This document proposes a method to detect digital image forgeries using local binary patterns (LBP) and histogram of oriented gradients (HOG). It extracts LBP features from the input image, then applies HOG to the LBP features. These combined features are classified using a support vector machine (SVM) as authentic or tampered. Testing on CASIA datasets achieved detection rates of 92.3% for CASIA-1 and 96.1% for CASIA-2, outperforming other existing methods. The method is effective at forgery detection while having reduced time complexity.