SlideShare a Scribd company logo
IBM Watson Data Platform
and Open Data
27 February 2017
Margriet Groenendijk | Developer Advocate | IBM Watson Data Platform
@MargrietGr
https://medium.com/ibm-watson-data-lab
@MargrietGr
About me
Developer Advocate,
Data scientist
Previous
Research Fellow at
University of Exeter,
UK
PhD at VU University
Amsterdam, the
Netherlands
@MargrietGr
IBM Watson Data Platform
Connect Discover Accelerate
@MargrietGr
IBM Watson Data Platform
IBM Bluemix
https://console.ng.bluemix.net/
@MargrietGr
Bluemix
https://
console.ng.bluemix.net/
@MargrietGr
https://github.com/snowch/movie-recommender-demo
@MargrietGr
https://movie-
recommender-demo-
margrietgroenendijk-1234.
mybluemix.net/
@MargrietGr
@MargrietGr
@MargrietGr
@MargrietGr
@MargrietGr
APIs
https://github.com/MargrietGroenendijk/Bristol
https://github.com/MargrietGroenendijk/Bristol
Introduction to the IBM Watson Data Platform
@MargrietGr
Example : twitter
@MargrietGr
Example : Watson Tone Analyser
@MargrietGr
Emotion
Language
style
Social
propensities
Analyze how you are coming across to others
Cloudant
NoSQL
@MargrietGr
Cloudant is a database
id firstname lastname dob
1 John Smith 1970-01-01
2 Kate Jones 1971-12-25
{
"_id": "1",
"firstname": "John",
"lastname": "Smith",
"dob": "1970-01-01"
}
@MargrietGr
Cloudant is "schemaless"
{
"_id": "1",
"firstname": "John",
"lastname": "Smith",
"dob": "1970-01-01",
"email": "john.smith@gmail.com"
}
@MargrietGr
Cloudant is "schemaless"
{
"_id": "1",
"firstname": "John",
"lastname": "Smith",
"dob": "1970-01-01",
"email": "john.smith@gmail.com",
"confirmed": true
}
@MargrietGr
Cloudant is "schemaless"
{
"_id": "1",
"firstname": "John",
"lastname": "Smith",
"dob": "1970-01-01",
"email": "john.smith@gmail.com",
"confirmed": true,
"tags": ["tall", "glasses"]
}
@MargrietGr
Cloudant is "schemaless"
{
"_id": "1",
"firstname": "John",
"lastname": "Smith",
"dob": "1970-01-01",
"email": "john.smith@gmail.com",
"confirmed": true,
"tags": ["tall", "glasses"],
"address" : {
"number": 14,
"street": "Front Street",
"town": "Luton",
"postcode": "LU1 1AB"
}
}
@MargrietGr
Cloudant is built for the web
▪Store JSON Documents
▪Speaks an HTTP API
▪Lives on the web
@MargrietGr
Cloudant is fault tolerant
@MargrietGr
Cloudant is fault tolerant
@MargrietGr
Cloudant is resilient
"write"
@MargrietGr
Cloudant is resilient
"ok"
"write"
@MargrietGr
Cloudant is scalable
@MargrietGr
Cloudant replicates
@MargrietGr
Cloudant replicates
@MargrietGr
Cloudant replicates
@MargrietGr
Cloudant replicates
@MargrietGr
Runkeeper
@MargrietGr
@MargrietGr
Open Street Map Data
IBM Cloudant Use from
anywhere!
Daily updates
VM
daily cron
Python script
Always up to date!
Currently 12,467,460 POIs
@MargrietGr
wget -c http://download.geofabrik.de/europe/netherlands-
latest.osm.pbf
Several data sources - world, continent, country, city
or a user defined box
Several data formats for which free to use conversion
tools exist - pbf, osm, json, shp
Example:
@MargrietGr
Extract the POIs with osmosis
osmosis --read-pbf netherlands-latest.osm.pbf 
--tf accept-nodes 
aerialway=station 
aeroway=aerodrome,helipad,heliport 
amenity=* craft=* emergency=* 
highway=bus_stop,rest_area,services 
historic=* leisure=* office=* 
public_transport=stop_position,stop_area 
shop=* tourism=* 
--tf reject-ways --tf reject-relations 
--write-xml netherlands.nodes.osm
(easy to install with brew on Mac)
@MargrietGr
Some cleaning up with osmconvert
Convert from osm to json format with ogr2ogr
osmconvert $netherlands.nodes.osm
--drop-ways --drop-author --drop-relations
--drop-versions >$netherlands.poi.osm
ogr2ogr -f GeoJSON $netherlands.poi.json
$netherlands.poi.osm points
@MargrietGr
Upload to Cloudant with couchimport
export COUCH_URL="https://
username:password@username.cloudant.com"
cat $netherlands.poi.json | couchimport
--db poi-$netherlands --type json --jsonpath "features.*"
https://github.com/glynnbird/couchimport
IBM Cloudant
@MargrietGr
Examples from
https://console.ng.bluemix.net/docs/services/Cloudant/
api/cloudant-geo.html#cloudant-geospatial
@MargrietGr
@MargrietGr
UK Crime Data from https://data.police.uk/data/
@MargrietGr
https://opendata.cloudant.com/crimes-uk/_design/
spatial/_geo/newGeoIndex?
bbox=-2.600283622741699%2C51.44886539765683%2C-2.59620
66650390625%2C51.4533851454499&limit=20&relation=conta
ins
@MargrietGr
Python - requests
dashDB
Data warehouse
@MargrietGr
Add the dashDB service in Bluemix
Add a
service
Search for
dashDB
@MargrietGr
@MargrietGr
3
1
2
posted:2016-08-01,2016-10-01
followers_count:3000 friends_count: 3000
(weather OR sun OR sunny OR rain OR hail
OR storm OR rainy OR drought OR flood OR
hurricane OR tornado OR cold OR snow OR
drizzle OR cloudy OR thunder OR lightning
OR wind OR windy OR heatwave)
REST API docs:
https://new-console.ng.bluemix.net/docs/
services/Twitter/
twitter_rest_apis.html#rest_apis
Search for tweets
4 Select table
Use an existing service
@MargrietGr
Apache Spark
@MargrietGr
Apache Spark
@MargrietGr
@MargrietGr
RDDs : Resilient Distributed Datasets
Data does not have to fit on a single machine
Data is separated into partitions
Creation of RDDs
Load an external dataset
Distribute a collection of objects
Transformations construct a new RDD from a previous one (lazy!)
Actions compute a result based on an RDD
@MargrietGr
Load tweets from dashDB with Spark SQL
@MargrietGr
Clean data, summarise and load into pandas DataFrame
IBM Data Science
Experience
datascience.ibm.com
@MargrietGr
Getting started
▪ Go to datascience.ibm.com and sign in with your Bluemix account when you have one, else
sign up for one at the top right of the screen
Create a project
▪ Create New project, click on the link in top of the screen
▪ Or go to the My Projects in the menu on the left of the screen and click Create New Project
here
Create a project
▪ Name the Project
▪ Choose a Spark Service
▪ Choose an Object Storage
▪ Click Create
Add collaborators
▪ Click add collaborator
▪ Search for your project members
▪ Select Permission
Add a notebook
▪ Click add notebooks
Add a notebook
▪ Click add notebooks
▪ Pick your favourite:
▪ Python 2
▪ Scala
▪ R
▪ Choose Spark 1.6 or 2.0
▪ Click Create Notebook
Let’s write some code
▪ Click the pen icon to start adding code (edit mode)
▪ When collaborating only one person can edit, others can add comments to the notebook
when in view mode
@MargrietGr
Example : Bristol open data
@MargrietGr
Object-store
@MargrietGr
Python package PixieDust
@MargrietGr
Watson Machine Learning
@MargrietGr
IBM Watson Data Platform
Bluemix
Data storage
Apps
Watson APIs
Weather
Data Science Experience
Watson Machine Learning
Watson Analytics
Thanks!
https://github.com/MargrietGroenendijk/Bristol
http://www.slideshare.net/MargrietGroenendijk/presentations
@MargrietGr
https://medium.com/ibm-watson-data-lab
Ad

More Related Content

What's hot (20)

Airline Reservations and Routing: A Graph Use Case
Airline Reservations and Routing: A Graph Use CaseAirline Reservations and Routing: A Graph Use Case
Airline Reservations and Routing: A Graph Use Case
Jason Plurad
 
Graph Computing with JanusGraph
Graph Computing with JanusGraphGraph Computing with JanusGraph
Graph Computing with JanusGraph
Jason Plurad
 
This week in Neo4j - 21st October 2017
This week in Neo4j - 21st October 2017This week in Neo4j - 21st October 2017
This week in Neo4j - 21st October 2017
Neo4j
 
Janus graph lookingbackwardreachingforward
Janus graph lookingbackwardreachingforwardJanus graph lookingbackwardreachingforward
Janus graph lookingbackwardreachingforward
Demai Ni
 
JanusGraph: Looking Backward, Reaching Forward
JanusGraph: Looking Backward, Reaching ForwardJanusGraph: Looking Backward, Reaching Forward
JanusGraph: Looking Backward, Reaching Forward
Jason Plurad
 
R, Spark, Tensorflow, H20.ai Applied to Streaming Analytics
R, Spark, Tensorflow, H20.ai Applied to Streaming AnalyticsR, Spark, Tensorflow, H20.ai Applied to Streaming Analytics
R, Spark, Tensorflow, H20.ai Applied to Streaming Analytics
Kai Wähner
 
Powers of Ten Redux
Powers of Ten ReduxPowers of Ten Redux
Powers of Ten Redux
Jason Plurad
 
Handle insane devices traffic using Google Cloud Platform - Andrea Ulisse - C...
Handle insane devices traffic using Google Cloud Platform - Andrea Ulisse - C...Handle insane devices traffic using Google Cloud Platform - Andrea Ulisse - C...
Handle insane devices traffic using Google Cloud Platform - Andrea Ulisse - C...
Codemotion
 
Big Data - part 5/7 of "7 modern trends that every IT Pro should know about"
Big Data - part 5/7 of "7 modern trends that every IT Pro should know about"Big Data - part 5/7 of "7 modern trends that every IT Pro should know about"
Big Data - part 5/7 of "7 modern trends that every IT Pro should know about"
Ibrahim Muhammadi
 
Quix presto ide, presto summit IL
Quix presto ide, presto summit ILQuix presto ide, presto summit IL
Quix presto ide, presto summit IL
Ori Reshef
 
Hadoop World - Oct 2009
Hadoop World - Oct 2009Hadoop World - Oct 2009
Hadoop World - Oct 2009
Derek Gottfrid
 
Hw09 Counting And Clustering And Other Data Tricks
Hw09   Counting And Clustering And Other Data TricksHw09   Counting And Clustering And Other Data Tricks
Hw09 Counting And Clustering And Other Data Tricks
Cloudera, Inc.
 
Data Visualization for the Web - How to Get Started
Data Visualization for the Web - How to Get StartedData Visualization for the Web - How to Get Started
Data Visualization for the Web - How to Get Started
Christopher Conlan
 
Flink Forward Berlin 2018: Tobias Lindener - "Approximate standing queries on...
Flink Forward Berlin 2018: Tobias Lindener - "Approximate standing queries on...Flink Forward Berlin 2018: Tobias Lindener - "Approximate standing queries on...
Flink Forward Berlin 2018: Tobias Lindener - "Approximate standing queries on...
Flink Forward
 
Neo4j - Rik Van Bruggen
Neo4j - Rik Van BruggenNeo4j - Rik Van Bruggen
Neo4j - Rik Van Bruggen
bigdatalondon
 
This week in Neo4j -13th January 2018
This week in Neo4j -13th January 2018This week in Neo4j -13th January 2018
This week in Neo4j -13th January 2018
Neo4j
 
Flink Forward Berlin 2018: Henri Heiskanen - "How to keep our flock happy wit...
Flink Forward Berlin 2018: Henri Heiskanen - "How to keep our flock happy wit...Flink Forward Berlin 2018: Henri Heiskanen - "How to keep our flock happy wit...
Flink Forward Berlin 2018: Henri Heiskanen - "How to keep our flock happy wit...
Flink Forward
 
Daho.am meetup kubernetes evolution @abi
Daho.am meetup   kubernetes evolution @abiDaho.am meetup   kubernetes evolution @abi
Daho.am meetup kubernetes evolution @abi
Ovidiu Hutuleac
 
Visualising and Linking Open Data from Multiple Sources
Visualising and Linking Open Data from Multiple SourcesVisualising and Linking Open Data from Multiple Sources
Visualising and Linking Open Data from Multiple Sources
Data Driven Innovation
 
D'Onofrio, Claudio: ICOS Data at Your Fingertips
D'Onofrio, Claudio: ICOS Data at Your FingertipsD'Onofrio, Claudio: ICOS Data at Your Fingertips
D'Onofrio, Claudio: ICOS Data at Your Fingertips
Integrated Carbon Observation System (ICOS)
 
Airline Reservations and Routing: A Graph Use Case
Airline Reservations and Routing: A Graph Use CaseAirline Reservations and Routing: A Graph Use Case
Airline Reservations and Routing: A Graph Use Case
Jason Plurad
 
Graph Computing with JanusGraph
Graph Computing with JanusGraphGraph Computing with JanusGraph
Graph Computing with JanusGraph
Jason Plurad
 
This week in Neo4j - 21st October 2017
This week in Neo4j - 21st October 2017This week in Neo4j - 21st October 2017
This week in Neo4j - 21st October 2017
Neo4j
 
Janus graph lookingbackwardreachingforward
Janus graph lookingbackwardreachingforwardJanus graph lookingbackwardreachingforward
Janus graph lookingbackwardreachingforward
Demai Ni
 
JanusGraph: Looking Backward, Reaching Forward
JanusGraph: Looking Backward, Reaching ForwardJanusGraph: Looking Backward, Reaching Forward
JanusGraph: Looking Backward, Reaching Forward
Jason Plurad
 
R, Spark, Tensorflow, H20.ai Applied to Streaming Analytics
R, Spark, Tensorflow, H20.ai Applied to Streaming AnalyticsR, Spark, Tensorflow, H20.ai Applied to Streaming Analytics
R, Spark, Tensorflow, H20.ai Applied to Streaming Analytics
Kai Wähner
 
Powers of Ten Redux
Powers of Ten ReduxPowers of Ten Redux
Powers of Ten Redux
Jason Plurad
 
Handle insane devices traffic using Google Cloud Platform - Andrea Ulisse - C...
Handle insane devices traffic using Google Cloud Platform - Andrea Ulisse - C...Handle insane devices traffic using Google Cloud Platform - Andrea Ulisse - C...
Handle insane devices traffic using Google Cloud Platform - Andrea Ulisse - C...
Codemotion
 
Big Data - part 5/7 of "7 modern trends that every IT Pro should know about"
Big Data - part 5/7 of "7 modern trends that every IT Pro should know about"Big Data - part 5/7 of "7 modern trends that every IT Pro should know about"
Big Data - part 5/7 of "7 modern trends that every IT Pro should know about"
Ibrahim Muhammadi
 
Quix presto ide, presto summit IL
Quix presto ide, presto summit ILQuix presto ide, presto summit IL
Quix presto ide, presto summit IL
Ori Reshef
 
Hadoop World - Oct 2009
Hadoop World - Oct 2009Hadoop World - Oct 2009
Hadoop World - Oct 2009
Derek Gottfrid
 
Hw09 Counting And Clustering And Other Data Tricks
Hw09   Counting And Clustering And Other Data TricksHw09   Counting And Clustering And Other Data Tricks
Hw09 Counting And Clustering And Other Data Tricks
Cloudera, Inc.
 
Data Visualization for the Web - How to Get Started
Data Visualization for the Web - How to Get StartedData Visualization for the Web - How to Get Started
Data Visualization for the Web - How to Get Started
Christopher Conlan
 
Flink Forward Berlin 2018: Tobias Lindener - "Approximate standing queries on...
Flink Forward Berlin 2018: Tobias Lindener - "Approximate standing queries on...Flink Forward Berlin 2018: Tobias Lindener - "Approximate standing queries on...
Flink Forward Berlin 2018: Tobias Lindener - "Approximate standing queries on...
Flink Forward
 
Neo4j - Rik Van Bruggen
Neo4j - Rik Van BruggenNeo4j - Rik Van Bruggen
Neo4j - Rik Van Bruggen
bigdatalondon
 
This week in Neo4j -13th January 2018
This week in Neo4j -13th January 2018This week in Neo4j -13th January 2018
This week in Neo4j -13th January 2018
Neo4j
 
Flink Forward Berlin 2018: Henri Heiskanen - "How to keep our flock happy wit...
Flink Forward Berlin 2018: Henri Heiskanen - "How to keep our flock happy wit...Flink Forward Berlin 2018: Henri Heiskanen - "How to keep our flock happy wit...
Flink Forward Berlin 2018: Henri Heiskanen - "How to keep our flock happy wit...
Flink Forward
 
Daho.am meetup kubernetes evolution @abi
Daho.am meetup   kubernetes evolution @abiDaho.am meetup   kubernetes evolution @abi
Daho.am meetup kubernetes evolution @abi
Ovidiu Hutuleac
 
Visualising and Linking Open Data from Multiple Sources
Visualising and Linking Open Data from Multiple SourcesVisualising and Linking Open Data from Multiple Sources
Visualising and Linking Open Data from Multiple Sources
Data Driven Innovation
 

Viewers also liked (20)

IBM Watson Overview
IBM Watson OverviewIBM Watson Overview
IBM Watson Overview
Penn State EdTech Network
 
Process Mining based on the Internet of Events
Process Mining based on the Internet of EventsProcess Mining based on the Internet of Events
Process Mining based on the Internet of Events
Rising Media Ltd.
 
ICBM 산업동향과 IoT 기반의 사업전략
ICBM 산업동향과 IoT 기반의 사업전략ICBM 산업동향과 IoT 기반의 사업전략
ICBM 산업동향과 IoT 기반의 사업전략
Hakyong Kim
 
Introduction to Bluemix
Introduction to BluemixIntroduction to Bluemix
Introduction to Bluemix
Penn State EdTech Network
 
Deloitte disruption ahead IBM Watson
Deloitte disruption ahead IBM WatsonDeloitte disruption ahead IBM Watson
Deloitte disruption ahead IBM Watson
Dean Bonehill ♠Technology for Business♠
 
IBM Watson Analytics Presentation
IBM Watson Analytics PresentationIBM Watson Analytics Presentation
IBM Watson Analytics Presentation
Ian Balina
 
Beyond Keyword Search with IBM Watson Explorer Webinar Deck
Beyond Keyword Search with IBM Watson Explorer Webinar DeckBeyond Keyword Search with IBM Watson Explorer Webinar Deck
Beyond Keyword Search with IBM Watson Explorer Webinar Deck
MC+A
 
Putting IBM Watson to Work.. Saxena
Putting IBM Watson to Work.. SaxenaPutting IBM Watson to Work.. Saxena
Putting IBM Watson to Work.. Saxena
Manoj Saxena
 
All Models Are Wrong, But Some Are Useful: 6 Lessons for Making Predictive An...
All Models Are Wrong, But Some Are Useful: 6 Lessons for Making Predictive An...All Models Are Wrong, But Some Are Useful: 6 Lessons for Making Predictive An...
All Models Are Wrong, But Some Are Useful: 6 Lessons for Making Predictive An...
Brian Mac Namee
 
Agile Data Science 2.0 - Big Data Science Meetup
Agile Data Science 2.0 - Big Data Science MeetupAgile Data Science 2.0 - Big Data Science Meetup
Agile Data Science 2.0 - Big Data Science Meetup
Russell Jurney
 
Connecting and Visualising Open Data from Multiple Sources
Connecting and Visualising Open Data from Multiple SourcesConnecting and Visualising Open Data from Multiple Sources
Connecting and Visualising Open Data from Multiple Sources
Margriet Groenendijk
 
Agile and continuous delivery – How IBM Watson Workspace is built
Agile and continuous delivery – How IBM Watson Workspace is builtAgile and continuous delivery – How IBM Watson Workspace is built
Agile and continuous delivery – How IBM Watson Workspace is built
Vincent Burckhardt
 
Watson API Use Case Demos for the Nittany Watson Challenge
Watson API Use Case Demos for the Nittany Watson ChallengeWatson API Use Case Demos for the Nittany Watson Challenge
Watson API Use Case Demos for the Nittany Watson Challenge
Penn State EdTech Network
 
IBM Watson Question-Answering System and Cognitive Computing
IBM Watson Question-Answering System and Cognitive ComputingIBM Watson Question-Answering System and Cognitive Computing
IBM Watson Question-Answering System and Cognitive Computing
Rakuten Group, Inc.
 
Ml, AI and IBM Watson - 101 for Business
Ml, AI  and IBM Watson - 101 for BusinessMl, AI  and IBM Watson - 101 for Business
Ml, AI and IBM Watson - 101 for Business
Jouko Poutanen
 
Smart Industry 4.0: IBM Watson IoT in de praktijk
Smart Industry 4.0: IBM Watson IoT in de praktijkSmart Industry 4.0: IBM Watson IoT in de praktijk
Smart Industry 4.0: IBM Watson IoT in de praktijk
IoT Academy
 
IBM Watson Ecosystem roadshow - Chicago 4-2-14
IBM Watson Ecosystem roadshow - Chicago 4-2-14IBM Watson Ecosystem roadshow - Chicago 4-2-14
IBM Watson Ecosystem roadshow - Chicago 4-2-14
cheribergeron
 
Generative adversarial networks
Generative adversarial networksGenerative adversarial networks
Generative adversarial networks
남주 김
 
IBM Watson Content Analytics: Discover Hidden Value in Your Unstructured Data
IBM Watson Content Analytics: Discover Hidden Value in Your Unstructured DataIBM Watson Content Analytics: Discover Hidden Value in Your Unstructured Data
IBM Watson Content Analytics: Discover Hidden Value in Your Unstructured Data
Perficient, Inc.
 
Hype vs. Reality: The AI Explainer
Hype vs. Reality: The AI ExplainerHype vs. Reality: The AI Explainer
Hype vs. Reality: The AI Explainer
Luminary Labs
 
Process Mining based on the Internet of Events
Process Mining based on the Internet of EventsProcess Mining based on the Internet of Events
Process Mining based on the Internet of Events
Rising Media Ltd.
 
ICBM 산업동향과 IoT 기반의 사업전략
ICBM 산업동향과 IoT 기반의 사업전략ICBM 산업동향과 IoT 기반의 사업전략
ICBM 산업동향과 IoT 기반의 사업전략
Hakyong Kim
 
IBM Watson Analytics Presentation
IBM Watson Analytics PresentationIBM Watson Analytics Presentation
IBM Watson Analytics Presentation
Ian Balina
 
Beyond Keyword Search with IBM Watson Explorer Webinar Deck
Beyond Keyword Search with IBM Watson Explorer Webinar DeckBeyond Keyword Search with IBM Watson Explorer Webinar Deck
Beyond Keyword Search with IBM Watson Explorer Webinar Deck
MC+A
 
Putting IBM Watson to Work.. Saxena
Putting IBM Watson to Work.. SaxenaPutting IBM Watson to Work.. Saxena
Putting IBM Watson to Work.. Saxena
Manoj Saxena
 
All Models Are Wrong, But Some Are Useful: 6 Lessons for Making Predictive An...
All Models Are Wrong, But Some Are Useful: 6 Lessons for Making Predictive An...All Models Are Wrong, But Some Are Useful: 6 Lessons for Making Predictive An...
All Models Are Wrong, But Some Are Useful: 6 Lessons for Making Predictive An...
Brian Mac Namee
 
Agile Data Science 2.0 - Big Data Science Meetup
Agile Data Science 2.0 - Big Data Science MeetupAgile Data Science 2.0 - Big Data Science Meetup
Agile Data Science 2.0 - Big Data Science Meetup
Russell Jurney
 
Connecting and Visualising Open Data from Multiple Sources
Connecting and Visualising Open Data from Multiple SourcesConnecting and Visualising Open Data from Multiple Sources
Connecting and Visualising Open Data from Multiple Sources
Margriet Groenendijk
 
Agile and continuous delivery – How IBM Watson Workspace is built
Agile and continuous delivery – How IBM Watson Workspace is builtAgile and continuous delivery – How IBM Watson Workspace is built
Agile and continuous delivery – How IBM Watson Workspace is built
Vincent Burckhardt
 
Watson API Use Case Demos for the Nittany Watson Challenge
Watson API Use Case Demos for the Nittany Watson ChallengeWatson API Use Case Demos for the Nittany Watson Challenge
Watson API Use Case Demos for the Nittany Watson Challenge
Penn State EdTech Network
 
IBM Watson Question-Answering System and Cognitive Computing
IBM Watson Question-Answering System and Cognitive ComputingIBM Watson Question-Answering System and Cognitive Computing
IBM Watson Question-Answering System and Cognitive Computing
Rakuten Group, Inc.
 
Ml, AI and IBM Watson - 101 for Business
Ml, AI  and IBM Watson - 101 for BusinessMl, AI  and IBM Watson - 101 for Business
Ml, AI and IBM Watson - 101 for Business
Jouko Poutanen
 
Smart Industry 4.0: IBM Watson IoT in de praktijk
Smart Industry 4.0: IBM Watson IoT in de praktijkSmart Industry 4.0: IBM Watson IoT in de praktijk
Smart Industry 4.0: IBM Watson IoT in de praktijk
IoT Academy
 
IBM Watson Ecosystem roadshow - Chicago 4-2-14
IBM Watson Ecosystem roadshow - Chicago 4-2-14IBM Watson Ecosystem roadshow - Chicago 4-2-14
IBM Watson Ecosystem roadshow - Chicago 4-2-14
cheribergeron
 
Generative adversarial networks
Generative adversarial networksGenerative adversarial networks
Generative adversarial networks
남주 김
 
IBM Watson Content Analytics: Discover Hidden Value in Your Unstructured Data
IBM Watson Content Analytics: Discover Hidden Value in Your Unstructured DataIBM Watson Content Analytics: Discover Hidden Value in Your Unstructured Data
IBM Watson Content Analytics: Discover Hidden Value in Your Unstructured Data
Perficient, Inc.
 
Hype vs. Reality: The AI Explainer
Hype vs. Reality: The AI ExplainerHype vs. Reality: The AI Explainer
Hype vs. Reality: The AI Explainer
Luminary Labs
 
Ad

Similar to Introduction to the IBM Watson Data Platform (20)

There is something about serverless
There is something about serverlessThere is something about serverless
There is something about serverless
gjdevos
 
Perchè potresti aver bisogno di un database NoSQL anche se non sei Google o F...
Perchè potresti aver bisogno di un database NoSQL anche se non sei Google o F...Perchè potresti aver bisogno di un database NoSQL anche se non sei Google o F...
Perchè potresti aver bisogno di un database NoSQL anche se non sei Google o F...
Codemotion
 
wotxr-20190320rzr
wotxr-20190320rzrwotxr-20190320rzr
wotxr-20190320rzr
Phil www.rzr.online.fr
 
使用 Raspberry pi + fluentd + gcp cloud logging, big query 做iot 資料搜集與分析
使用 Raspberry pi + fluentd + gcp cloud logging, big query 做iot 資料搜集與分析使用 Raspberry pi + fluentd + gcp cloud logging, big query 做iot 資料搜集與分析
使用 Raspberry pi + fluentd + gcp cloud logging, big query 做iot 資料搜集與分析
Simon Su
 
«Что такое serverless-архитектура и как с ней жить?» Николай Марков, Aligned ...
«Что такое serverless-архитектура и как с ней жить?» Николай Марков, Aligned ...«Что такое serverless-архитектура и как с ней жить?» Николай Марков, Aligned ...
«Что такое serverless-архитектура и как с ней жить?» Николай Марков, Aligned ...
it-people
 
Building Web Mobile App that don’t suck - FITC Web Unleashed - 2014-09-18
Building Web Mobile App that don’t suck - FITC Web Unleashed - 2014-09-18Building Web Mobile App that don’t suck - FITC Web Unleashed - 2014-09-18
Building Web Mobile App that don’t suck - FITC Web Unleashed - 2014-09-18
Frédéric Harper
 
Serverless? How (not) to develop, deploy and operate serverless applications.
Serverless? How (not) to develop, deploy and operate serverless applications.Serverless? How (not) to develop, deploy and operate serverless applications.
Serverless? How (not) to develop, deploy and operate serverless applications.
gjdevos
 
webthing-iotjs-tizenrt-cdl2018-20181117rzr
webthing-iotjs-tizenrt-cdl2018-20181117rzrwebthing-iotjs-tizenrt-cdl2018-20181117rzr
webthing-iotjs-tizenrt-cdl2018-20181117rzr
Phil www.rzr.online.fr
 
Rapid Application Development with WSO2 Platform
Rapid Application Development with WSO2 PlatformRapid Application Development with WSO2 Platform
Rapid Application Development with WSO2 Platform
WSO2
 
From localhost to the cloud: A Journey of Deployments
From localhost to the cloud: A Journey of DeploymentsFrom localhost to the cloud: A Journey of Deployments
From localhost to the cloud: A Journey of Deployments
Tegar Imansyah
 
Version Control in Machine Learning + AI (Stanford)
Version Control in Machine Learning + AI (Stanford)Version Control in Machine Learning + AI (Stanford)
Version Control in Machine Learning + AI (Stanford)
Anand Sampat
 
GTLAB Installation Tutorial for SciDAC 2009
GTLAB Installation Tutorial for SciDAC 2009GTLAB Installation Tutorial for SciDAC 2009
GTLAB Installation Tutorial for SciDAC 2009
marpierc
 
The DiSo Project and the Open Web
The DiSo Project and the Open WebThe DiSo Project and the Open Web
The DiSo Project and the Open Web
Chris Messina
 
When it all GOes right
When it all GOes rightWhen it all GOes right
When it all GOes right
Pavlo Golub
 
Stick to the rules - Consumer Driven Contracts. 2015.07 Confitura
Stick to the rules - Consumer Driven Contracts. 2015.07 ConfituraStick to the rules - Consumer Driven Contracts. 2015.07 Confitura
Stick to the rules - Consumer Driven Contracts. 2015.07 Confitura
Marcin Grzejszczak
 
GDG DevFest Romania - Architecting for the Google Cloud Platform
GDG DevFest Romania - Architecting for the Google Cloud PlatformGDG DevFest Romania - Architecting for the Google Cloud Platform
GDG DevFest Romania - Architecting for the Google Cloud Platform
Márton Kodok
 
webthing-iotjs-20181027rzr
webthing-iotjs-20181027rzrwebthing-iotjs-20181027rzr
webthing-iotjs-20181027rzr
Phil www.rzr.online.fr
 
Go bei der 4Com GmbH & Co. KG
Go bei der 4Com GmbH & Co. KGGo bei der 4Com GmbH & Co. KG
Go bei der 4Com GmbH & Co. KG
Jonas Riedel
 
Open Source - NOVALUG January 2019
Open Source  - NOVALUG January 2019Open Source  - NOVALUG January 2019
Open Source - NOVALUG January 2019
plarsen67
 
MongoDB Europe 2016 - Warehousing MongoDB Data using Apache Beam and BigQuery
MongoDB Europe 2016 - Warehousing MongoDB Data using Apache Beam and BigQueryMongoDB Europe 2016 - Warehousing MongoDB Data using Apache Beam and BigQuery
MongoDB Europe 2016 - Warehousing MongoDB Data using Apache Beam and BigQuery
MongoDB
 
There is something about serverless
There is something about serverlessThere is something about serverless
There is something about serverless
gjdevos
 
Perchè potresti aver bisogno di un database NoSQL anche se non sei Google o F...
Perchè potresti aver bisogno di un database NoSQL anche se non sei Google o F...Perchè potresti aver bisogno di un database NoSQL anche se non sei Google o F...
Perchè potresti aver bisogno di un database NoSQL anche se non sei Google o F...
Codemotion
 
使用 Raspberry pi + fluentd + gcp cloud logging, big query 做iot 資料搜集與分析
使用 Raspberry pi + fluentd + gcp cloud logging, big query 做iot 資料搜集與分析使用 Raspberry pi + fluentd + gcp cloud logging, big query 做iot 資料搜集與分析
使用 Raspberry pi + fluentd + gcp cloud logging, big query 做iot 資料搜集與分析
Simon Su
 
«Что такое serverless-архитектура и как с ней жить?» Николай Марков, Aligned ...
«Что такое serverless-архитектура и как с ней жить?» Николай Марков, Aligned ...«Что такое serverless-архитектура и как с ней жить?» Николай Марков, Aligned ...
«Что такое serverless-архитектура и как с ней жить?» Николай Марков, Aligned ...
it-people
 
Building Web Mobile App that don’t suck - FITC Web Unleashed - 2014-09-18
Building Web Mobile App that don’t suck - FITC Web Unleashed - 2014-09-18Building Web Mobile App that don’t suck - FITC Web Unleashed - 2014-09-18
Building Web Mobile App that don’t suck - FITC Web Unleashed - 2014-09-18
Frédéric Harper
 
Serverless? How (not) to develop, deploy and operate serverless applications.
Serverless? How (not) to develop, deploy and operate serverless applications.Serverless? How (not) to develop, deploy and operate serverless applications.
Serverless? How (not) to develop, deploy and operate serverless applications.
gjdevos
 
webthing-iotjs-tizenrt-cdl2018-20181117rzr
webthing-iotjs-tizenrt-cdl2018-20181117rzrwebthing-iotjs-tizenrt-cdl2018-20181117rzr
webthing-iotjs-tizenrt-cdl2018-20181117rzr
Phil www.rzr.online.fr
 
Rapid Application Development with WSO2 Platform
Rapid Application Development with WSO2 PlatformRapid Application Development with WSO2 Platform
Rapid Application Development with WSO2 Platform
WSO2
 
From localhost to the cloud: A Journey of Deployments
From localhost to the cloud: A Journey of DeploymentsFrom localhost to the cloud: A Journey of Deployments
From localhost to the cloud: A Journey of Deployments
Tegar Imansyah
 
Version Control in Machine Learning + AI (Stanford)
Version Control in Machine Learning + AI (Stanford)Version Control in Machine Learning + AI (Stanford)
Version Control in Machine Learning + AI (Stanford)
Anand Sampat
 
GTLAB Installation Tutorial for SciDAC 2009
GTLAB Installation Tutorial for SciDAC 2009GTLAB Installation Tutorial for SciDAC 2009
GTLAB Installation Tutorial for SciDAC 2009
marpierc
 
The DiSo Project and the Open Web
The DiSo Project and the Open WebThe DiSo Project and the Open Web
The DiSo Project and the Open Web
Chris Messina
 
When it all GOes right
When it all GOes rightWhen it all GOes right
When it all GOes right
Pavlo Golub
 
Stick to the rules - Consumer Driven Contracts. 2015.07 Confitura
Stick to the rules - Consumer Driven Contracts. 2015.07 ConfituraStick to the rules - Consumer Driven Contracts. 2015.07 Confitura
Stick to the rules - Consumer Driven Contracts. 2015.07 Confitura
Marcin Grzejszczak
 
GDG DevFest Romania - Architecting for the Google Cloud Platform
GDG DevFest Romania - Architecting for the Google Cloud PlatformGDG DevFest Romania - Architecting for the Google Cloud Platform
GDG DevFest Romania - Architecting for the Google Cloud Platform
Márton Kodok
 
Go bei der 4Com GmbH & Co. KG
Go bei der 4Com GmbH & Co. KGGo bei der 4Com GmbH & Co. KG
Go bei der 4Com GmbH & Co. KG
Jonas Riedel
 
Open Source - NOVALUG January 2019
Open Source  - NOVALUG January 2019Open Source  - NOVALUG January 2019
Open Source - NOVALUG January 2019
plarsen67
 
MongoDB Europe 2016 - Warehousing MongoDB Data using Apache Beam and BigQuery
MongoDB Europe 2016 - Warehousing MongoDB Data using Apache Beam and BigQueryMongoDB Europe 2016 - Warehousing MongoDB Data using Apache Beam and BigQuery
MongoDB Europe 2016 - Warehousing MongoDB Data using Apache Beam and BigQuery
MongoDB
 
Ad

More from Margriet Groenendijk (18)

Trusting machines with robust, unbiased and reproducible AI
Trusting machines with robust, unbiased and reproducible AITrusting machines with robust, unbiased and reproducible AI
Trusting machines with robust, unbiased and reproducible AI
Margriet Groenendijk
 
Trusting machines with robust, unbiased and reproducible AI
Trusting machines with robust, unbiased and reproducible AI Trusting machines with robust, unbiased and reproducible AI
Trusting machines with robust, unbiased and reproducible AI
Margriet Groenendijk
 
Trusting machines with robust, unbiased and reproducible AI
Trusting machines with robust, unbiased and reproducible AI Trusting machines with robust, unbiased and reproducible AI
Trusting machines with robust, unbiased and reproducible AI
Margriet Groenendijk
 
Weather and Climate Data: Not Just for Meteorologists
Weather and Climate Data: Not Just for MeteorologistsWeather and Climate Data: Not Just for Meteorologists
Weather and Climate Data: Not Just for Meteorologists
Margriet Groenendijk
 
Navigating the Magical Data Visualisation Forest
Navigating the Magical Data Visualisation ForestNavigating the Magical Data Visualisation Forest
Navigating the Magical Data Visualisation Forest
Margriet Groenendijk
 
The Convergence of Data Science and Software Development
The Convergence of Data Science and Software DevelopmentThe Convergence of Data Science and Software Development
The Convergence of Data Science and Software Development
Margriet Groenendijk
 
The Convergence of Data Science and Software Development
The Convergence of Data Science and Software DevelopmentThe Convergence of Data Science and Software Development
The Convergence of Data Science and Software Development
Margriet Groenendijk
 
The Convergence of Data Science and Software Development
The Convergence of Data Science and Software DevelopmentThe Convergence of Data Science and Software Development
The Convergence of Data Science and Software Development
Margriet Groenendijk
 
Weather and Climate Data: Not Just for Meteorologists
Weather and Climate Data: Not Just for MeteorologistsWeather and Climate Data: Not Just for Meteorologists
Weather and Climate Data: Not Just for Meteorologists
Margriet Groenendijk
 
IP EXPO Europe: Data Science in the Cloud
IP EXPO Europe: Data Science in the CloudIP EXPO Europe: Data Science in the Cloud
IP EXPO Europe: Data Science in the Cloud
Margriet Groenendijk
 
ODSC Europe: Weather and Climate Data: Not Just for Meteorologists
ODSC Europe: Weather and Climate Data: Not Just for MeteorologistsODSC Europe: Weather and Climate Data: Not Just for Meteorologists
ODSC Europe: Weather and Climate Data: Not Just for Meteorologists
Margriet Groenendijk
 
IP EXPO Nordic: Data Science in the Cloud
IP EXPO Nordic: Data Science in the CloudIP EXPO Nordic: Data Science in the Cloud
IP EXPO Nordic: Data Science in the Cloud
Margriet Groenendijk
 
PyParis - weather and climate data
PyParis - weather and climate dataPyParis - weather and climate data
PyParis - weather and climate data
Margriet Groenendijk
 
PyData Barcelona - weather and climate data
PyData Barcelona - weather and climate dataPyData Barcelona - weather and climate data
PyData Barcelona - weather and climate data
Margriet Groenendijk
 
GeoPython - Mapping Data in Jupyter Notebooks with PixieDust
GeoPython - Mapping Data in Jupyter Notebooks with PixieDustGeoPython - Mapping Data in Jupyter Notebooks with PixieDust
GeoPython - Mapping Data in Jupyter Notebooks with PixieDust
Margriet Groenendijk
 
Data Science Festival - Beginners Guide to Weather and Climate Data
Data Science Festival - Beginners Guide to Weather and Climate DataData Science Festival - Beginners Guide to Weather and Climate Data
Data Science Festival - Beginners Guide to Weather and Climate Data
Margriet Groenendijk
 
Big Data Analytics London - Data Science in the Cloud
Big Data Analytics London - Data Science in the CloudBig Data Analytics London - Data Science in the Cloud
Big Data Analytics London - Data Science in the Cloud
Margriet Groenendijk
 
PixieDust
PixieDustPixieDust
PixieDust
Margriet Groenendijk
 
Trusting machines with robust, unbiased and reproducible AI
Trusting machines with robust, unbiased and reproducible AITrusting machines with robust, unbiased and reproducible AI
Trusting machines with robust, unbiased and reproducible AI
Margriet Groenendijk
 
Trusting machines with robust, unbiased and reproducible AI
Trusting machines with robust, unbiased and reproducible AI Trusting machines with robust, unbiased and reproducible AI
Trusting machines with robust, unbiased and reproducible AI
Margriet Groenendijk
 
Trusting machines with robust, unbiased and reproducible AI
Trusting machines with robust, unbiased and reproducible AI Trusting machines with robust, unbiased and reproducible AI
Trusting machines with robust, unbiased and reproducible AI
Margriet Groenendijk
 
Weather and Climate Data: Not Just for Meteorologists
Weather and Climate Data: Not Just for MeteorologistsWeather and Climate Data: Not Just for Meteorologists
Weather and Climate Data: Not Just for Meteorologists
Margriet Groenendijk
 
Navigating the Magical Data Visualisation Forest
Navigating the Magical Data Visualisation ForestNavigating the Magical Data Visualisation Forest
Navigating the Magical Data Visualisation Forest
Margriet Groenendijk
 
The Convergence of Data Science and Software Development
The Convergence of Data Science and Software DevelopmentThe Convergence of Data Science and Software Development
The Convergence of Data Science and Software Development
Margriet Groenendijk
 
The Convergence of Data Science and Software Development
The Convergence of Data Science and Software DevelopmentThe Convergence of Data Science and Software Development
The Convergence of Data Science and Software Development
Margriet Groenendijk
 
The Convergence of Data Science and Software Development
The Convergence of Data Science and Software DevelopmentThe Convergence of Data Science and Software Development
The Convergence of Data Science and Software Development
Margriet Groenendijk
 
Weather and Climate Data: Not Just for Meteorologists
Weather and Climate Data: Not Just for MeteorologistsWeather and Climate Data: Not Just for Meteorologists
Weather and Climate Data: Not Just for Meteorologists
Margriet Groenendijk
 
IP EXPO Europe: Data Science in the Cloud
IP EXPO Europe: Data Science in the CloudIP EXPO Europe: Data Science in the Cloud
IP EXPO Europe: Data Science in the Cloud
Margriet Groenendijk
 
ODSC Europe: Weather and Climate Data: Not Just for Meteorologists
ODSC Europe: Weather and Climate Data: Not Just for MeteorologistsODSC Europe: Weather and Climate Data: Not Just for Meteorologists
ODSC Europe: Weather and Climate Data: Not Just for Meteorologists
Margriet Groenendijk
 
IP EXPO Nordic: Data Science in the Cloud
IP EXPO Nordic: Data Science in the CloudIP EXPO Nordic: Data Science in the Cloud
IP EXPO Nordic: Data Science in the Cloud
Margriet Groenendijk
 
PyParis - weather and climate data
PyParis - weather and climate dataPyParis - weather and climate data
PyParis - weather and climate data
Margriet Groenendijk
 
PyData Barcelona - weather and climate data
PyData Barcelona - weather and climate dataPyData Barcelona - weather and climate data
PyData Barcelona - weather and climate data
Margriet Groenendijk
 
GeoPython - Mapping Data in Jupyter Notebooks with PixieDust
GeoPython - Mapping Data in Jupyter Notebooks with PixieDustGeoPython - Mapping Data in Jupyter Notebooks with PixieDust
GeoPython - Mapping Data in Jupyter Notebooks with PixieDust
Margriet Groenendijk
 
Data Science Festival - Beginners Guide to Weather and Climate Data
Data Science Festival - Beginners Guide to Weather and Climate DataData Science Festival - Beginners Guide to Weather and Climate Data
Data Science Festival - Beginners Guide to Weather and Climate Data
Margriet Groenendijk
 
Big Data Analytics London - Data Science in the Cloud
Big Data Analytics London - Data Science in the CloudBig Data Analytics London - Data Science in the Cloud
Big Data Analytics London - Data Science in the Cloud
Margriet Groenendijk
 

Recently uploaded (20)

CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
Developing Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response ApplicationsDeveloping Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response Applications
VICTOR MAESTRE RAMIREZ
 
C++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptxC++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptx
aquibnoor22079
 
Defense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptxDefense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptx
Greg Makowski
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136
illuminati Agent uganda call+256776963507/0741506136
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
chapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptxchapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptx
justinebandajbn
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsAI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
Contify
 
Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...
Pixellion
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia
Alexander Romero Arosquipa
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
Developing Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response ApplicationsDeveloping Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response Applications
VICTOR MAESTRE RAMIREZ
 
C++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptxC++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptx
aquibnoor22079
 
Defense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptxDefense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptx
Greg Makowski
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
chapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptxchapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptx
justinebandajbn
 
183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag183409-christina-rossetti.pdfdsfsdasggsag
183409-christina-rossetti.pdfdsfsdasggsag
fardin123rahman07
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsAI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
Contify
 
Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...
Pixellion
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 

Introduction to the IBM Watson Data Platform