This document discusses several approaches for clustering textual documents, including:
1. TF-IDF, word embedding, and K-means clustering are proposed to automatically classify and organize documents.
2. Previous work on document clustering is reviewed, including partition-based techniques like K-means and K-medoids, hierarchical clustering, and approaches using semantic features, PSO optimization, and multi-view clustering.
3. Challenges of clustering large document collections at scale are discussed, along with potential solutions using frameworks like Hadoop.