SlideShare a Scribd company logo
#MongoDBDays




Introduction to
Sharding
Brandon Black
Software Engineer, 10gen
@brandonmblack
Agenda

• Scaling Data
• MongoDB's Approach
• Architecture
• Configuration
• Mechanics
Scaling Data
Examining Growth

• User Growth
  – 1995: 0.4% of the world‟s population
  – Today: 30% of the world is online (~2.2B)
  – Emerging Markets & Mobile

• Data Set Growth
  – Facebook‟s data set is around 100 petabytes
  – 4 billion photos taken in the last year (4x a decade ago)
Read/Write Throughput Exceeds I/O
Working Set Exceeds Physical
Memory
Vertical Scalability (Scale Up)
Horizontal Scalability (Scale Out)
Data Store Scalability

• Custom Hardware
  – Oracle

• Custom Software
  – Facebook + MySQL
  – Google
Data Store Scalability Today

• MongoDB Auto-Sharding
• A data store that is
   –   Free
   –   Publicly available
   –   Open source (https://github.com/mongodb/mongo)
   –   Horizontally scalable
   –   Application independent
MongoDB's Approach
to Sharding
Partitioning

• User defines shard key
• Shard key defines range of data
• Key space is like points on a line
• Range is a segment of that line
Data Distribution

• Initially 1 chunk
• Default max chunk size: 64mb
• MongoDB automatically splits & migrates chunks
 when max reached
Routing and Balancing

• Queries routed to specific
 shards
• MongoDB balances cluster
• MongoDB migrates data to
 new nodes
MongoDB Auto-Sharding

• Minimal effort required
   – Same interface as single mongod

• Two steps
   – Enable Sharding for a database
   – Shard collection within database
Architecture
What is a Shard?
• Shard is a node of the cluster
• Shard can be a single mongod or a replica set
Meta Data Storage

• Config Server
   – Stores cluster chunk ranges and locations
   – Can have only 1 or 3 (production must have 3)
   – Not a replica set
Routing and Managing Data

• Mongos
   – Acts as a router / balancer
   – No local data (persists to config database)
   – Can have 1 or many
Sharding infrastructure
Configuration
Example Cluster




• Don’t use this setup in production!
   - Only one Config server (No Fault Tolerance)
   - Shard not in a replica set (Low Availability)
   - Only one mongos and shard (No Performance Improvement)
   - Useful for development or demonstrating configuration mechanics
Starting the Configuration Server




• mongod --configsvr
• Starts a configuration server on the default port (27019)
Start the mongos Router




• mongos --configdb <hostname>:27019
• For 3 configuration servers:
   mongos --configdb <host1>:<port1>,<host2>:<port2>,<host3>:<port3>
• This is always how to start a new mongos, even if the cluster
  is already running
Start the shard database




•   mongod --shardsvr
•   Starts a mongod with the default shard port (27018)
•   Shard is not yet connected to the rest of the cluster
•   Shard may have already been running in production
Add the Shard




• On mongos:
   - sh.addShard(„<host>:27018‟)
• Adding a replica set:
   - sh.addShard(„<rsname>/<seedlist>‟)
Verify that the shard was added




• db.runCommand({ listshards:1 })
 { "shards" :
    [{"_id”: "shard0000”,"host”: ”<hostname>:27018” } ],
    "ok" : 1
}
Enabling Sharding

• Enable sharding on a database
   sh.enableSharding(“<dbname>”)

• Shard a collection with the given key
   sh.shardCollection(“<dbname>.people”,{“country”:1})

• Use a compound shard key to prevent duplicates
   sh.shardCollection(“<dbname>.cars”,{“year”:1, ”uniqueid”:1})
Mechanics
Partitioning

• Remember it's based on ranges
Chunk is a section of the entire range
Chunk splitting




• A chunk is split once it exceeds the maximum size
• There is no split point if all documents have the same shard
  key
• Chunk split is a logical operation (no data is moved)
Balancing




• Balancer is running on mongos
• Once the difference in chunks between the most dense shard
 and the least dense shard is above the migration threshold, a
 balancing round starts
Acquiring the Balancer Lock




• The balancer on mongos takes out a “balancer lock”
• To see the status of these locks:
   use config
   db.locks.find({ _id: “balancer” })
Moving the chunk




• The mongos sends a moveChunk command to source shard
• The source shard then notifies destination shard
• Destination shard starts pulling documents from source shard
Committing Migration




• When complete, destination shard updates config server
  - Provides new locations of the chunks
Cleanup




• Source shard deletes moved data
   - Must wait for open cursors to either close or time out
   - NoTimeout cursors may prevent the release of the lock
• The mongos releases the balancer lock after old chunks are
  deleted
Routing Requests
Cluster Request Routing

• Targeted Queries
• Scatter Gather Queries
• Scatter Gather Queries with Sort
Cluster Request Routing: Targeted
Query
Routable request received
Request routed to appropriate shard
Shard returns results
Mongos returns results to client
Cluster Request Routing: Non-Targeted
Query
Non-Targeted Request Received
Request sent to all shards
Shards return results to mongos
Mongos returns results to client
Cluster Request Routing: Non-Targeted
Query with Sort
Non-Targeted request with sort
received
Request sent to all shards
Query and sort performed locally
Shards return results to mongos
Mongos merges sorted results
Mongos returns results to client
Shard Key
Shard Key

• Shard key is immutable
• Shard key values are immutable
• Shard key must be indexed
• Shard key limited to 512 bytes in size
• Shard key used to route queries
   – Choose a field commonly used in queries

• Only shard key can be unique across shards
   – `_id` field is only unique within individual shard
Shard Key Considerations

• Cardinality
• Write Distribution
• Query Isolation
• Reliability
• Index Locality
Conclusion
Read/Write Throughput Exceeds I/O
Working Set Exceeds Physical
Memory
Sharding Enables Scale

• MongoDB‟s Auto-Sharding
  – Easy to Configure
  – Consistent Interface
  – Free and Open Source
• What‟s next?
  –   Schema Design @ 10:35am
  –   Replication @ 12:15pm
  –   Indexing @ 1:45pm
  –   Sharding @ 2:30pm
  –   Webinar: Technical Overview of MongoDB (March 7th)
  –   MongoDB User Group
• Resources
       https://education.10gen.com/
       http://www.10gen.com/presentations
       http://github.com/brandonblack/presentations
#MongoDBDays




Thank You
Brandon Black
Software Engineer, 10gen
@brandonmblack
Ad

More Related Content

What's hot (20)

Dom(document object model)
Dom(document object model)Dom(document object model)
Dom(document object model)
Partnered Health
 
Xml databases
Xml databasesXml databases
Xml databases
Srinivasan R
 
DBMS Notes: DDL DML DCL
DBMS Notes: DDL DML DCLDBMS Notes: DDL DML DCL
DBMS Notes: DDL DML DCL
Sreedhar Chowdam
 
MongoDB
MongoDBMongoDB
MongoDB
nikhil2807
 
Introduction to Design Pattern
Introduction to Design  PatternIntroduction to Design  Pattern
Introduction to Design Pattern
Sanae BEKKAR
 
An introduction to MongoDB
An introduction to MongoDBAn introduction to MongoDB
An introduction to MongoDB
César Trigo
 
database recovery techniques
database recovery techniques database recovery techniques
database recovery techniques
Kalhan Liyanage
 
C# Framework class library
C# Framework class libraryC# Framework class library
C# Framework class library
Prem Kumar Badri
 
Jdbc architecture and driver types ppt
Jdbc architecture and driver types pptJdbc architecture and driver types ppt
Jdbc architecture and driver types ppt
kamal kotecha
 
Relational Database Design
Relational Database DesignRelational Database Design
Relational Database Design
Archit Saxena
 
Hadoop Architecture
Hadoop ArchitectureHadoop Architecture
Hadoop Architecture
Dr. C.V. Suresh Babu
 
An Introduction To NoSQL & MongoDB
An Introduction To NoSQL & MongoDBAn Introduction To NoSQL & MongoDB
An Introduction To NoSQL & MongoDB
Lee Theobald
 
introduction to NOSQL Database
introduction to NOSQL Databaseintroduction to NOSQL Database
introduction to NOSQL Database
nehabsairam
 
Introduction to .NET Framework
Introduction to .NET FrameworkIntroduction to .NET Framework
Introduction to .NET Framework
Raghuveer Guthikonda
 
Introduction to ASP.NET
Introduction to ASP.NETIntroduction to ASP.NET
Introduction to ASP.NET
Rajkumarsoy
 
Introduction to MongoDB
Introduction to MongoDBIntroduction to MongoDB
Introduction to MongoDB
NodeXperts
 
Querying XML: XPath and XQuery
Querying XML: XPath and XQueryQuerying XML: XPath and XQuery
Querying XML: XPath and XQuery
Katrien Verbert
 
NOSQL- Presentation on NoSQL
NOSQL- Presentation on NoSQLNOSQL- Presentation on NoSQL
NOSQL- Presentation on NoSQL
Ramakant Soni
 
MYSQL - PHP Database Connectivity
MYSQL - PHP Database ConnectivityMYSQL - PHP Database Connectivity
MYSQL - PHP Database Connectivity
V.V.Vanniaperumal College for Women
 
Advanced mechanisms for dynamic content delivery
Advanced mechanisms for dynamic content deliveryAdvanced mechanisms for dynamic content delivery
Advanced mechanisms for dynamic content delivery
Aakash587
 
Dom(document object model)
Dom(document object model)Dom(document object model)
Dom(document object model)
Partnered Health
 
Introduction to Design Pattern
Introduction to Design  PatternIntroduction to Design  Pattern
Introduction to Design Pattern
Sanae BEKKAR
 
An introduction to MongoDB
An introduction to MongoDBAn introduction to MongoDB
An introduction to MongoDB
César Trigo
 
database recovery techniques
database recovery techniques database recovery techniques
database recovery techniques
Kalhan Liyanage
 
C# Framework class library
C# Framework class libraryC# Framework class library
C# Framework class library
Prem Kumar Badri
 
Jdbc architecture and driver types ppt
Jdbc architecture and driver types pptJdbc architecture and driver types ppt
Jdbc architecture and driver types ppt
kamal kotecha
 
Relational Database Design
Relational Database DesignRelational Database Design
Relational Database Design
Archit Saxena
 
An Introduction To NoSQL & MongoDB
An Introduction To NoSQL & MongoDBAn Introduction To NoSQL & MongoDB
An Introduction To NoSQL & MongoDB
Lee Theobald
 
introduction to NOSQL Database
introduction to NOSQL Databaseintroduction to NOSQL Database
introduction to NOSQL Database
nehabsairam
 
Introduction to ASP.NET
Introduction to ASP.NETIntroduction to ASP.NET
Introduction to ASP.NET
Rajkumarsoy
 
Introduction to MongoDB
Introduction to MongoDBIntroduction to MongoDB
Introduction to MongoDB
NodeXperts
 
Querying XML: XPath and XQuery
Querying XML: XPath and XQueryQuerying XML: XPath and XQuery
Querying XML: XPath and XQuery
Katrien Verbert
 
NOSQL- Presentation on NoSQL
NOSQL- Presentation on NoSQLNOSQL- Presentation on NoSQL
NOSQL- Presentation on NoSQL
Ramakant Soni
 
Advanced mechanisms for dynamic content delivery
Advanced mechanisms for dynamic content deliveryAdvanced mechanisms for dynamic content delivery
Advanced mechanisms for dynamic content delivery
Aakash587
 

Similar to Introduction to Sharding (20)

Introduction to Sharding
Introduction to ShardingIntroduction to Sharding
Introduction to Sharding
MongoDB
 
Sharding
ShardingSharding
Sharding
MongoDB
 
Sharding - Seoul 2012
Sharding - Seoul 2012Sharding - Seoul 2012
Sharding - Seoul 2012
MongoDB
 
Sharding
ShardingSharding
Sharding
MongoDB
 
Sharding
ShardingSharding
Sharding
MongoDB
 
MongoDB San Francisco 2013: Basic Sharding in MongoDB presented by Brandon Bl...
MongoDB San Francisco 2013: Basic Sharding in MongoDB presented by Brandon Bl...MongoDB San Francisco 2013: Basic Sharding in MongoDB presented by Brandon Bl...
MongoDB San Francisco 2013: Basic Sharding in MongoDB presented by Brandon Bl...
MongoDB
 
Webinar: Sharding
Webinar: ShardingWebinar: Sharding
Webinar: Sharding
MongoDB
 
Sharding Overview
Sharding OverviewSharding Overview
Sharding Overview
MongoDB
 
Basic Sharding in MongoDB presented by Shaun Verch
Basic Sharding in MongoDB presented by Shaun VerchBasic Sharding in MongoDB presented by Shaun Verch
Basic Sharding in MongoDB presented by Shaun Verch
MongoDB
 
MongoDB Sharding
MongoDB ShardingMongoDB Sharding
MongoDB Sharding
Rob Walters
 
Webinar: Serie Operazioni per la vostra applicazione - Sessione 6 - Installar...
Webinar: Serie Operazioni per la vostra applicazione - Sessione 6 - Installar...Webinar: Serie Operazioni per la vostra applicazione - Sessione 6 - Installar...
Webinar: Serie Operazioni per la vostra applicazione - Sessione 6 - Installar...
MongoDB
 
Back tobasicswebinar part6-rev.
Back tobasicswebinar part6-rev.Back tobasicswebinar part6-rev.
Back tobasicswebinar part6-rev.
MongoDB
 
MongoDB : Scaling, Security & Performance
MongoDB : Scaling, Security & PerformanceMongoDB : Scaling, Security & Performance
MongoDB : Scaling, Security & Performance
Sasidhar Gogulapati
 
Back to Basics: Build Something Big With MongoDB
Back to Basics: Build Something Big With MongoDB Back to Basics: Build Something Big With MongoDB
Back to Basics: Build Something Big With MongoDB
MongoDB
 
Scaling MongoDB - Presentation at MTP
Scaling MongoDB - Presentation at MTPScaling MongoDB - Presentation at MTP
Scaling MongoDB - Presentation at MTP
darkdata
 
Шардинг в MongoDB, Henrik Ingo (MongoDB)
Шардинг в MongoDB, Henrik Ingo (MongoDB)Шардинг в MongoDB, Henrik Ingo (MongoDB)
Шардинг в MongoDB, Henrik Ingo (MongoDB)
Ontico
 
Sharding in MongoDB Days 2013
Sharding in MongoDB Days 2013Sharding in MongoDB Days 2013
Sharding in MongoDB Days 2013
Randall Hunt
 
Sharding Methods for MongoDB
Sharding Methods for MongoDBSharding Methods for MongoDB
Sharding Methods for MongoDB
MongoDB
 
2014 05-07-fr - add dev series - session 6 - deploying your application-2
2014 05-07-fr - add dev series - session 6 - deploying your application-22014 05-07-fr - add dev series - session 6 - deploying your application-2
2014 05-07-fr - add dev series - session 6 - deploying your application-2
MongoDB
 
Mongodb sharding
Mongodb shardingMongodb sharding
Mongodb sharding
xiangrong
 
Introduction to Sharding
Introduction to ShardingIntroduction to Sharding
Introduction to Sharding
MongoDB
 
Sharding
ShardingSharding
Sharding
MongoDB
 
Sharding - Seoul 2012
Sharding - Seoul 2012Sharding - Seoul 2012
Sharding - Seoul 2012
MongoDB
 
Sharding
ShardingSharding
Sharding
MongoDB
 
Sharding
ShardingSharding
Sharding
MongoDB
 
MongoDB San Francisco 2013: Basic Sharding in MongoDB presented by Brandon Bl...
MongoDB San Francisco 2013: Basic Sharding in MongoDB presented by Brandon Bl...MongoDB San Francisco 2013: Basic Sharding in MongoDB presented by Brandon Bl...
MongoDB San Francisco 2013: Basic Sharding in MongoDB presented by Brandon Bl...
MongoDB
 
Webinar: Sharding
Webinar: ShardingWebinar: Sharding
Webinar: Sharding
MongoDB
 
Sharding Overview
Sharding OverviewSharding Overview
Sharding Overview
MongoDB
 
Basic Sharding in MongoDB presented by Shaun Verch
Basic Sharding in MongoDB presented by Shaun VerchBasic Sharding in MongoDB presented by Shaun Verch
Basic Sharding in MongoDB presented by Shaun Verch
MongoDB
 
MongoDB Sharding
MongoDB ShardingMongoDB Sharding
MongoDB Sharding
Rob Walters
 
Webinar: Serie Operazioni per la vostra applicazione - Sessione 6 - Installar...
Webinar: Serie Operazioni per la vostra applicazione - Sessione 6 - Installar...Webinar: Serie Operazioni per la vostra applicazione - Sessione 6 - Installar...
Webinar: Serie Operazioni per la vostra applicazione - Sessione 6 - Installar...
MongoDB
 
Back tobasicswebinar part6-rev.
Back tobasicswebinar part6-rev.Back tobasicswebinar part6-rev.
Back tobasicswebinar part6-rev.
MongoDB
 
MongoDB : Scaling, Security & Performance
MongoDB : Scaling, Security & PerformanceMongoDB : Scaling, Security & Performance
MongoDB : Scaling, Security & Performance
Sasidhar Gogulapati
 
Back to Basics: Build Something Big With MongoDB
Back to Basics: Build Something Big With MongoDB Back to Basics: Build Something Big With MongoDB
Back to Basics: Build Something Big With MongoDB
MongoDB
 
Scaling MongoDB - Presentation at MTP
Scaling MongoDB - Presentation at MTPScaling MongoDB - Presentation at MTP
Scaling MongoDB - Presentation at MTP
darkdata
 
Шардинг в MongoDB, Henrik Ingo (MongoDB)
Шардинг в MongoDB, Henrik Ingo (MongoDB)Шардинг в MongoDB, Henrik Ingo (MongoDB)
Шардинг в MongoDB, Henrik Ingo (MongoDB)
Ontico
 
Sharding in MongoDB Days 2013
Sharding in MongoDB Days 2013Sharding in MongoDB Days 2013
Sharding in MongoDB Days 2013
Randall Hunt
 
Sharding Methods for MongoDB
Sharding Methods for MongoDBSharding Methods for MongoDB
Sharding Methods for MongoDB
MongoDB
 
2014 05-07-fr - add dev series - session 6 - deploying your application-2
2014 05-07-fr - add dev series - session 6 - deploying your application-22014 05-07-fr - add dev series - session 6 - deploying your application-2
2014 05-07-fr - add dev series - session 6 - deploying your application-2
MongoDB
 
Mongodb sharding
Mongodb shardingMongodb sharding
Mongodb sharding
xiangrong
 
Ad

More from MongoDB (20)

MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB AtlasMongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB
 
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB
 
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDBMongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB
 
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series DataMongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB
 
MongoDB SoCal 2020: MongoDB Atlas Jump Start
 MongoDB SoCal 2020: MongoDB Atlas Jump Start MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB
 
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB
 
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB
 
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB
 
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your MindsetMongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas JumpstartMongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB
 
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB
 
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB
 
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & GolangMongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB
 
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB
 
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB
 
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB AtlasMongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB
 
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB
 
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDBMongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB
 
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series DataMongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB
 
MongoDB SoCal 2020: MongoDB Atlas Jump Start
 MongoDB SoCal 2020: MongoDB Atlas Jump Start MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB
 
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB
 
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB
 
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB
 
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your MindsetMongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas JumpstartMongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB
 
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB
 
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB
 
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & GolangMongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB
 
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB
 
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB
 
Ad

Introduction to Sharding

Editor's Notes

  • #4: Ops will be most interested in ConfigurationDev will be most interested in Mechanics
  • #6: Take this slide and toss it out the window for the combined sharding talk. It’s a nice intro, but it’s more effective to spend time talking about tag aware and shard keys if you’re trying to go beyond the intro talk.
  • #8: Indexes should be contained in working set.
  • #9: From mainframes, to RAC Oracle servers.. People solved problems by adding more resources to a single machine.
  • #10: Google was the first to demonstrate that a large scale operation could be had with high performance on commodity hardwareBuild - Document oriented database maps perfectly to object oriented languagesScale - MongoDB presents clear path to scalability that isn&apos;t ops intensive - Provides same interface for sharded cluster as single instance
  • #11: In 2005, two ways to achieve datastore scalability:Lots of money to purchase custom hardwareLots of money to develop custom software
  • #28: MongoDB 2.2 and later only need &lt;host&gt; and &lt;port&gt; for one member of the replica set
  • #31: This can be skipped for the intro talk, but might be good to include if you’re doing the combined sharding talk. Totally optional, you don’t really have enough time to do this topic justice but it might be worth a mention.
  • #33: Quick review from earlier.
  • #35: Once chunk size is reached, mongos asks mongod to split a chunk + internal function called splitVector()mongod counts number of documents on each side of split + based on avg. document size `db.stats()`Chunk split is a **logical** operation (no data has moved)Max on first chunk should be 14
  • #37: Balancer lock actually held on config server.
  • #38: Moved chunk on shard2 should be gray
  • #39: How do the other mongoses know that their configuration is out of date? When does the chunk version on the shard itself get updated?
  • #58: The mongos does not have to load the whole set into memory since each shard sorts locally. The mongos can just getMore from the shards as needed and incrementally return the results to the client.
  • #61: _id could be unique across shards if used as shard key.we could only guarantee uniqueness of (any) attributes if the keys are used as shard keys with unique attribute equals true
  • #62: Cardinality – Can your data be broken down enough?Query Isolation - query targeting to a specific shardReliability – shard outagesA good shard key can:Optimize routingMinimize (unnecessary) trafficAllow best scaling
  • #63: This section can be skipped for the intro talk, but might be good to include if you’re doing the combined sharding talk.
  • #64: Reliability = if we lost an entire shard what would be the effect on the system?For most frequently used/largest indexes, how are they partitioned across shards?
  • #65: Reliability = if we lost an entire shard what would be the effect on the system?For most frequently used/largest indexes, how are they partitioned across shards?
  • #66: Reliability = if we lost an entire shard what would be the effect on the system?For most frequently used/largest indexes, how are they partitioned across shards?
  • #67: Reliability = if we lost an entire shard what would be the effect on the system?For most frequently used/largest indexes, how are they partitioned across shards?
  • #68: Compound shard key, utilize already existing (used) index, partition chunk for &quot;power&quot; users.For those users more than one shard *may* need to be queried in a targeted query.Reliability = if we lost an entire shard what would be the effect on the system?For most frequently used/largest indexes, how are they partitioned across shards?
  • #71: Indexes should be contained in working set.