SlideShare a Scribd company logo
Introduction to
TensorFlow 2.0
Brad Miro - @bradmiro
Google
Spark + AI Summit Europe - October 2019
Deep Learning
Intro to TensorFlow
TensorFlow @ Google
2.0 and Examples
Getting Started
TensorFlow
Deep Learning
Doodles courtesy of @dalequark
Introduction to TensorFlow 2.0
Introduction to TensorFlow 2.0
Weight
Height
Examples of cats Examples of dogs
Introduction to TensorFlow 2.0
rgb(89,133,204)
Introduction to TensorFlow 2.0
Introduction to TensorFlow 2.0
Introduction to TensorFlow 2.0
Introduction to TensorFlow 2.0
Introduction to TensorFlow 2.0
You have lots of data (~ 10k+ examples)
Use Deep Learning When...
You have lots of data (~ 10k+ examples)
The problem is “complex” - speech, vision, natural language
Use Deep Learning When...
You have lots of data (~ 10k+ examples)
The problem is “complex” - speech, vision, natural language
The data is unstructured
Use Deep Learning When...
You have lots of data (~ 10k+ examples)
The problem is “complex” - speech, vision, natural language
The data is unstructured
You need the absolute “best” model
Use Deep Learning When...
You don’t have a large dataset
Don’t Use Deep Learning When...
You don’t have a large dataset
You are performing sufficiently well with traditional ML methods
Don’t Use Deep Learning When...
You don’t have a large dataset
You are performing sufficiently well with traditional ML methods
Your data is structured and you possess the proper domain knowledge
Don’t Use Deep Learning When...
You don’t have a large dataset
You are performing sufficiently well with traditional ML methods
Your data is structured and you possess the proper domain knowledge
Your model should be explainable
Don’t Use Deep Learning When...
Introduction to TensorFlow 2.0
Open source deep learning library
Utilities to help you write neural networks
GPU / TPU support
Released by Google in 2015
>2200 Contributors
2.0 released September 2019
TensorFlow
Introduction to TensorFlow 2.0
Introduction to TensorFlow 2.0
41,000,000+ 69,000+ 12,000+ 2,200+
downloads commits pull requests contributors
TensorFlow @ Google
AI-powered data
center efficiency
Global localization
in Google Maps
Portrait Mode on
Google Pixel
Introduction to TensorFlow 2.0
Introduction to TensorFlow 2.0
Introduction to TensorFlow 2.0
2.0
Scalable
Tested at Google-scale.
Deploy everywhere
Easy
Simplified APIs.
Focused on Keras and
eager execution
Powerful
Flexibility and performance.
Power to do cutting edge research
and scale to > 1 exaflops
TensorFlow 2.0
Deploy anywhere
JavaScriptEdge devicesServers
Introduction to TensorFlow 2.0
TF Probability
TF Agents
Tensor2Tensor
TF Ranking
TF Text
TF Federated
TF Privacy
...
import tensorflow as tf # Assuming TF 2.0 is installed
a = tf.constant([[1, 2],[3, 4]])
b = tf.matmul(a, a)
print(b)
# tf.Tensor( [[ 7 10] [15 22]], shape=(2, 2), dtype=int32)
print(type(b.numpy()))
# <class 'numpy.ndarray'>
You can use TF 2.0 like NumPy
What’s Gone
Session.run
tf.control_dependencies
tf.global_variables_initializer
tf.cond, tf.while_loop
tf.contrib
Specifics
What’s Gone
Session.run
tf.control_dependencies
tf.global_variables_initializer
tf.cond, tf.while_loop
tf.contrib
What’s New
Eager execution by default
tf.function
Keras as main high-level api
Specifics
tf.keras
Introduction to TensorFlow 2.0
Fast prototyping, advanced research, and production
keras.io = reference implementation
import keras
tf.keras = TensorFlow’s implementation (a superset, built-in to TF, no
need to install Keras separately)
from tensorflow import keras
Keras and tf.keras
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
For Beginners
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
For Beginners
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
For Beginners
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)
For Beginners
class MyModel(tf.keras.Model):
def __init__(self, num_classes=10):
super(MyModel, self).__init__(name='my_model')
self.dense_1 = layers.Dense(32, activation='relu')
self.dense_2 = layers.Dense(num_classes, activation='sigmoid')
For Experts
class MyModel(tf.keras.Model):
def __init__(self, num_classes=10):
super(MyModel, self).__init__(name='my_model')
self.dense_1 = layers.Dense(32, activation='relu')
self.dense_2 = layers.Dense(num_classes, activation='sigmoid')
def call(self, inputs):
# Define your forward pass here,
x = self.dense_1(inputs)
return self.dense_2(x)
For Experts
What’s the difference?
Symbolic (For Beginners)
Your model is a graph of layers
Any graph you compile will run
TensorFlow helps you debug by catching errors at compile time
Symbolic vs Imperative APIs
Symbolic (For Beginners)
Your model is a graph of layers
Any graph you compile will run
TensorFlow helps you debug by catching errors at compile time
Imperative (For Experts)
Your model is Python bytecode
Complete flexibility and control
Harder to debug / harder to maintain
Symbolic vs Imperative APIs
tf.function
lstm_cell = tf.keras.layers.LSTMCell(10)
def fn(input, state):
return lstm_cell(input, state)
input = tf.zeros([10, 10]); state = [tf.zeros([10, 10])] * 2
lstm_cell(input, state); fn(input, state) # warm up
# benchmark
timeit.timeit(lambda: lstm_cell(input, state), number=10) # 0.03
Let’s make this faster
lstm_cell = tf.keras.layers.LSTMCell(10)
@tf.function
def fn(input, state):
return lstm_cell(input, state)
input = tf.zeros([10, 10]); state = [tf.zeros([10, 10])] * 2
lstm_cell(input, state); fn(input, state) # warm up
# benchmark
timeit.timeit(lambda: lstm_cell(input, state), number=10) # 0.03
timeit.timeit(lambda: fn(input, state), number=10) # 0.004
Let’s make this faster
@tf.function
def f(x):
while tf.reduce_sum(x) > 1:
x = tf.tanh(x)
return x
# you never need to run this (unless curious)
print(tf.autograph.to_code(f))
AutoGraph makes this possible
def tf__f(x):
def loop_test(x_1):
with ag__.function_scope('loop_test'):
return ag__.gt(tf.reduce_sum(x_1), 1)
def loop_body(x_1):
with ag__.function_scope('loop_body'):
with ag__.utils.control_dependency_on_returns(tf.print(x_1)):
tf_1, x = ag__.utils.alias_tensors(tf, x_1)
x = tf_1.tanh(x)
return x,
x = ag__.while_stmt(loop_test, loop_body, (x,), (tf,))
return x
Generated code
tf.distribution.Strategy
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(64, input_shape=[10]),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')])
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
Going big: tf.distribute.Strategy
strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(64, input_shape=[10]),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')])
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
Going big: Multi-GPU
tensorflow_datasets
# Load data
import tensorflow_datasets as tfds
dataset = tfds.load(‘cats_vs_dogs', as_supervised=True)
mnist_train, mnist_test = dataset['train'], dataset['test']
def scale(image, label):
image = tf.cast(image, tf.float32)
image /= 255
return image, label
mnist_train = mnist_train.map(scale).batch(64)
mnist_test = mnist_test.map(scale).batch(64)
TensorFlow Datasets
● audio
○ "nsynth"
● image
○ "cifar10"
○ "diabetic_retinopathy_detection"
○ "imagenet2012"
○ "mnist"
● structured
○ "titanic"
● text
○ "imdb_reviews"
○ "lm1b"
○ "squad"
● translate
○ "wmt_translate_ende"
○ "wmt_translate_enfr"
● video
○ "bair_robot_pushing_small"
○ "moving_mnist"
○ "starcraft_video"
More at tensorflow.org/datasets
Transfer Learning
Introduction to TensorFlow 2.0
Introduction to TensorFlow 2.0
import tensorflow as tf
base_model = tf.keras.applications.SequentialMobileNetV2(
input_shape=(160, 160, 3),
include_top=False,
weights=’imagenet’)
base_model.trainable = False
model = tf.keras.models.Sequential([
base_model,
tf.keras.layers.GlobalAveragePooling2D(),
tf.keras.layers.Dense(1)
])
# Compile and fit
Transfer Learning
Image of TensorFlow Hub and serialized
Saved Model
Upgrading
Migration guides
tf.compat.v1 for backwards compatibility
tf_upgrade_v2 script
Upgrading
Introduction to TensorFlow 2.0
Getting Started
pip install tensorflow
TensorFlow 2.0
Introduction to TensorFlow 2.0
Intro to TensorFlow
for Deep Learning
Introduction to TensorFlow
for AI, ML and DL
coursera.org/learn/introduction-tensorflow udacity.com/tensorflow
New Courses
Introduction to TensorFlow 2.0
github.com/orgs/tensorflow/projects/4
Go build.
pip install tensorflow
tensorflow.org
tf.thanks!
Brad Miro - @bradmiro
tensorflow.org
Spark + AI Summit Europe - October 2019
80
Ad

More Related Content

What's hot (20)

Getting started with TensorFlow
Getting started with TensorFlowGetting started with TensorFlow
Getting started with TensorFlow
ElifTech
 
Tensorflow - Intro (2017)
Tensorflow - Intro (2017)Tensorflow - Intro (2017)
Tensorflow - Intro (2017)
Alessio Tonioni
 
NLP using transformers
NLP using transformers NLP using transformers
NLP using transformers
Arvind Devaraj
 
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
Simplilearn
 
Deep Learning: Recurrent Neural Network (Chapter 10)
Deep Learning: Recurrent Neural Network (Chapter 10) Deep Learning: Recurrent Neural Network (Chapter 10)
Deep Learning: Recurrent Neural Network (Chapter 10)
Larry Guo
 
Neural Networks with Google TensorFlow
Neural Networks with Google TensorFlowNeural Networks with Google TensorFlow
Neural Networks with Google TensorFlow
Darshan Patel
 
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
Simplilearn
 
Natural Language Processing with Python
Natural Language Processing with PythonNatural Language Processing with Python
Natural Language Processing with Python
Benjamin Bengfort
 
Introduction to Neural Networks in Tensorflow
Introduction to Neural Networks in TensorflowIntroduction to Neural Networks in Tensorflow
Introduction to Neural Networks in Tensorflow
Nicholas McClure
 
Deep learning with tensorflow
Deep learning with tensorflowDeep learning with tensorflow
Deep learning with tensorflow
Charmi Chokshi
 
Fine tune and deploy Hugging Face NLP models
Fine tune and deploy Hugging Face NLP modelsFine tune and deploy Hugging Face NLP models
Fine tune and deploy Hugging Face NLP models
OVHcloud
 
Convolutional Neural Network Models - Deep Learning
Convolutional Neural Network Models - Deep LearningConvolutional Neural Network Models - Deep Learning
Convolutional Neural Network Models - Deep Learning
Mohamed Loey
 
Introduction of Deep Learning
Introduction of Deep LearningIntroduction of Deep Learning
Introduction of Deep Learning
Myungjin Lee
 
General introduction to AI ML DL DS
General introduction to AI ML DL DSGeneral introduction to AI ML DL DS
General introduction to AI ML DL DS
Roopesh Kohad
 
PyTorch Introduction
PyTorch IntroductionPyTorch Introduction
PyTorch Introduction
Yash Kawdiya
 
Tutorial on Deep Generative Models
 Tutorial on Deep Generative Models Tutorial on Deep Generative Models
Tutorial on Deep Generative Models
MLReview
 
Pytorch
PytorchPytorch
Pytorch
ehsan tr
 
1.Introduction to deep learning
1.Introduction to deep learning1.Introduction to deep learning
1.Introduction to deep learning
KONGU ENGINEERING COLLEGE
 
Recurrent Neural Networks
Recurrent Neural NetworksRecurrent Neural Networks
Recurrent Neural Networks
Rakuten Group, Inc.
 
Deep learning ppt
Deep learning pptDeep learning ppt
Deep learning ppt
BalneSridevi
 
Getting started with TensorFlow
Getting started with TensorFlowGetting started with TensorFlow
Getting started with TensorFlow
ElifTech
 
Tensorflow - Intro (2017)
Tensorflow - Intro (2017)Tensorflow - Intro (2017)
Tensorflow - Intro (2017)
Alessio Tonioni
 
NLP using transformers
NLP using transformers NLP using transformers
NLP using transformers
Arvind Devaraj
 
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
Simplilearn
 
Deep Learning: Recurrent Neural Network (Chapter 10)
Deep Learning: Recurrent Neural Network (Chapter 10) Deep Learning: Recurrent Neural Network (Chapter 10)
Deep Learning: Recurrent Neural Network (Chapter 10)
Larry Guo
 
Neural Networks with Google TensorFlow
Neural Networks with Google TensorFlowNeural Networks with Google TensorFlow
Neural Networks with Google TensorFlow
Darshan Patel
 
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
Simplilearn
 
Natural Language Processing with Python
Natural Language Processing with PythonNatural Language Processing with Python
Natural Language Processing with Python
Benjamin Bengfort
 
Introduction to Neural Networks in Tensorflow
Introduction to Neural Networks in TensorflowIntroduction to Neural Networks in Tensorflow
Introduction to Neural Networks in Tensorflow
Nicholas McClure
 
Deep learning with tensorflow
Deep learning with tensorflowDeep learning with tensorflow
Deep learning with tensorflow
Charmi Chokshi
 
Fine tune and deploy Hugging Face NLP models
Fine tune and deploy Hugging Face NLP modelsFine tune and deploy Hugging Face NLP models
Fine tune and deploy Hugging Face NLP models
OVHcloud
 
Convolutional Neural Network Models - Deep Learning
Convolutional Neural Network Models - Deep LearningConvolutional Neural Network Models - Deep Learning
Convolutional Neural Network Models - Deep Learning
Mohamed Loey
 
Introduction of Deep Learning
Introduction of Deep LearningIntroduction of Deep Learning
Introduction of Deep Learning
Myungjin Lee
 
General introduction to AI ML DL DS
General introduction to AI ML DL DSGeneral introduction to AI ML DL DS
General introduction to AI ML DL DS
Roopesh Kohad
 
PyTorch Introduction
PyTorch IntroductionPyTorch Introduction
PyTorch Introduction
Yash Kawdiya
 
Tutorial on Deep Generative Models
 Tutorial on Deep Generative Models Tutorial on Deep Generative Models
Tutorial on Deep Generative Models
MLReview
 

Similar to Introduction to TensorFlow 2.0 (20)

Introduction to TensorFlow 2
Introduction to TensorFlow 2Introduction to TensorFlow 2
Introduction to TensorFlow 2
Oswald Campesato
 
Introduction to TensorFlow 2 and Keras
Introduction to TensorFlow 2 and KerasIntroduction to TensorFlow 2 and Keras
Introduction to TensorFlow 2 and Keras
Oswald Campesato
 
Boosting machine learning workflow with TensorFlow 2.0
Boosting machine learning workflow with TensorFlow 2.0Boosting machine learning workflow with TensorFlow 2.0
Boosting machine learning workflow with TensorFlow 2.0
Jeongkyu Shin
 
Natural language processing open seminar For Tensorflow usage
Natural language processing open seminar For Tensorflow usageNatural language processing open seminar For Tensorflow usage
Natural language processing open seminar For Tensorflow usage
hyunyoung Lee
 
Introduction to TensorFlow 2
Introduction to TensorFlow 2Introduction to TensorFlow 2
Introduction to TensorFlow 2
Oswald Campesato
 
H2 o berkeleydltf
H2 o berkeleydltfH2 o berkeleydltf
H2 o berkeleydltf
Oswald Campesato
 
Real Time Streaming Data with Kafka and TensorFlow (Yong Tang, MobileIron) Ka...
Real Time Streaming Data with Kafka and TensorFlow (Yong Tang, MobileIron) Ka...Real Time Streaming Data with Kafka and TensorFlow (Yong Tang, MobileIron) Ka...
Real Time Streaming Data with Kafka and TensorFlow (Yong Tang, MobileIron) Ka...
confluent
 
Deep Learning and TensorFlow
Deep Learning and TensorFlowDeep Learning and TensorFlow
Deep Learning and TensorFlow
Oswald Campesato
 
TensorFlow for IITians
TensorFlow for IITiansTensorFlow for IITians
TensorFlow for IITians
Ashish Bansal
 
Introduction to Deep Learning, Keras, and Tensorflow
Introduction to Deep Learning, Keras, and TensorflowIntroduction to Deep Learning, Keras, and Tensorflow
Introduction to Deep Learning, Keras, and Tensorflow
Oswald Campesato
 
Hands-on Learning with KubeFlow + Keras/TensorFlow 2.0 + TF Extended (TFX) + ...
Hands-on Learning with KubeFlow + Keras/TensorFlow 2.0 + TF Extended (TFX) + ...Hands-on Learning with KubeFlow + Keras/TensorFlow 2.0 + TF Extended (TFX) + ...
Hands-on Learning with KubeFlow + Keras/TensorFlow 2.0 + TF Extended (TFX) + ...
Chris Fregly
 
Deep Learning in Your Browser
Deep Learning in Your BrowserDeep Learning in Your Browser
Deep Learning in Your Browser
Oswald Campesato
 
Deep Learning, Scala, and Spark
Deep Learning, Scala, and SparkDeep Learning, Scala, and Spark
Deep Learning, Scala, and Spark
Oswald Campesato
 
Introduction to Deep Learning and TensorFlow
Introduction to Deep Learning and TensorFlowIntroduction to Deep Learning and TensorFlow
Introduction to Deep Learning and TensorFlow
Oswald Campesato
 
Intro to Deep Learning, TensorFlow, and tensorflow.js
Intro to Deep Learning, TensorFlow, and tensorflow.jsIntro to Deep Learning, TensorFlow, and tensorflow.js
Intro to Deep Learning, TensorFlow, and tensorflow.js
Oswald Campesato
 
TensorFlow Dev Summit 2017 요약
TensorFlow Dev Summit 2017 요약TensorFlow Dev Summit 2017 요약
TensorFlow Dev Summit 2017 요약
Jin Joong Kim
 
TensorFlow in Your Browser
TensorFlow in Your BrowserTensorFlow in Your Browser
TensorFlow in Your Browser
Oswald Campesato
 
Deep Learning in your Browser: powered by WebGL
Deep Learning in your Browser: powered by WebGLDeep Learning in your Browser: powered by WebGL
Deep Learning in your Browser: powered by WebGL
Oswald Campesato
 
Introduction to R for Data Science :: Session 8 [Intro to Text Mining in R, M...
Introduction to R for Data Science :: Session 8 [Intro to Text Mining in R, M...Introduction to R for Data Science :: Session 8 [Intro to Text Mining in R, M...
Introduction to R for Data Science :: Session 8 [Intro to Text Mining in R, M...
Goran S. Milovanovic
 
A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...
A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...
A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...
Databricks
 
Introduction to TensorFlow 2
Introduction to TensorFlow 2Introduction to TensorFlow 2
Introduction to TensorFlow 2
Oswald Campesato
 
Introduction to TensorFlow 2 and Keras
Introduction to TensorFlow 2 and KerasIntroduction to TensorFlow 2 and Keras
Introduction to TensorFlow 2 and Keras
Oswald Campesato
 
Boosting machine learning workflow with TensorFlow 2.0
Boosting machine learning workflow with TensorFlow 2.0Boosting machine learning workflow with TensorFlow 2.0
Boosting machine learning workflow with TensorFlow 2.0
Jeongkyu Shin
 
Natural language processing open seminar For Tensorflow usage
Natural language processing open seminar For Tensorflow usageNatural language processing open seminar For Tensorflow usage
Natural language processing open seminar For Tensorflow usage
hyunyoung Lee
 
Introduction to TensorFlow 2
Introduction to TensorFlow 2Introduction to TensorFlow 2
Introduction to TensorFlow 2
Oswald Campesato
 
Real Time Streaming Data with Kafka and TensorFlow (Yong Tang, MobileIron) Ka...
Real Time Streaming Data with Kafka and TensorFlow (Yong Tang, MobileIron) Ka...Real Time Streaming Data with Kafka and TensorFlow (Yong Tang, MobileIron) Ka...
Real Time Streaming Data with Kafka and TensorFlow (Yong Tang, MobileIron) Ka...
confluent
 
Deep Learning and TensorFlow
Deep Learning and TensorFlowDeep Learning and TensorFlow
Deep Learning and TensorFlow
Oswald Campesato
 
TensorFlow for IITians
TensorFlow for IITiansTensorFlow for IITians
TensorFlow for IITians
Ashish Bansal
 
Introduction to Deep Learning, Keras, and Tensorflow
Introduction to Deep Learning, Keras, and TensorflowIntroduction to Deep Learning, Keras, and Tensorflow
Introduction to Deep Learning, Keras, and Tensorflow
Oswald Campesato
 
Hands-on Learning with KubeFlow + Keras/TensorFlow 2.0 + TF Extended (TFX) + ...
Hands-on Learning with KubeFlow + Keras/TensorFlow 2.0 + TF Extended (TFX) + ...Hands-on Learning with KubeFlow + Keras/TensorFlow 2.0 + TF Extended (TFX) + ...
Hands-on Learning with KubeFlow + Keras/TensorFlow 2.0 + TF Extended (TFX) + ...
Chris Fregly
 
Deep Learning in Your Browser
Deep Learning in Your BrowserDeep Learning in Your Browser
Deep Learning in Your Browser
Oswald Campesato
 
Deep Learning, Scala, and Spark
Deep Learning, Scala, and SparkDeep Learning, Scala, and Spark
Deep Learning, Scala, and Spark
Oswald Campesato
 
Introduction to Deep Learning and TensorFlow
Introduction to Deep Learning and TensorFlowIntroduction to Deep Learning and TensorFlow
Introduction to Deep Learning and TensorFlow
Oswald Campesato
 
Intro to Deep Learning, TensorFlow, and tensorflow.js
Intro to Deep Learning, TensorFlow, and tensorflow.jsIntro to Deep Learning, TensorFlow, and tensorflow.js
Intro to Deep Learning, TensorFlow, and tensorflow.js
Oswald Campesato
 
TensorFlow Dev Summit 2017 요약
TensorFlow Dev Summit 2017 요약TensorFlow Dev Summit 2017 요약
TensorFlow Dev Summit 2017 요약
Jin Joong Kim
 
TensorFlow in Your Browser
TensorFlow in Your BrowserTensorFlow in Your Browser
TensorFlow in Your Browser
Oswald Campesato
 
Deep Learning in your Browser: powered by WebGL
Deep Learning in your Browser: powered by WebGLDeep Learning in your Browser: powered by WebGL
Deep Learning in your Browser: powered by WebGL
Oswald Campesato
 
Introduction to R for Data Science :: Session 8 [Intro to Text Mining in R, M...
Introduction to R for Data Science :: Session 8 [Intro to Text Mining in R, M...Introduction to R for Data Science :: Session 8 [Intro to Text Mining in R, M...
Introduction to R for Data Science :: Session 8 [Intro to Text Mining in R, M...
Goran S. Milovanovic
 
A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...
A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...
A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...
Databricks
 
Ad

More from Databricks (20)

DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 
DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 
Ad

Recently uploaded (20)

1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136
illuminati Agent uganda call+256776963507/0741506136
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
FPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptxFPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptx
ssuser4ef83d
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
Minions Want to eat presentacion muy linda
Minions Want to eat presentacion muy lindaMinions Want to eat presentacion muy linda
Minions Want to eat presentacion muy linda
CarlaAndradesSoler1
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
FPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptxFPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptx
ssuser4ef83d
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
Minions Want to eat presentacion muy linda
Minions Want to eat presentacion muy lindaMinions Want to eat presentacion muy linda
Minions Want to eat presentacion muy linda
CarlaAndradesSoler1
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 

Introduction to TensorFlow 2.0