SlideShare a Scribd company logo
Introduction to
word embeddings
Pavel Kalaidin
@facultyofwonder
Moscow Data Fest, September, 12th, 2015
Introduction to word embeddings with Python
Introduction to word embeddings with Python
distributional hypothesis
лойс
годно, лойс
лойс за песню
из принципа не поставлю лойс
взаимные лойсы
лойс, если согласен
What is the meaning of лойс?
годно, лойс
лойс за песню
из принципа не поставлю лойс
взаимные лойсы
лойс, если согласен
What is the meaning of лойс?
кек
кек, что ли?
кек)))))))
ну ты кек
What is the meaning of кек?
кек, что ли?
кек)))))))
ну ты кек
What is the meaning of кек?
vectorial representations
of words
simple and flexible
platform for
understanding text and
probably not messing up
one-hot encoding?
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
co-occurrence matrix
recall: word-document co-occurrence
matrix for LSA
credits: [x]
from entire document to
window (length 5-10)
still seems suboptimal ->
big, sparse, etc.
lower dimensions, we
want dense vectors
(say, 25-1000)
How?
matrix factorization?
SVD of co-occurrence
matrix
lots of memory?
idea: directly learn low-
dimensional vectors
here comes word2vec
Distributed Representations of Words and Phrases and their Compositionality, Mikolov et al: [paper]
idea: instead of capturing co-
occurrence counts
predict surrounding words
Two models:
C-BOW
predicting the word given its context
skip-gram
predicting the context given a word
Explained in great detail here, so we’ll skip it for now Also see: word2vec Parameter
Learning Explained, Rong, paper
Introduction to word embeddings with Python
CBOW: several times faster than skip-gram,
slightly better accuracy for the frequent words
Skip-Gram: works well with small amount of
data, represents well rare words or phrases
Examples?
Introduction to word embeddings with Python
Introduction to word embeddings with Python
Introduction to word embeddings with Python
Introduction to word embeddings with Python
Introduction to word embeddings with Python
Introduction to word embeddings with Python
Wwoman
- Wman
= Wqueen
-
Wking
classic example
<censored example>
word2vec Explained: Deriving Mikolov et al.’s Negative-Sampling
Word-Embedding Method, Goldberg et al, 2014 [arxiv]
all done with gensim:
github.com/piskvorky/gensim/
...failing to take advantage of
the vast amount of repetition
in the data
so back to co-occurrences
GloVe for Global Vectors
Pennington et al, 2014: nlp.stanford.
edu/pubs/glove.pdf
Ratios seem to cancel noise
The gist: model ratios with
vectors
The model
Preserving
linearity
Preventing mixing
dimensions
Restoring
symmetry, part 1
recall:
Introduction to word embeddings with Python
Restoring symmetry, part 2
Least squares problem it is now
SGD->AdaGrad
ok, Python code
glove-python:
github.com/maciejkula/glove-python
two sets of vectors
input and context + bias
average/sum/drop
complexity |V|2
complexity |C|0.8
Evaluation: it works
#spb
#gatchina
#msk
#kyiv
#minsk
#helsinki
Compared to word2vec
#spb
#gatchina
#msk
#kyiv
#minsk
#helsinki
Introduction to word embeddings with Python
t-SNE:
github.com/oreillymedia/t-SNE-tutorial
seaborn:
stanford.edu/~mwaskom/software/seaborn/
Abusing models
music playlists:
github.com/mattdennewitz/playlist-to-vec
deep walk:
DeepWalk: Online Learning of Social
Representations [link]
user interests
Paragraph vectors: cs.stanford.
edu/~quocle/paragraph_vector.pdf
predicting hashtags
interesting read: #TAGSPACE: Semantic
Embeddings from Hashtags [link]
RusVectōrēs: distributional semantic
models for Russian: ling.go.mail.
ru/dsm/en/
Introduction to word embeddings with Python
corpus matters
building block for
bigger models
╰(*´︶`*)╯
</slides>
Ad

More Related Content

What's hot (20)

(Kpi summer school 2015) word embeddings and neural language modeling
(Kpi summer school 2015) word embeddings and neural language modeling(Kpi summer school 2015) word embeddings and neural language modeling
(Kpi summer school 2015) word embeddings and neural language modeling
Serhii Havrylov
 
Yoav Goldberg: Word Embeddings What, How and Whither
Yoav Goldberg: Word Embeddings What, How and WhitherYoav Goldberg: Word Embeddings What, How and Whither
Yoav Goldberg: Word Embeddings What, How and Whither
MLReview
 
word embeddings and applications to machine translation and sentiment analysis
word embeddings and applications to machine translation and sentiment analysisword embeddings and applications to machine translation and sentiment analysis
word embeddings and applications to machine translation and sentiment analysis
Mostapha Benhenda
 
Tomáš Mikolov - Distributed Representations for NLP
Tomáš Mikolov - Distributed Representations for NLPTomáš Mikolov - Distributed Representations for NLP
Tomáš Mikolov - Distributed Representations for NLP
Machine Learning Prague
 
word2vec, LDA, and introducing a new hybrid algorithm: lda2vec
word2vec, LDA, and introducing a new hybrid algorithm: lda2vecword2vec, LDA, and introducing a new hybrid algorithm: lda2vec
word2vec, LDA, and introducing a new hybrid algorithm: lda2vec
👋 Christopher Moody
 
Using Text Embeddings for Information Retrieval
Using Text Embeddings for Information RetrievalUsing Text Embeddings for Information Retrieval
Using Text Embeddings for Information Retrieval
Bhaskar Mitra
 
Word2Vec
Word2VecWord2Vec
Word2Vec
mohammad javad hasani
 
Word2vec algorithm
Word2vec algorithmWord2vec algorithm
Word2vec algorithm
Andrew Koo
 
Word2vec slide(lab seminar)
Word2vec slide(lab seminar)Word2vec slide(lab seminar)
Word2vec slide(lab seminar)
Jinpyo Lee
 
Word2vec ultimate beginner
Word2vec ultimate beginnerWord2vec ultimate beginner
Word2vec ultimate beginner
Sungmin Yang
 
Neural Text Embeddings for Information Retrieval (WSDM 2017)
Neural Text Embeddings for Information Retrieval (WSDM 2017)Neural Text Embeddings for Information Retrieval (WSDM 2017)
Neural Text Embeddings for Information Retrieval (WSDM 2017)
Bhaskar Mitra
 
Representation Learning of Vectors of Words and Phrases
Representation Learning of Vectors of Words and PhrasesRepresentation Learning of Vectors of Words and Phrases
Representation Learning of Vectors of Words and Phrases
Felipe Moraes
 
Word2Vec: Learning of word representations in a vector space - Di Mitri & Her...
Word2Vec: Learning of word representations in a vector space - Di Mitri & Her...Word2Vec: Learning of word representations in a vector space - Di Mitri & Her...
Word2Vec: Learning of word representations in a vector space - Di Mitri & Her...
Daniele Di Mitri
 
GDG Tbilisi 2017. Word Embedding Libraries Overview: Word2Vec and fastText
GDG Tbilisi 2017. Word Embedding Libraries Overview: Word2Vec and fastTextGDG Tbilisi 2017. Word Embedding Libraries Overview: Word2Vec and fastText
GDG Tbilisi 2017. Word Embedding Libraries Overview: Word2Vec and fastText
rudolf eremyan
 
Word2vec: From intuition to practice using gensim
Word2vec: From intuition to practice using gensimWord2vec: From intuition to practice using gensim
Word2vec: From intuition to practice using gensim
Edgar Marca
 
(Deep) Neural Networks在 NLP 和 Text Mining 总结
(Deep) Neural Networks在 NLP 和 Text Mining 总结(Deep) Neural Networks在 NLP 和 Text Mining 总结
(Deep) Neural Networks在 NLP 和 Text Mining 总结
君 廖
 
Word2vec and Friends
Word2vec and FriendsWord2vec and Friends
Word2vec and Friends
Bruno Gonçalves
 
Word representations in vector space
Word representations in vector spaceWord representations in vector space
Word representations in vector space
Abdullah Khan Zehady
 
Tutorial on word2vec
Tutorial on word2vecTutorial on word2vec
Tutorial on word2vec
Leiden University
 
Skip gram and cbow
Skip gram and cbowSkip gram and cbow
Skip gram and cbow
hyunyoung Lee
 
(Kpi summer school 2015) word embeddings and neural language modeling
(Kpi summer school 2015) word embeddings and neural language modeling(Kpi summer school 2015) word embeddings and neural language modeling
(Kpi summer school 2015) word embeddings and neural language modeling
Serhii Havrylov
 
Yoav Goldberg: Word Embeddings What, How and Whither
Yoav Goldberg: Word Embeddings What, How and WhitherYoav Goldberg: Word Embeddings What, How and Whither
Yoav Goldberg: Word Embeddings What, How and Whither
MLReview
 
word embeddings and applications to machine translation and sentiment analysis
word embeddings and applications to machine translation and sentiment analysisword embeddings and applications to machine translation and sentiment analysis
word embeddings and applications to machine translation and sentiment analysis
Mostapha Benhenda
 
Tomáš Mikolov - Distributed Representations for NLP
Tomáš Mikolov - Distributed Representations for NLPTomáš Mikolov - Distributed Representations for NLP
Tomáš Mikolov - Distributed Representations for NLP
Machine Learning Prague
 
word2vec, LDA, and introducing a new hybrid algorithm: lda2vec
word2vec, LDA, and introducing a new hybrid algorithm: lda2vecword2vec, LDA, and introducing a new hybrid algorithm: lda2vec
word2vec, LDA, and introducing a new hybrid algorithm: lda2vec
👋 Christopher Moody
 
Using Text Embeddings for Information Retrieval
Using Text Embeddings for Information RetrievalUsing Text Embeddings for Information Retrieval
Using Text Embeddings for Information Retrieval
Bhaskar Mitra
 
Word2vec algorithm
Word2vec algorithmWord2vec algorithm
Word2vec algorithm
Andrew Koo
 
Word2vec slide(lab seminar)
Word2vec slide(lab seminar)Word2vec slide(lab seminar)
Word2vec slide(lab seminar)
Jinpyo Lee
 
Word2vec ultimate beginner
Word2vec ultimate beginnerWord2vec ultimate beginner
Word2vec ultimate beginner
Sungmin Yang
 
Neural Text Embeddings for Information Retrieval (WSDM 2017)
Neural Text Embeddings for Information Retrieval (WSDM 2017)Neural Text Embeddings for Information Retrieval (WSDM 2017)
Neural Text Embeddings for Information Retrieval (WSDM 2017)
Bhaskar Mitra
 
Representation Learning of Vectors of Words and Phrases
Representation Learning of Vectors of Words and PhrasesRepresentation Learning of Vectors of Words and Phrases
Representation Learning of Vectors of Words and Phrases
Felipe Moraes
 
Word2Vec: Learning of word representations in a vector space - Di Mitri & Her...
Word2Vec: Learning of word representations in a vector space - Di Mitri & Her...Word2Vec: Learning of word representations in a vector space - Di Mitri & Her...
Word2Vec: Learning of word representations in a vector space - Di Mitri & Her...
Daniele Di Mitri
 
GDG Tbilisi 2017. Word Embedding Libraries Overview: Word2Vec and fastText
GDG Tbilisi 2017. Word Embedding Libraries Overview: Word2Vec and fastTextGDG Tbilisi 2017. Word Embedding Libraries Overview: Word2Vec and fastText
GDG Tbilisi 2017. Word Embedding Libraries Overview: Word2Vec and fastText
rudolf eremyan
 
Word2vec: From intuition to practice using gensim
Word2vec: From intuition to practice using gensimWord2vec: From intuition to practice using gensim
Word2vec: From intuition to practice using gensim
Edgar Marca
 
(Deep) Neural Networks在 NLP 和 Text Mining 总结
(Deep) Neural Networks在 NLP 和 Text Mining 总结(Deep) Neural Networks在 NLP 和 Text Mining 总结
(Deep) Neural Networks在 NLP 和 Text Mining 总结
君 廖
 
Word representations in vector space
Word representations in vector spaceWord representations in vector space
Word representations in vector space
Abdullah Khan Zehady
 

Similar to Introduction to word embeddings with Python (20)

Lda2vec text by the bay 2016 with notes
Lda2vec text by the bay 2016 with notesLda2vec text by the bay 2016 with notes
Lda2vec text by the bay 2016 with notes
👋 Christopher Moody
 
Word embeddings
Word embeddingsWord embeddings
Word embeddings
Shruti kar
 
Paper dissected glove_ global vectors for word representation_ explained _ ...
Paper dissected   glove_ global vectors for word representation_ explained _ ...Paper dissected   glove_ global vectors for word representation_ explained _ ...
Paper dissected glove_ global vectors for word representation_ explained _ ...
Nikhil Jaiswal
 
Vectorization In NLP.pptx
Vectorization In NLP.pptxVectorization In NLP.pptx
Vectorization In NLP.pptx
Chode Amarnath
 
NLP Concepts detail explained in details.pptx
NLP Concepts detail explained in details.pptxNLP Concepts detail explained in details.pptx
NLP Concepts detail explained in details.pptx
FaizRahman56
 
Query Understanding
Query UnderstandingQuery Understanding
Query Understanding
Eoin Hurrell, PhD
 
Word_Embeddings.pptx
Word_Embeddings.pptxWord_Embeddings.pptx
Word_Embeddings.pptx
GowrySailaja
 
Lda and it's applications
Lda and it's applicationsLda and it's applications
Lda and it's applications
Babu Priyavrat
 
Michael Alcorn, Sr. Software Engineer, Red Hat Inc. at MLconf SF 2017
Michael Alcorn, Sr. Software Engineer, Red Hat Inc. at MLconf SF 2017Michael Alcorn, Sr. Software Engineer, Red Hat Inc. at MLconf SF 2017
Michael Alcorn, Sr. Software Engineer, Red Hat Inc. at MLconf SF 2017
MLconf
 
Designing, Visualizing and Understanding Deep Neural Networks
Designing, Visualizing and Understanding Deep Neural NetworksDesigning, Visualizing and Understanding Deep Neural Networks
Designing, Visualizing and Understanding Deep Neural Networks
connectbeubax
 
NLP WORDEMBEDDDING TECHINUES CBOW BOW.pptx
NLP WORDEMBEDDDING TECHINUES CBOW BOW.pptxNLP WORDEMBEDDDING TECHINUES CBOW BOW.pptx
NLP WORDEMBEDDDING TECHINUES CBOW BOW.pptx
sofia pillai
 
NLP_guest_lecture.pdf
NLP_guest_lecture.pdfNLP_guest_lecture.pdf
NLP_guest_lecture.pdf
Soha82
 
Subword tokenizers
Subword tokenizersSubword tokenizers
Subword tokenizers
Ha Loc Do
 
[Emnlp] what is glo ve part ii - towards data science
[Emnlp] what is glo ve  part ii - towards data science[Emnlp] what is glo ve  part ii - towards data science
[Emnlp] what is glo ve part ii - towards data science
Nikhil Jaiswal
 
Explanations in Dialogue Systems through Uncertain RDF Knowledge Bases
Explanations in Dialogue Systems through Uncertain RDF Knowledge BasesExplanations in Dialogue Systems through Uncertain RDF Knowledge Bases
Explanations in Dialogue Systems through Uncertain RDF Knowledge Bases
Daniel Sonntag
 
Semantic Web: From Representations to Applications
Semantic Web: From Representations to ApplicationsSemantic Web: From Representations to Applications
Semantic Web: From Representations to Applications
Guus Schreiber
 
Language Modelling in Natural Language Processing-Part II.pdf
Language Modelling in Natural Language Processing-Part II.pdfLanguage Modelling in Natural Language Processing-Part II.pdf
Language Modelling in Natural Language Processing-Part II.pdf
Deptii Chaudhari
 
SNLI_presentation_2
SNLI_presentation_2SNLI_presentation_2
SNLI_presentation_2
Viral Gupta
 
New word analogy corpus
New word analogy corpusNew word analogy corpus
New word analogy corpus
Lukáš Svoboda
 
AINL 2016: Nikolenko
AINL 2016: NikolenkoAINL 2016: Nikolenko
AINL 2016: Nikolenko
Lidia Pivovarova
 
Lda2vec text by the bay 2016 with notes
Lda2vec text by the bay 2016 with notesLda2vec text by the bay 2016 with notes
Lda2vec text by the bay 2016 with notes
👋 Christopher Moody
 
Word embeddings
Word embeddingsWord embeddings
Word embeddings
Shruti kar
 
Paper dissected glove_ global vectors for word representation_ explained _ ...
Paper dissected   glove_ global vectors for word representation_ explained _ ...Paper dissected   glove_ global vectors for word representation_ explained _ ...
Paper dissected glove_ global vectors for word representation_ explained _ ...
Nikhil Jaiswal
 
Vectorization In NLP.pptx
Vectorization In NLP.pptxVectorization In NLP.pptx
Vectorization In NLP.pptx
Chode Amarnath
 
NLP Concepts detail explained in details.pptx
NLP Concepts detail explained in details.pptxNLP Concepts detail explained in details.pptx
NLP Concepts detail explained in details.pptx
FaizRahman56
 
Word_Embeddings.pptx
Word_Embeddings.pptxWord_Embeddings.pptx
Word_Embeddings.pptx
GowrySailaja
 
Lda and it's applications
Lda and it's applicationsLda and it's applications
Lda and it's applications
Babu Priyavrat
 
Michael Alcorn, Sr. Software Engineer, Red Hat Inc. at MLconf SF 2017
Michael Alcorn, Sr. Software Engineer, Red Hat Inc. at MLconf SF 2017Michael Alcorn, Sr. Software Engineer, Red Hat Inc. at MLconf SF 2017
Michael Alcorn, Sr. Software Engineer, Red Hat Inc. at MLconf SF 2017
MLconf
 
Designing, Visualizing and Understanding Deep Neural Networks
Designing, Visualizing and Understanding Deep Neural NetworksDesigning, Visualizing and Understanding Deep Neural Networks
Designing, Visualizing and Understanding Deep Neural Networks
connectbeubax
 
NLP WORDEMBEDDDING TECHINUES CBOW BOW.pptx
NLP WORDEMBEDDDING TECHINUES CBOW BOW.pptxNLP WORDEMBEDDDING TECHINUES CBOW BOW.pptx
NLP WORDEMBEDDDING TECHINUES CBOW BOW.pptx
sofia pillai
 
NLP_guest_lecture.pdf
NLP_guest_lecture.pdfNLP_guest_lecture.pdf
NLP_guest_lecture.pdf
Soha82
 
Subword tokenizers
Subword tokenizersSubword tokenizers
Subword tokenizers
Ha Loc Do
 
[Emnlp] what is glo ve part ii - towards data science
[Emnlp] what is glo ve  part ii - towards data science[Emnlp] what is glo ve  part ii - towards data science
[Emnlp] what is glo ve part ii - towards data science
Nikhil Jaiswal
 
Explanations in Dialogue Systems through Uncertain RDF Knowledge Bases
Explanations in Dialogue Systems through Uncertain RDF Knowledge BasesExplanations in Dialogue Systems through Uncertain RDF Knowledge Bases
Explanations in Dialogue Systems through Uncertain RDF Knowledge Bases
Daniel Sonntag
 
Semantic Web: From Representations to Applications
Semantic Web: From Representations to ApplicationsSemantic Web: From Representations to Applications
Semantic Web: From Representations to Applications
Guus Schreiber
 
Language Modelling in Natural Language Processing-Part II.pdf
Language Modelling in Natural Language Processing-Part II.pdfLanguage Modelling in Natural Language Processing-Part II.pdf
Language Modelling in Natural Language Processing-Part II.pdf
Deptii Chaudhari
 
SNLI_presentation_2
SNLI_presentation_2SNLI_presentation_2
SNLI_presentation_2
Viral Gupta
 
Ad

Recently uploaded (20)

DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
Flip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptxFlip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptx
mubashirkhan45461
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
chapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptxchapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptx
justinebandajbn
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnTemplate_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
cegiver630
 
Data Analytics Overview and its applications
Data Analytics Overview and its applicationsData Analytics Overview and its applications
Data Analytics Overview and its applications
JanmejayaMishra7
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...
Pixellion
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia
Alexander Romero Arosquipa
 
DPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdfDPR_Expert_Recruitment_notice_Revised.pdf
DPR_Expert_Recruitment_notice_Revised.pdf
inmishra17121973
 
Flip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptxFlip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptx
mubashirkhan45461
 
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
1. Briefing Session_SEED with Hon. Governor Assam - 27.10.pdf
Simran112433
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
CTS EXCEPTIONSPrediction of Aluminium wire rod physical properties through AI...
ThanushsaranS
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
chapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptxchapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptx
justinebandajbn
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
Ch3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendencyCh3MCT24.pptx measure of central tendency
Ch3MCT24.pptx measure of central tendency
ayeleasefa2
 
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnTemplate_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
cegiver630
 
Data Analytics Overview and its applications
Data Analytics Overview and its applicationsData Analytics Overview and its applications
Data Analytics Overview and its applications
JanmejayaMishra7
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...Thingyan is now a global treasure! See how people around the world are search...
Thingyan is now a global treasure! See how people around the world are search...
Pixellion
 
Calories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptxCalories_Prediction_using_Linear_Regression.pptx
Calories_Prediction_using_Linear_Regression.pptx
TijiLMAHESHWARI
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
Ad

Introduction to word embeddings with Python