digit Recognition using Convolutional Neural  Networks
Handwritten Digit Recognition using Convolutional Neural Networks
IRJET Journal
 
Convolutional neural network from VGG to DenseNet
Convolutional neural network from VGG to DenseNetConvolutional neural network from VGG to DenseNet
Convolutional neural network from VGG to DenseNet
SungminYou
 
Comparison of Learning Algorithms for Handwritten Digit Recognition
Comparison of Learning Algorithms for Handwritten Digit RecognitionComparison of Learning Algorithms for Handwritten Digit Recognition
Comparison of Learning Algorithms for Handwritten Digit Recognition
Safaa Alnabulsi
 
GTSRB Traffic Sign recognition using machine learning
GTSRB Traffic Sign recognition using machine learningGTSRB Traffic Sign recognition using machine learning
GTSRB Traffic Sign recognition using machine learning
Rupali Aher
 
IEEE 2014 MATLAB IMAGE PROCESSING PROJECTS Fingerprint compression-based-on-...
IEEE 2014 MATLAB IMAGE PROCESSING PROJECTS  Fingerprint compression-based-on-...IEEE 2014 MATLAB IMAGE PROCESSING PROJECTS  Fingerprint compression-based-on-...
IEEE 2014 MATLAB IMAGE PROCESSING PROJECTS Fingerprint compression-based-on-...
IEEEBEBTECHSTUDENTPROJECTS
 
Kq3518291832
Kq3518291832Kq3518291832
Kq3518291832
IJERA Editor
 
Manifold learning with application to object recognition
Manifold learning with application to object recognitionManifold learning with application to object recognition
Manifold learning with application to object recognition
zukun
 
Image classification with Deep Neural Networks
Image classification with Deep Neural NetworksImage classification with Deep Neural Networks
Image classification with Deep Neural Networks
Yogendra Tamang
 
A survey on the layers of convolutional Neural Network
A survey on the layers of convolutional Neural NetworkA survey on the layers of convolutional Neural Network
A survey on the layers of convolutional Neural Network
Sasanko Sekhar Gantayat
 
Digit recognition using mnist database
Digit recognition using mnist databaseDigit recognition using mnist database
Digit recognition using mnist database
btandale
 
Cnn
CnnCnn
Cnn
Nirthika Rajendran
 
Transfer Learning in NLP: A Survey
Transfer Learning in NLP: A SurveyTransfer Learning in NLP: A Survey
Transfer Learning in NLP: A Survey
NUPUR YADAV
 
Digit recognition using neural network
Digit recognition using neural networkDigit recognition using neural network
Digit recognition using neural network
shachibattar
 
Machine Learning - Convolutional Neural Network
Machine Learning - Convolutional Neural NetworkMachine Learning - Convolutional Neural Network
Machine Learning - Convolutional Neural Network
Richard Kuo
 
Computer Vision for Beginners
Computer Vision for BeginnersComputer Vision for Beginners
Computer Vision for Beginners
Sanghamitra Deb
 
Offline Character Recognition Using Monte Carlo Method and Neural Network
Offline Character Recognition Using Monte Carlo Method and Neural NetworkOffline Character Recognition Using Monte Carlo Method and Neural Network
Offline Character Recognition Using Monte Carlo Method and Neural Network
ijaia
 
Person re-identification, PhD Day 2011
Person re-identification, PhD Day 2011Person re-identification, PhD Day 2011
Person re-identification, PhD Day 2011
Riccardo Satta
 
Dissimilarity-based people re-identification and search for intelligent video...
Dissimilarity-based people re-identification and search for intelligent video...Dissimilarity-based people re-identification and search for intelligent video...
Dissimilarity-based people re-identification and search for intelligent video...
Riccardo Satta
 
Exploiting Dissimilarity Representations for Person Re-Identification
Exploiting Dissimilarity Representations for Person Re-IdentificationExploiting Dissimilarity Representations for Person Re-Identification
Exploiting Dissimilarity Representations for Person Re-Identification
Riccardo Satta
 
Using Multi-layered Feed-forward Neural Network (MLFNN) Architecture as Bidir...
Using Multi-layered Feed-forward Neural Network (MLFNN) Architecture as Bidir...Using Multi-layered Feed-forward Neural Network (MLFNN) Architecture as Bidir...
Using Multi-layered Feed-forward Neural Network (MLFNN) Architecture as Bidir...
IOSR Journals
 
Handwritten Digit Recognition using Convolutional Neural Networks
Handwritten Digit Recognition using Convolutional Neural  NetworksHandwritten Digit Recognition using Convolutional Neural  Networks
Handwritten Digit Recognition using Convolutional Neural Networks
IRJET Journal
 
Convolutional neural network from VGG to DenseNet
Convolutional neural network from VGG to DenseNetConvolutional neural network from VGG to DenseNet
Convolutional neural network from VGG to DenseNet
SungminYou
 
Comparison of Learning Algorithms for Handwritten Digit Recognition
Comparison of Learning Algorithms for Handwritten Digit RecognitionComparison of Learning Algorithms for Handwritten Digit Recognition
Comparison of Learning Algorithms for Handwritten Digit Recognition
Safaa Alnabulsi
 
GTSRB Traffic Sign recognition using machine learning
GTSRB Traffic Sign recognition using machine learningGTSRB Traffic Sign recognition using machine learning
GTSRB Traffic Sign recognition using machine learning
Rupali Aher
 
IEEE 2014 MATLAB IMAGE PROCESSING PROJECTS Fingerprint compression-based-on-...
IEEE 2014 MATLAB IMAGE PROCESSING PROJECTS  Fingerprint compression-based-on-...IEEE 2014 MATLAB IMAGE PROCESSING PROJECTS  Fingerprint compression-based-on-...
IEEE 2014 MATLAB IMAGE PROCESSING PROJECTS Fingerprint compression-based-on-...
IEEEBEBTECHSTUDENTPROJECTS
 
Manifold learning with application to object recognition
Manifold learning with application to object recognitionManifold learning with application to object recognition
Manifold learning with application to object recognition
zukun
 
Image classification with Deep Neural Networks
Image classification with Deep Neural NetworksImage classification with Deep Neural Networks
Image classification with Deep Neural Networks
Yogendra Tamang
 
A survey on the layers of convolutional Neural Network
A survey on the layers of convolutional Neural NetworkA survey on the layers of convolutional Neural Network
A survey on the layers of convolutional Neural Network
Sasanko Sekhar Gantayat
 
Digit recognition using mnist database
Digit recognition using mnist databaseDigit recognition using mnist database
Digit recognition using mnist database
btandale
 
Transfer Learning in NLP: A Survey
Transfer Learning in NLP: A SurveyTransfer Learning in NLP: A Survey
Transfer Learning in NLP: A Survey
NUPUR YADAV
 

Similar to Introduction to Segmentation in Computer vision (20)

What is Panoptic Segmentation and advantages.ppt
What is Panoptic Segmentation and advantages.pptWhat is Panoptic Segmentation and advantages.ppt
What is Panoptic Segmentation and advantages.ppt
umas1234
 
AaSeminar_Template.pptx
AaSeminar_Template.pptxAaSeminar_Template.pptx
AaSeminar_Template.pptx
ManojGowdaKb
 
IRJET- Automatic Data Collection from Forms using Optical Character Recognition
IRJET- Automatic Data Collection from Forms using Optical Character RecognitionIRJET- Automatic Data Collection from Forms using Optical Character Recognition
IRJET- Automatic Data Collection from Forms using Optical Character Recognition
IRJET Journal
 
Mnist report ppt
Mnist report pptMnist report ppt
Mnist report ppt
RaghunandanJairam
 
11_Saloni Malhotra_SummerTraining_PPT.pptx
11_Saloni Malhotra_SummerTraining_PPT.pptx11_Saloni Malhotra_SummerTraining_PPT.pptx
11_Saloni Malhotra_SummerTraining_PPT.pptx
SaloniMalhotra23
 
Mirko Lucchese - Deep Image Processing
Mirko Lucchese - Deep Image ProcessingMirko Lucchese - Deep Image Processing
Mirko Lucchese - Deep Image Processing
MeetupDataScienceRoma
 
Introduction to Autoencoders: Types and Applications
Introduction to Autoencoders: Types and ApplicationsIntroduction to Autoencoders: Types and Applications
Introduction to Autoencoders: Types and Applications
Amr Rashed
 
IRJET- Alternate Vision Assistance: For the Blind
IRJET- Alternate Vision Assistance: For the BlindIRJET- Alternate Vision Assistance: For the Blind
IRJET- Alternate Vision Assistance: For the Blind
IRJET Journal
 
Review-image-segmentation-by-deep-learning
Review-image-segmentation-by-deep-learningReview-image-segmentation-by-deep-learning
Review-image-segmentation-by-deep-learning
Trong-An Bui
 
U-Netpresentation.pptx
U-Netpresentation.pptxU-Netpresentation.pptx
U-Netpresentation.pptx
NoorUlHaq47
 
computervisionanditsapplications-190311134821.pptx
computervisionanditsapplications-190311134821.pptxcomputervisionanditsapplications-190311134821.pptx
computervisionanditsapplications-190311134821.pptx
OrxanMirzzad
 
Devanagari Digit and Character Recognition Using Convolutional Neural Network
Devanagari Digit and Character Recognition Using Convolutional Neural NetworkDevanagari Digit and Character Recognition Using Convolutional Neural Network
Devanagari Digit and Character Recognition Using Convolutional Neural Network
IRJET Journal
 
Garbage Classification Using Deep Learning Techniques
Garbage Classification Using Deep Learning TechniquesGarbage Classification Using Deep Learning Techniques
Garbage Classification Using Deep Learning Techniques
IRJET Journal
 
IRJET- Wearable AI Device for Blind
IRJET- Wearable AI Device for BlindIRJET- Wearable AI Device for Blind
IRJET- Wearable AI Device for Blind
IRJET Journal
 
Image segmentation with deep learning
Image segmentation with deep learningImage segmentation with deep learning
Image segmentation with deep learning
Antonio Rueda-Toicen
 
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
ijscai
 
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
ijscai
 
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
ijscai
 
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
ijscai
 
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
ijscai
 
What is Panoptic Segmentation and advantages.ppt
What is Panoptic Segmentation and advantages.pptWhat is Panoptic Segmentation and advantages.ppt
What is Panoptic Segmentation and advantages.ppt
umas1234
 
AaSeminar_Template.pptx
AaSeminar_Template.pptxAaSeminar_Template.pptx
AaSeminar_Template.pptx
ManojGowdaKb
 
IRJET- Automatic Data Collection from Forms using Optical Character Recognition
IRJET- Automatic Data Collection from Forms using Optical Character RecognitionIRJET- Automatic Data Collection from Forms using Optical Character Recognition
IRJET- Automatic Data Collection from Forms using Optical Character Recognition
IRJET Journal
 
11_Saloni Malhotra_SummerTraining_PPT.pptx
11_Saloni Malhotra_SummerTraining_PPT.pptx11_Saloni Malhotra_SummerTraining_PPT.pptx
11_Saloni Malhotra_SummerTraining_PPT.pptx
SaloniMalhotra23
 
Mirko Lucchese - Deep Image Processing
Mirko Lucchese - Deep Image ProcessingMirko Lucchese - Deep Image Processing
Mirko Lucchese - Deep Image Processing
MeetupDataScienceRoma
 
Introduction to Autoencoders: Types and Applications
Introduction to Autoencoders: Types and ApplicationsIntroduction to Autoencoders: Types and Applications
Introduction to Autoencoders: Types and Applications
Amr Rashed
 
IRJET- Alternate Vision Assistance: For the Blind
IRJET- Alternate Vision Assistance: For the BlindIRJET- Alternate Vision Assistance: For the Blind
IRJET- Alternate Vision Assistance: For the Blind
IRJET Journal
 
Review-image-segmentation-by-deep-learning
Review-image-segmentation-by-deep-learningReview-image-segmentation-by-deep-learning
Review-image-segmentation-by-deep-learning
Trong-An Bui
 
U-Netpresentation.pptx
U-Netpresentation.pptxU-Netpresentation.pptx
U-Netpresentation.pptx
NoorUlHaq47
 
computervisionanditsapplications-190311134821.pptx
computervisionanditsapplications-190311134821.pptxcomputervisionanditsapplications-190311134821.pptx
computervisionanditsapplications-190311134821.pptx
OrxanMirzzad
 
Devanagari Digit and Character Recognition Using Convolutional Neural Network
Devanagari Digit and Character Recognition Using Convolutional Neural NetworkDevanagari Digit and Character Recognition Using Convolutional Neural Network
Devanagari Digit and Character Recognition Using Convolutional Neural Network
IRJET Journal
 
Garbage Classification Using Deep Learning Techniques
Garbage Classification Using Deep Learning TechniquesGarbage Classification Using Deep Learning Techniques
Garbage Classification Using Deep Learning Techniques
IRJET Journal
 
IRJET- Wearable AI Device for Blind
IRJET- Wearable AI Device for BlindIRJET- Wearable AI Device for Blind
IRJET- Wearable AI Device for Blind
IRJET Journal
 
Image segmentation with deep learning
Image segmentation with deep learningImage segmentation with deep learning
Image segmentation with deep learning
Antonio Rueda-Toicen
 
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
ijscai
 
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
ijscai
 
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
ijscai
 
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
ijscai
 
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
A UTILIZATION OF CONVOLUTIONAL MATRIX METHODS ON SLICED HIPPOCAMPAL NEURON RE...
ijscai
 
Ad

Recently uploaded (20)

LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
定制学历(美国Purdue毕业证)普渡大学电子版毕业证
定制学历(美国Purdue毕业证)普渡大学电子版毕业证定制学历(美国Purdue毕业证)普渡大学电子版毕业证
定制学历(美国Purdue毕业证)普渡大学电子版毕业证
Taqyea
 
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnTemplate_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
cegiver630
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Modern_Distribution_Presentation.pptx Aa
Modern_Distribution_Presentation.pptx AaModern_Distribution_Presentation.pptx Aa
Modern_Distribution_Presentation.pptx Aa
MuhammadAwaisKamboh
 
Defense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptxDefense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptx
Greg Makowski
 
Decision Trees in Artificial-Intelligence.pdf
Decision Trees in Artificial-Intelligence.pdfDecision Trees in Artificial-Intelligence.pdf
Decision Trees in Artificial-Intelligence.pdf
Saikat Basu
 
GenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.aiGenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.ai
Inspirient
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Customer Segmentation using K-Means clustering
Customer Segmentation using K-Means clusteringCustomer Segmentation using K-Means clustering
Customer Segmentation using K-Means clustering
Ingrid Nyakerario
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
定制学历(美国Purdue毕业证)普渡大学电子版毕业证
定制学历(美国Purdue毕业证)普渡大学电子版毕业证定制学历(美国Purdue毕业证)普渡大学电子版毕业证
定制学历(美国Purdue毕业证)普渡大学电子版毕业证
Taqyea
 
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnTemplate_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
cegiver630
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Modern_Distribution_Presentation.pptx Aa
Modern_Distribution_Presentation.pptx AaModern_Distribution_Presentation.pptx Aa
Modern_Distribution_Presentation.pptx Aa
MuhammadAwaisKamboh
 
Defense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptxDefense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptx
Greg Makowski
 
Decision Trees in Artificial-Intelligence.pdf
Decision Trees in Artificial-Intelligence.pdfDecision Trees in Artificial-Intelligence.pdf
Decision Trees in Artificial-Intelligence.pdf
Saikat Basu
 
GenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.aiGenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.ai
Inspirient
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Customer Segmentation using K-Means clustering
Customer Segmentation using K-Means clusteringCustomer Segmentation using K-Means clustering
Customer Segmentation using K-Means clustering
Ingrid Nyakerario
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
Ad

Introduction to Segmentation in Computer vision

  • 2. Hello! I am Frederick Apina Machine Learning Engineer @ParrotAI I am here because I love to give presentations. 2
  • 3. “When I think about strong innovations in term of automation, cognitive computing, and artificial intelligence, they will be coming a lot from Tanzania as well.” 3
  • 5. 5
  • 6. 6 Limitations Still a bit rough since we’re only drawing bounding boxes and don’t really get an accurate idea of object shape.
  • 8. 8 Semantic Segmentation Semantic Segmentation is to label each pixel of an image with a corresponding class of what is being represented. ✗ commonly referred to as dense prediction.
  • 15. 15 Our goal is to take either a RGB color image or a grayscale image and output a segmentation map where each pixel contains a class label represented as an integer.
  • 16. 16 We create our target by one-hot encoding the class labels - essentially creating an output channel for each of the possible classes.
  • 17. 17 We can easily inspect a target by overlaying it onto the observation. When we overlay a single channel of our target (or prediction), we refer to this as a mask which illuminates the regions of an image where a specific class is present.
  • 20. 20 ✗ Recall that for deep convolutional networks, earlier layers tend to learn low-level concepts while later layers develop more high-level (and specialized) feature mappings. In order to maintain expressiveness, we typically need to increase the number of feature maps (channels) as we get deeper in the network.
  • 22. Lucky for us.. One popular approach for image segmentation models is to follow an encoder/decoder structure.
  • 23. U-Net Architecture.. Consists of a contracting path to capture context and a symmetric expa nding path that enables precise localization.
  • 24. Advanced U-Net variants The standard U-Net model consists of a series of convolution operations for each "block" in the architecture. Proposed: swap out the basic stacked convolution blocks in favor of residual blocks. This residual block introduces short skip connections (within the block) alongside the existing long skip connections (between the corresponding feature maps of encoder and decoder modules) found in the standard U-Net structure.
  • 25. Tiramisu: Full Convolution DenseNet Tiramisu adopts the UNet design with downsampling, bottleneck, and upsampling paths and skip connections. It replaces convolution and max pooling layers with Dense blocks from the DenseNet architecture. Dense blocks contain residual connections.
  • 26. Defining loss function The most commonly used loss function for the task of image segmentation is a pixel-wise cross entropy loss. This loss examines each pixel individually, comparing the class predictions (depth-wise pixel vector) to our one-hot encoded target vector.
  • 27. Deep Learning is an continuously-growing and a relatively new concept, the vast amount of resources can be a touch overwhelming for those either looking to get into the field, or those already engraved in it. A good way of cooping is to get a good general knowledge of machine learning and then find a good structured path to follow (be a project or research). 27 Conclusion