SlideShare a Scribd company logo
INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056
VOLUME: 06 ISSUE: 09 | SEP 2019 WWW.IRJET.NET P-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 370
Optimization of Distributed Generation using Genetics Algorithm and
Improvement in Multiobjective Function
Preeti bala Sukhwal1 and Pushpendra Singh2
(1)M.Tech student, EE Department ,Govt. Women Engineering College, Ajmer, India
(2)Assistant Professor, EE Department,Govt. Women Engineering College, Ajmer, India
---------------------------------------------------------------------***----------------------------------------------------------------------
Abstract—In Distribution system , Distributed Generators are commonly used to provide active and reactive power
Compensation .Generally More losses occurs in distribution system due to high concentration of inductive loads, so proper
installation of Distributed generators are necessary with optimal site and size. The power feeds from DG units located
near to load centre provide an opportunity for system power losses reduction, cost reduction, voltage profile
improvement, voltage stability improvement and environmental friendliness and increasing reliability. In this Paper
presents Genetics Algorithm optimization techniques for finding the Optimal Location and size of DG System .The
objectives of this technique is Minimization of Active Power Losses, Better Voltage Profile and Improvement in voltage
stability index with security constraints in distribution system network and performed in MATLAB R2015a Software. The
proposed GA optimization technique implemented on 33-bus and 69-bus Standard test radial distribution system.
Keywords:- GA (Genetics Algorithm), RDS(Radial DistributionNetwork), DG(DistributedGeneration), VSI (Voltage
Stability Index), Radial distribution System, MOF (Multi Objective function).
1. INTRODUCTION :-
For Distributed Generation different countries uses various words same like that : ‘dispersed generation’ , ‘embedded
generation’, ‘decentralized generation’ ,’distributed energy resources’(DER). DG is defined as a generator with small scale
capacity of electricity connected close to its load and i.e. not a part of centralized power generation system [1]. A
distribution system is an interface between power transmission system and consumer. . As compared to transmission
system, the X/R ratio for distribution system is low, that causes high power losses and a drop in voltage magnitude along
with radial distribution lines [3] .Due to increases in power load demand, power system faces many problems like: power
losses, energy losses, voltage node disturbances, Voltage Stability issues, voltage stability indexes, DG penetration etc. [2].
To overcome these problems In Traditionally, DG and Capacitor are installed in power system network to compensate for
power loss reduction, improvement in voltage profile and enhancement in voltage stability indexes. Distributed
Generation is most widely used in
Distribution network system because i.e. providing both active as well as reactive power but capacitor provides only
reactive power to the power system network [4].
In last few years, the traditional electric energy sources, are replaces with DG has becomes an efficient and clean way.
Now-a-days, DGs are the part of distributed energy resources (DERs) which also involved energy storage and receptive
loads. Basically, Distributed generation (DG) integration in a distribution system has increased due to high penetration
levels. For improvement in technical benefits of DG integration by using optimal allocation of DG in a power system
network [5].Optimal DG location and sizing in a power distribution network with the aim to reducing system active power
losses and improving the voltage profile and improvement in voltage stability index[4][6].The problem is formulated as an
optimization problem and solution is obtained using genetic algorithm (GA)[7].The locations are decided on the basis of
active power injection at various nodes. This approach helps in reducing the computational efforts of selecting appropriate
location. GA follows the idea of survival of the fittest - Better and better solutions evolve from previous generations until a
near optimal solution is obtained .in this paper optimization technique genetics algorithm for optimal location and size is
discuss.
2. PROBLEM FORMULATION:-
A. Objective function
Single Objective function:- In this objective function Optimal DG installation in radial distribution system for
minimization of active power losses; improvement in node voltage disturbances, maximization of voltage stability index
with all operating constraints are discussed below:
INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056
VOLUME: 06 ISSUE: 09 | SEP 2019 WWW.IRJET.NET P-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 371
(a)Active power loss minimization:-The major amount of losses in power system is in distribution system network
during power delivery. To deliver power at minimum losses of utilities is primary objective for power system. The Optimal
placement of DG is mainly studied with the minimization of active power losses, the active power losses can be defined as:
F1=Min (PLoss) (1)
Where PLoss is the active power loss of the radial Distribution System and given by:
(2)
Where αij=rijcos(δi-δj)/ViVj ,βij=rijsin(δi-δj)/ViVj,
here Pi , Qi ,N, rij, Vi ,δi are the active and reactive power, total number of nodes in system ,resistance of branch between
node i and j ,voltage magnitude and angle of ith node individually..
(b) Improvement in Node Voltage Disturbances: - The measure value of voltage quality appeared across system nodes
i.e. called node voltage disturbances. For improving Node voltage profile DGs are connected near to load centre and i.e.
also considered as a objective function is defined as:-
(3)
(c)Maximization of Voltage Stability Index:-At heavy load condition in distribution system the minimization of node
voltage disturbances is not sufficient for security purposes so, we introduced a one of objective function is maximization of
voltage stability index .basically VSI is the capacity of node at heavy loading condition to maintain its voltage profile within
the allowable limits.VSI of radial distribution network is defined as:-
(4)
Multi objective function:-In this function no. of functions to be optimized synchronously within specified constraints. In
this paper multi objective function combines minimization of active power losses, improvement in node voltage
disturbances and maximization of voltage stability index which is optimized simultaneously.
MOF= (α1F1+α2F2+α3F3) (5)
Where penalty (weight) co-efficient α1=1, α2=0.65, α3=0.35 with function F1 = minimization of active power losses, F2 =
minimization of node voltage disturbances, F3 = maximization of voltage stability index.
(B)System operating constraints:-The single and multi objective functions are subjected to following constraints in
discussed below:-
Equality constraints:-
Power balance constraints: - The total active power supplied by DGs and total reactive power supplied by DGs must
satisfy the power constraints as respectively;
(6)
(7)
INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056
VOLUME: 06 ISSUE: 09 | SEP 2019 WWW.IRJET.NET P-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 372
Where Yij and ᶿij are representing the elements of Y bus matrix and Impendence angle between ith and jth node
individually.
Inequality constraints:-
Bus Voltage limit:-The Voltage constraints within upper and lower limits of alteration of voltage at the nodes of
distribution system and constraint defined as:-
Vi
min≤Vi≤Vi
max (8)
Where Vi
min Vi
max is the minimum and maximum values of bus voltage individually .The voltage limit varies between Vmax
(1.05p.u. ) and Vmin (0.95p.u.) at all system buses.
Thermal limits:-The current at different branches with specified limits which is given by:-
Iij≤Iij
max (9)
Where Iij
max is the maximum loading of the distribution line connected between ith and jth bus; Iij is the current flowing
through the branch connected between the ith and jth branch.
Power limits of DG:-The active and reactive power sizes of DG at ith bus are specified within certain limits i.e. given by:-
PDG,i
min≤PDG,i≤PDG,i
max (10)
QDG,i
min≤QDG,i≤QDG,i
max (11) (8)
Where PDG,i
min ,PDG,i
max are the minimum and maximum values of active power at ith DG respectively and QDG,i
min,QDG,i
max
are the minimum and maximum values of reactive power at ith DG respectively.
3. Genetics Algorithm Optimization (GAO):-
GA introduced by American Scientist John Holland in 1960 Afterwards his student David E. Goldberg extended GA in 1989.
Genetics Algorithm based on one of the most famous Darwin’s Evolutionary theory which is generally used Meta-heuristics
optimization techniques and concept of this Algorithm is ‘Survival of Fittest’.GA simulates the process of evolution and
follows the natural selection process.
Basic Parameters :-
In this paper some basic parameters uses and defines before starting a discussion on genetics algorithm.
Population – population is a group of solutions in the current generation and also be represented as sets of chromosomes.
Population for initially i.e. first generation is normally created randomly.
Gene − A gene is one component function of a chromosome.
Chromosomes − A chromosome is the complete sets of genes (parameters) which explain a recommended solution to the
problem i.e. solved by genetics algorithm.
Allele − Allele is derived form of gene which is takes for a particular chromosome.
Flow chart of Genetics Algorithm (GA) is shown in below figure 1:
INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056
VOLUME: 06 ISSUE: 09 | SEP 2019 WWW.IRJET.NET P-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 373
Figure1. Flow chart of Genetics Algorithm
Fitness Function − A fitness function is explained as fitness of each chromosomes that will be regenerate and survive for
next generation which is suitable for objective function to be optimized.
Genetic Operators – For genetic composition of the regeneration, these contains crossover, mutation, selection, etc.
A simple genetic algorithm that included four operators:-
i) Selection: In GA Selection operator is selecting individuals with high fitness .these individuals grouping and created
new population according to the fitness value to keep the better individuals for the next generation. Normally methods of
selection involved: Roulette Wheel selection, truncation selection, tournament selection etc.
ii) Crossover: It is next step of selection and changes the coding of chromosomes from the parent (or first) generation to
the next generation with a specific probability.
iii) Mutation: Mutation is provides genetics diversity from generation to next generation with a low probability. In this
genetic operator neglect some genes losing during the selection and crossover steps.
iv) Replacement: Replacement is last stage of GA and used to decide which individuals get replaced in a population.
Controlling parameters: - The controlling factors used in proposed GA method for both the study system are as follows:
population size n=100, maximum iteration count Tmax=100, loss co-efficient (for Power flow equation) α=0.5, β=0.1,
Crossover probability (Pc) = 0.9,
INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056
VOLUME: 06 ISSUE: 09 | SEP 2019 WWW.IRJET.NET P-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 374
Steps in Basic Genetic Algorithm:-
Step1. Define the fitness function f(x) corresponding to problem to be solved.
Step2. Generate initial population of n chromosomes randomly initially for DG allocation.
Step3. For finding objective function using power flow calculation (determine active power losses, voltage disturbances,
VSI with specified limits) and evaluate the fitness f(x) of each chromosome x in the population.
Step4. Applying genetics operator selection, crossover, and mutation create the new population of chromosomes using
old generation.
Step5. Replace the old population of chromosomes by new generation.
Step6. For convergence checking the maximum no .of iteration is reached, if yes then stop and gives the best solution
when no return to step 3 and find out optimal solution using next steps.
4. CASE STUDIES:-
In these studies, GA method is implemented on two IEEE Standard distribution system of 33-bus and 69-bus radial
Distribution system.the simulation results and performance of proposed GA is compared and discussed with various
optimization techniques provides in this paper for different case studies [6].
A. Study System –1:-
For this study system, the optimal location and sizing problem is formulated and solved for a Standard 33 bus radial
Distribution System. It has a Base voltage=12.66 kV and active power demand = 3.715MW, reactive power demand
2.300 kVAr. The simulation results collected are compared and analyzed for some cases shown in this paper.
I) Base Case [Case-I]:-
In this case without any DG installation shown in Table1. The table considered optimal DG size, Location, values of
objective functions and multi objective function (using weight co- efficient).
II).Three DG Operated at Unity Power Factors (UPFs) [Case-II]:-
In this case, three DGs are suggested in the distribution system on three different nodes .The simulation results received
by proposed method are compared with various existing methods in this paper and described in Table 1. The table
considered Optimal DG size, Location, Values of objective functions and multi objective function (using weight co- efficient)
the bold values in table represent the optimal solution with compared to other methods .The GA methods compared to
PSO, GA/PSO, TLBO, QOTLBO with improvement in objective functions.
III)Four DG Operated at UPFs[Case-III]:- In this case, Four DGs are suggested in the distribution system on four
different nodes .The simulation results received by proposed GA method are compared with various existing methods in
this paper and are Explained in Table 1. The table considered Optimal DG size Location, Values of objective functions and
multi objective function (using weight co- efficient) the bold values in table represent the optimal solution with compared
to other methods .The GA methods compared to PSO, GA/PSO, IMOHS with improvement in objective functions.
We concluded that the Case-II provides best solution as compared to case–I and case–III. Better voltage profile obtained
for all cases w.r.t. base case and also improves the value of voltage stability index for case–II as compared to case –I and
case–III.
B. Study System -2:-
For this study System ,the Optimal location and sizing problem is formulated and solved for a Standard 69- bus radial
distribution system .it has a Base voltage=12.66 kV and active power demand of=3.715MW, reactive power demand
=2.300 kVAr . The simulation results received are compared and analyzed for some cases shown in this paper.
I) Base Case [Case-I]:-
In this case without any DG installation shown in Table 2. The table considered optimal DG size, Location, values of
objective functions and multi objective function (using weight co- efficient).
INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056
VOLUME: 06 ISSUE: 09 | SEP 2019 WWW.IRJET.NET P-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 375
II) Three DG Operated at Unity Power Factors (UPFs) [Case-II]:-
In this case, three DGs are suggested in the distribution system on three different nodes .The simulation results received
by proposed method are compared with various existing methods in this paper and are explained in Table 2. The table
considered Optimal DG size, Location, Values of objective functions and multi objective function (using weight co- efficient)
the bold values in table represent the optimal solution with compared to other methods .The GA methods compared to
PSO, GA/PSO, TLBO, with improvement in objective function. The voltage profile of the system for all cases with respect to
base case shown in Fig: 2 and Fig: 3 for 33 and 69 bus system respectively.
We concluded that the Case-II provides best solution as compared to case–I and better voltage profile obtained for all cases
w.r.t. base case and also improves the value of voltage stability index for case–II.
Fig.2: Node voltage profile for system-1 for different cases
Fig.3: Node voltage profile for system-2 for different cases
Genetics Algorithm used for various field i.e. discuss in below:-
For machine learning (categorization and predication), optimization, Automobile design, Engineering design(to design the
structure of machine, factories and buildings), Robotics,
INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056
VOLUME: 06 ISSUE: 09 | SEP 2019 WWW.IRJET.NET P-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 376
Table 1: Comparison results for IEEE 33-bus system
Table 2: Comparison results for IEEE 69-bus system
Ecological model, Economic model (to solve financial and investment problems), computer game playing, for better
decision making and management, Bio-mimetic invention, Computer Aided Molecular design, traffic ,trip and shipment
routing (Solving Travelling Salesmen Problem), Evolvable Hardware , Optimized Telecommunication system etc.
5. CONCLUSIONS:-
In this paper presents proposed GA method to solve location and sizing problems for DGs simultaneously using standard
test distribution system of 33-bus and 69-bus Radial Distribution System. The proposed method was implemented to 33-
bus and 69-bus system with three different objective functions .In order to prove superiority of other optimization
techniques and compared with GA/PSO,PSO,TLBO,QOTLBO 33 bus system and GA/PSO,PSO,TLBO for 69 bus system.
Proposed Method gives less active power losses in comparing with the results of other popular optimization techniques.
After DGs installation, the both RDS have major improvement in voltage profile and increase in voltage stability index for
the Proposed GA method.
Multi-objective studies can be done by the proposed algorithm.The best location analyzed by GA for three DGs placement
at 25, 30, 13 bus number that reduces active power losses from 0.2025MW to 0.0958MW at normal load condition with
CASE
USED
METHOD
OPTIMAL
DG LOCATION
OPTIMAL DG SIZE(MW)
VALUE OF OBJECTIVE
FUNCTION
MULTI
OBJECTIVE
FUNCTION
F1
(MW)
F2 F3
I.
BASE
CASE
__ __ 0.2025 0.1170 0.6989 0.5232
II. PSO 8,13,32 1.177,0.982,0.830 0.1053 0.0335 0.9256 0.4510
GA/PSO 11,16,32 0.925,0.863,1.200 0.1034 0.0124 0.9508 0.4442
TLBO 12,28,30 1.183,1.191,1.186 0.1247 0.0011 0.9503 0.4580
QOTLBO 13,26,30 1.057,1.054,1.741 0.1034 0.0011 0.9530 0.4376
GA 25,30,13 0.9090,1.6840,1.6580 0.0958 0.0007 0.9701 0.4359
III. PSO 6,15,25,31 0.830,0.833,0.541,0.648 0.0713 0.0109 0.8776 0.3855
GA/PSO 14,24,26,32 0.663,1.023,0.867,0.664 0.0682 0.0130 0.8903 0.3878
IMOHS 6,14,24,31 0.937,0.667,1.012,0.731 0.0678 0.0111 0.8891 0.3862
GA 7,15,24,31 0.8884,0.6810,0.9420,0.7760 0.0670 0.0080 0.9049 0.3889
CASE
USED
METHOD
OPTIMAL DG
LOCATION
OPTIMAL DG SIZE
(MW)
VALUE OF OBJECTIVE
FUNCTION MULTI OBJECTIVE
FUNCTION
F1(MW) F2 F3
I. BASE CASE __ __ 0.22470 0.0993 0.6870 0.5296
II. PSO 17,61,63 0.9925,1.1998,0.7956 0.08320 0.0049 0.9676 0.4250
GA/PSO 21,61,63 0.4105,1.1926,0.8849 0.08110 0.0031 0.9768 0.4249
TLBO 13,61,62 1.0134,0.9901,1.1601 0.08217 0.0008 0.9745 0.4237
GA 16,61,62 0.8002,1.1724,0.9970 0.08060 0.0006 0.9778 0.4233
INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056
VOLUME: 06 ISSUE: 09 | SEP 2019 WWW.IRJET.NET P-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 377
improved voltage losses 0.1170p.u. to 0.0007p.u. And maximize the value of voltage stability index 0.6989 to 0.9701. For
four DGs placement at 7,15,24,21 bus number that reduces losses from 0.2025MW to 0.0670MW with improved voltage
losses 0.1170p.u. to 0.0080p.u. And maximize the value of voltage stability index 0.6989 to 0.9049 at normal load
condition for 33 bus system. The best location analyzed by GA for three DGs placement at 16, 61, 62 bus number that
reduces active power losses from 0.2247MW to 0.0806MW at normal load condition with improved voltage losses
0.0993p.u. to 0.0006p.u. And maximize the value of voltage stability index 0.6870 to 0.9778 for 69bus system.
REFERENCES:-
[1]. Bindeshwar Singh, V. Mukherjee,Prabhakar Tiwari “GA-based multi-objective optimization for distributed
generations planning with DLMs in distribution power system ,Journal of Electrical Systems and Information Technology.
Volume 4, Issue May 2017.
[2].U. Sultana, Azhar B.Khairuddin.M.M.Zareen “A review of Optimum DG placement based on Minimization of power
losses and Voltage stability enhancement of Distribution System”, Elsevier publication, Journal Renewable and
Sustainable Energy Reviews, Volume 63, September 2016.
[3]. M.H.Moradi and M. Abedini, “A combination of Genetics Algorithm and Particle Swarm Optimization for optimal DG
Location and sizing in Distributed Systems”, International Journal Electric Power and Energy System, Volume 34, January
2012.
[4]S. Sultana and P.K.Roy,”Mult-objective Quasi –Oppositional Teaching Learning based optimization for Optimal location
of DG in radial Distribution System”, International Journal of Electric Power and Energy System, Volume 63, Dec.2014.
[5].S. N. Singh Jacob Ostergaard, Naveen Jain “Distributed Generation in power system: An overview and Key issues”IEC,
published in: 24rth Indian Engineering Congress, January 2009.
[6]. N.K.Meena, Sonam Parashar, Anil Swarnkar, Nikhil Gupta, K.R.Niazi,”Improved Elephant Herding Optimization for
Multi-Objective DER Accommodation in Distribution System”IEEE Transactions on Industrial Informatics, March 2018.
[7]. A PDF for chapter 1: Genetic Algorithms –An introduction“shodhganga.inflibnet.ac.in>bitstream>11>11chapter1.
[8]. P.S. Georgilakis and N.D.Hatziargyriou, “Optimal DG placement in Power Distribution Network models, methods and
future research”, IEEE Transactions Power System, Volume 28, 28 Aug.2013
[9].Imran Ahmad Quadri .S.Bhowmick, D.Joshi, “A Comprehensive Technique for Optimal allocation Of DER in Radial
Distribution Systems”, Elsevier publication, Journal Applied energy, February 2018 Volume 211.
[10]. Priya Kashyap, Pushpendra Singh, “optimal placement and Size of DG and DER for Minimizing power loss and AEL in
33-Bus Distribution System by various Optimization Techniques” International Research Journal of Engineering and
Technology (IRJET) Volume: 05, 10 Oct 2018.
[11]. R.S.Rao, K.Ravindra, K.Satish and S. V. L. Narasimham, “Power Loss minimization in Distribution system using
network reconfiguration in the presence of DG,” IEEE Transactions on Power System., Volume. 28, February 2013.
[12]. S.M.Sajjadi, M.RHaghifam, Javad Salehi “Simultaneous Placement of Distributed Generation and Capacitors in
Distribution Networks Considering Voltage Stability Index” Elsevier publication, International Journal of Electric Power &
Energy System, Volume.46, March 2013.
[13]. N.K. Meena, Anil Swarnkar, Nikhil Gupta, Khaleequr R. Niazi1 “Multi-objective Taguchi approach for Optimal DG
integration in Distribution Systems”,IET Journal Generation Transmission and Distribution, June 2017.
[14]. A PDF for Optimal Placement and Sizing of Capacitor -Shodhganga”shodhganga.inflibnet.ac.in>bitstream>16chapter
4.
Ad

More Related Content

What's hot (20)

Network Reconfiguration in Distribution Systems Using Harmony Search Algorithm
Network Reconfiguration in Distribution Systems Using Harmony Search AlgorithmNetwork Reconfiguration in Distribution Systems Using Harmony Search Algorithm
Network Reconfiguration in Distribution Systems Using Harmony Search Algorithm
IOSRJEEE
 
Novel approach for hybrid MAC scheme for balanced energy and transmission in ...
Novel approach for hybrid MAC scheme for balanced energy and transmission in ...Novel approach for hybrid MAC scheme for balanced energy and transmission in ...
Novel approach for hybrid MAC scheme for balanced energy and transmission in ...
IJECEIAES
 
Improvement of voltage profile for large scale power system using soft comput...
Improvement of voltage profile for large scale power system using soft comput...Improvement of voltage profile for large scale power system using soft comput...
Improvement of voltage profile for large scale power system using soft comput...
TELKOMNIKA JOURNAL
 
Multi-objective optimal placement of distributed generations for dynamic loads
Multi-objective optimal placement of distributed generations for dynamic loadsMulti-objective optimal placement of distributed generations for dynamic loads
Multi-objective optimal placement of distributed generations for dynamic loads
IJECEIAES
 
OPTIMAL PLACEMENT AND SIZING OF CAPACITOR BANKS BASED ON VOLTAGE PROFILE AND ...
OPTIMAL PLACEMENT AND SIZING OF CAPACITOR BANKS BASED ON VOLTAGE PROFILE AND ...OPTIMAL PLACEMENT AND SIZING OF CAPACITOR BANKS BASED ON VOLTAGE PROFILE AND ...
OPTIMAL PLACEMENT AND SIZING OF CAPACITOR BANKS BASED ON VOLTAGE PROFILE AND ...
Prashanta Sarkar
 
A new simplified approach for optimum allocation of a distributed generation
A new simplified approach for optimum allocation of a distributed generationA new simplified approach for optimum allocation of a distributed generation
A new simplified approach for optimum allocation of a distributed generation
IAEME Publication
 
New solutions for optimization of the electrical distribution system availabi...
New solutions for optimization of the electrical distribution system availabi...New solutions for optimization of the electrical distribution system availabi...
New solutions for optimization of the electrical distribution system availabi...
Mohamed Ghaieth Abidi
 
IRJET- Comparison between Ideal and Estimated PV Parameters using Evolutionar...
IRJET- Comparison between Ideal and Estimated PV Parameters using Evolutionar...IRJET- Comparison between Ideal and Estimated PV Parameters using Evolutionar...
IRJET- Comparison between Ideal and Estimated PV Parameters using Evolutionar...
IRJET Journal
 
Optimal planning of RDGs in electrical distribution networks using hybrid SAP...
Optimal planning of RDGs in electrical distribution networks using hybrid SAP...Optimal planning of RDGs in electrical distribution networks using hybrid SAP...
Optimal planning of RDGs in electrical distribution networks using hybrid SAP...
IJECEIAES
 
15325008%2 e2014%2e1002589
15325008%2 e2014%2e100258915325008%2 e2014%2e1002589
15325008%2 e2014%2e1002589
rehman1oo
 
Impact of Distributed Generation on Reliability of Distribution System
Impact of Distributed Generation on Reliability of Distribution SystemImpact of Distributed Generation on Reliability of Distribution System
Impact of Distributed Generation on Reliability of Distribution System
IOSR Journals
 
Performance comparison of distributed generation installation arrangement in ...
Performance comparison of distributed generation installation arrangement in ...Performance comparison of distributed generation installation arrangement in ...
Performance comparison of distributed generation installation arrangement in ...
journalBEEI
 
01 16286 32182-1-sm multiple (edit)
01 16286 32182-1-sm multiple (edit)01 16286 32182-1-sm multiple (edit)
01 16286 32182-1-sm multiple (edit)
IAESIJEECS
 
Abrol2018 article joint_powerallocationandrelayse
Abrol2018 article joint_powerallocationandrelayseAbrol2018 article joint_powerallocationandrelayse
Abrol2018 article joint_powerallocationandrelayse
Rakesh Jha
 
Cooperative ad hoc networks for energy efficient improve connectivity
Cooperative ad hoc networks for energy efficient improve connectivityCooperative ad hoc networks for energy efficient improve connectivity
Cooperative ad hoc networks for energy efficient improve connectivity
eSAT Publishing House
 
Distribution network reconfiguration for loss reduction using PSO method
Distribution network reconfiguration for loss reduction  using PSO method Distribution network reconfiguration for loss reduction  using PSO method
Distribution network reconfiguration for loss reduction using PSO method
IJECEIAES
 
An analytical approach for optimal placement of combined dg and capacitor in ...
An analytical approach for optimal placement of combined dg and capacitor in ...An analytical approach for optimal placement of combined dg and capacitor in ...
An analytical approach for optimal placement of combined dg and capacitor in ...
IAEME Publication
 
Single core configurations of saturated core fault current limiter performanc...
Single core configurations of saturated core fault current limiter performanc...Single core configurations of saturated core fault current limiter performanc...
Single core configurations of saturated core fault current limiter performanc...
IJECEIAES
 
A New Design of Capacitive Power Transfer Based on Hybrid Approach for Biomed...
A New Design of Capacitive Power Transfer Based on Hybrid Approach for Biomed...A New Design of Capacitive Power Transfer Based on Hybrid Approach for Biomed...
A New Design of Capacitive Power Transfer Based on Hybrid Approach for Biomed...
IJECEIAES
 
IRJET- An Optimal Algorithm for Data Centres to Minimize the Power Supply
IRJET-  	  An Optimal Algorithm for Data Centres to Minimize the Power SupplyIRJET-  	  An Optimal Algorithm for Data Centres to Minimize the Power Supply
IRJET- An Optimal Algorithm for Data Centres to Minimize the Power Supply
IRJET Journal
 
Network Reconfiguration in Distribution Systems Using Harmony Search Algorithm
Network Reconfiguration in Distribution Systems Using Harmony Search AlgorithmNetwork Reconfiguration in Distribution Systems Using Harmony Search Algorithm
Network Reconfiguration in Distribution Systems Using Harmony Search Algorithm
IOSRJEEE
 
Novel approach for hybrid MAC scheme for balanced energy and transmission in ...
Novel approach for hybrid MAC scheme for balanced energy and transmission in ...Novel approach for hybrid MAC scheme for balanced energy and transmission in ...
Novel approach for hybrid MAC scheme for balanced energy and transmission in ...
IJECEIAES
 
Improvement of voltage profile for large scale power system using soft comput...
Improvement of voltage profile for large scale power system using soft comput...Improvement of voltage profile for large scale power system using soft comput...
Improvement of voltage profile for large scale power system using soft comput...
TELKOMNIKA JOURNAL
 
Multi-objective optimal placement of distributed generations for dynamic loads
Multi-objective optimal placement of distributed generations for dynamic loadsMulti-objective optimal placement of distributed generations for dynamic loads
Multi-objective optimal placement of distributed generations for dynamic loads
IJECEIAES
 
OPTIMAL PLACEMENT AND SIZING OF CAPACITOR BANKS BASED ON VOLTAGE PROFILE AND ...
OPTIMAL PLACEMENT AND SIZING OF CAPACITOR BANKS BASED ON VOLTAGE PROFILE AND ...OPTIMAL PLACEMENT AND SIZING OF CAPACITOR BANKS BASED ON VOLTAGE PROFILE AND ...
OPTIMAL PLACEMENT AND SIZING OF CAPACITOR BANKS BASED ON VOLTAGE PROFILE AND ...
Prashanta Sarkar
 
A new simplified approach for optimum allocation of a distributed generation
A new simplified approach for optimum allocation of a distributed generationA new simplified approach for optimum allocation of a distributed generation
A new simplified approach for optimum allocation of a distributed generation
IAEME Publication
 
New solutions for optimization of the electrical distribution system availabi...
New solutions for optimization of the electrical distribution system availabi...New solutions for optimization of the electrical distribution system availabi...
New solutions for optimization of the electrical distribution system availabi...
Mohamed Ghaieth Abidi
 
IRJET- Comparison between Ideal and Estimated PV Parameters using Evolutionar...
IRJET- Comparison between Ideal and Estimated PV Parameters using Evolutionar...IRJET- Comparison between Ideal and Estimated PV Parameters using Evolutionar...
IRJET- Comparison between Ideal and Estimated PV Parameters using Evolutionar...
IRJET Journal
 
Optimal planning of RDGs in electrical distribution networks using hybrid SAP...
Optimal planning of RDGs in electrical distribution networks using hybrid SAP...Optimal planning of RDGs in electrical distribution networks using hybrid SAP...
Optimal planning of RDGs in electrical distribution networks using hybrid SAP...
IJECEIAES
 
15325008%2 e2014%2e1002589
15325008%2 e2014%2e100258915325008%2 e2014%2e1002589
15325008%2 e2014%2e1002589
rehman1oo
 
Impact of Distributed Generation on Reliability of Distribution System
Impact of Distributed Generation on Reliability of Distribution SystemImpact of Distributed Generation on Reliability of Distribution System
Impact of Distributed Generation on Reliability of Distribution System
IOSR Journals
 
Performance comparison of distributed generation installation arrangement in ...
Performance comparison of distributed generation installation arrangement in ...Performance comparison of distributed generation installation arrangement in ...
Performance comparison of distributed generation installation arrangement in ...
journalBEEI
 
01 16286 32182-1-sm multiple (edit)
01 16286 32182-1-sm multiple (edit)01 16286 32182-1-sm multiple (edit)
01 16286 32182-1-sm multiple (edit)
IAESIJEECS
 
Abrol2018 article joint_powerallocationandrelayse
Abrol2018 article joint_powerallocationandrelayseAbrol2018 article joint_powerallocationandrelayse
Abrol2018 article joint_powerallocationandrelayse
Rakesh Jha
 
Cooperative ad hoc networks for energy efficient improve connectivity
Cooperative ad hoc networks for energy efficient improve connectivityCooperative ad hoc networks for energy efficient improve connectivity
Cooperative ad hoc networks for energy efficient improve connectivity
eSAT Publishing House
 
Distribution network reconfiguration for loss reduction using PSO method
Distribution network reconfiguration for loss reduction  using PSO method Distribution network reconfiguration for loss reduction  using PSO method
Distribution network reconfiguration for loss reduction using PSO method
IJECEIAES
 
An analytical approach for optimal placement of combined dg and capacitor in ...
An analytical approach for optimal placement of combined dg and capacitor in ...An analytical approach for optimal placement of combined dg and capacitor in ...
An analytical approach for optimal placement of combined dg and capacitor in ...
IAEME Publication
 
Single core configurations of saturated core fault current limiter performanc...
Single core configurations of saturated core fault current limiter performanc...Single core configurations of saturated core fault current limiter performanc...
Single core configurations of saturated core fault current limiter performanc...
IJECEIAES
 
A New Design of Capacitive Power Transfer Based on Hybrid Approach for Biomed...
A New Design of Capacitive Power Transfer Based on Hybrid Approach for Biomed...A New Design of Capacitive Power Transfer Based on Hybrid Approach for Biomed...
A New Design of Capacitive Power Transfer Based on Hybrid Approach for Biomed...
IJECEIAES
 
IRJET- An Optimal Algorithm for Data Centres to Minimize the Power Supply
IRJET-  	  An Optimal Algorithm for Data Centres to Minimize the Power SupplyIRJET-  	  An Optimal Algorithm for Data Centres to Minimize the Power Supply
IRJET- An Optimal Algorithm for Data Centres to Minimize the Power Supply
IRJET Journal
 

Similar to IRJET- Optimization of Distributed Generation using Genetics Algorithm and Improvement in Multiobjective Function (20)

Optimal Placement of DG for Loss Reduction and Voltage Sag Mitigation in Radi...
Optimal Placement of DG for Loss Reduction and Voltage Sag Mitigation in Radi...Optimal Placement of DG for Loss Reduction and Voltage Sag Mitigation in Radi...
Optimal Placement of DG for Loss Reduction and Voltage Sag Mitigation in Radi...
IDES Editor
 
Network loss reduction and voltage improvement by optimal placement and sizin...
Network loss reduction and voltage improvement by optimal placement and sizin...Network loss reduction and voltage improvement by optimal placement and sizin...
Network loss reduction and voltage improvement by optimal placement and sizin...
nooriasukmaningtyas
 
Optimal Integration of the Renewable Energy to the Grid by Considering Small ...
Optimal Integration of the Renewable Energy to the Grid by Considering Small ...Optimal Integration of the Renewable Energy to the Grid by Considering Small ...
Optimal Integration of the Renewable Energy to the Grid by Considering Small ...
IJECEIAES
 
Optimal dg placement using multiobjective index and its effect on stability 2
Optimal dg placement using multiobjective index and its effect on stability 2Optimal dg placement using multiobjective index and its effect on stability 2
Optimal dg placement using multiobjective index and its effect on stability 2
IAEME Publication
 
Voltage Profile Improvement of distribution system Using Particle Swarm Optim...
Voltage Profile Improvement of distribution system Using Particle Swarm Optim...Voltage Profile Improvement of distribution system Using Particle Swarm Optim...
Voltage Profile Improvement of distribution system Using Particle Swarm Optim...
IJERA Editor
 
G42013438
G42013438G42013438
G42013438
IJERA Editor
 
A010430108
A010430108A010430108
A010430108
IOSR Journals
 
Impact of Dispersed Generation on Optimization of Power Exports
Impact of Dispersed Generation on Optimization of Power ExportsImpact of Dispersed Generation on Optimization of Power Exports
Impact of Dispersed Generation on Optimization of Power Exports
IJERA Editor
 
Multi-objective whale optimization based minimization of loss, maximization o...
Multi-objective whale optimization based minimization of loss, maximization o...Multi-objective whale optimization based minimization of loss, maximization o...
Multi-objective whale optimization based minimization of loss, maximization o...
IJECEIAES
 
Optimum reactive power compensation for distribution system using dolphin alg...
Optimum reactive power compensation for distribution system using dolphin alg...Optimum reactive power compensation for distribution system using dolphin alg...
Optimum reactive power compensation for distribution system using dolphin alg...
IJECEIAES
 
[IJET-V1I4P9] Author :Su Hlaing Win
[IJET-V1I4P9] Author :Su Hlaing Win[IJET-V1I4P9] Author :Su Hlaing Win
[IJET-V1I4P9] Author :Su Hlaing Win
IJET - International Journal of Engineering and Techniques
 
Db34623630
Db34623630Db34623630
Db34623630
IJERA Editor
 
40220140504003
4022014050400340220140504003
40220140504003
IAEME Publication
 
B04721015
B04721015B04721015
B04721015
IOSR-JEN
 
Distributed Generation Allocation to Improve Steady State Voltage Stability o...
Distributed Generation Allocation to Improve Steady State Voltage Stability o...Distributed Generation Allocation to Improve Steady State Voltage Stability o...
Distributed Generation Allocation to Improve Steady State Voltage Stability o...
IJAPEJOURNAL
 
IRJET- Comprehensive Analysis on Optimal Allocation and Sizing of Distributed...
IRJET- Comprehensive Analysis on Optimal Allocation and Sizing of Distributed...IRJET- Comprehensive Analysis on Optimal Allocation and Sizing of Distributed...
IRJET- Comprehensive Analysis on Optimal Allocation and Sizing of Distributed...
IRJET Journal
 
Optimal Siting And Sizing Of Distributed Generation For Radial Distribution S...
Optimal Siting And Sizing Of Distributed Generation For Radial Distribution S...Optimal Siting And Sizing Of Distributed Generation For Radial Distribution S...
Optimal Siting And Sizing Of Distributed Generation For Radial Distribution S...
inventy
 
Optimal Placement and Sizing of Distributed Generation Units Using Co-Evoluti...
Optimal Placement and Sizing of Distributed Generation Units Using Co-Evoluti...Optimal Placement and Sizing of Distributed Generation Units Using Co-Evoluti...
Optimal Placement and Sizing of Distributed Generation Units Using Co-Evoluti...
Radita Apriana
 
Coyote multi-objective optimization algorithm for optimal location and sizing...
Coyote multi-objective optimization algorithm for optimal location and sizing...Coyote multi-objective optimization algorithm for optimal location and sizing...
Coyote multi-objective optimization algorithm for optimal location and sizing...
IJECEIAES
 
Power Loss Allocation in Deregulated Electricity Markets
Power Loss Allocation in Deregulated Electricity MarketsPower Loss Allocation in Deregulated Electricity Markets
Power Loss Allocation in Deregulated Electricity Markets
IJERD Editor
 
Optimal Placement of DG for Loss Reduction and Voltage Sag Mitigation in Radi...
Optimal Placement of DG for Loss Reduction and Voltage Sag Mitigation in Radi...Optimal Placement of DG for Loss Reduction and Voltage Sag Mitigation in Radi...
Optimal Placement of DG for Loss Reduction and Voltage Sag Mitigation in Radi...
IDES Editor
 
Network loss reduction and voltage improvement by optimal placement and sizin...
Network loss reduction and voltage improvement by optimal placement and sizin...Network loss reduction and voltage improvement by optimal placement and sizin...
Network loss reduction and voltage improvement by optimal placement and sizin...
nooriasukmaningtyas
 
Optimal Integration of the Renewable Energy to the Grid by Considering Small ...
Optimal Integration of the Renewable Energy to the Grid by Considering Small ...Optimal Integration of the Renewable Energy to the Grid by Considering Small ...
Optimal Integration of the Renewable Energy to the Grid by Considering Small ...
IJECEIAES
 
Optimal dg placement using multiobjective index and its effect on stability 2
Optimal dg placement using multiobjective index and its effect on stability 2Optimal dg placement using multiobjective index and its effect on stability 2
Optimal dg placement using multiobjective index and its effect on stability 2
IAEME Publication
 
Voltage Profile Improvement of distribution system Using Particle Swarm Optim...
Voltage Profile Improvement of distribution system Using Particle Swarm Optim...Voltage Profile Improvement of distribution system Using Particle Swarm Optim...
Voltage Profile Improvement of distribution system Using Particle Swarm Optim...
IJERA Editor
 
Impact of Dispersed Generation on Optimization of Power Exports
Impact of Dispersed Generation on Optimization of Power ExportsImpact of Dispersed Generation on Optimization of Power Exports
Impact of Dispersed Generation on Optimization of Power Exports
IJERA Editor
 
Multi-objective whale optimization based minimization of loss, maximization o...
Multi-objective whale optimization based minimization of loss, maximization o...Multi-objective whale optimization based minimization of loss, maximization o...
Multi-objective whale optimization based minimization of loss, maximization o...
IJECEIAES
 
Optimum reactive power compensation for distribution system using dolphin alg...
Optimum reactive power compensation for distribution system using dolphin alg...Optimum reactive power compensation for distribution system using dolphin alg...
Optimum reactive power compensation for distribution system using dolphin alg...
IJECEIAES
 
Distributed Generation Allocation to Improve Steady State Voltage Stability o...
Distributed Generation Allocation to Improve Steady State Voltage Stability o...Distributed Generation Allocation to Improve Steady State Voltage Stability o...
Distributed Generation Allocation to Improve Steady State Voltage Stability o...
IJAPEJOURNAL
 
IRJET- Comprehensive Analysis on Optimal Allocation and Sizing of Distributed...
IRJET- Comprehensive Analysis on Optimal Allocation and Sizing of Distributed...IRJET- Comprehensive Analysis on Optimal Allocation and Sizing of Distributed...
IRJET- Comprehensive Analysis on Optimal Allocation and Sizing of Distributed...
IRJET Journal
 
Optimal Siting And Sizing Of Distributed Generation For Radial Distribution S...
Optimal Siting And Sizing Of Distributed Generation For Radial Distribution S...Optimal Siting And Sizing Of Distributed Generation For Radial Distribution S...
Optimal Siting And Sizing Of Distributed Generation For Radial Distribution S...
inventy
 
Optimal Placement and Sizing of Distributed Generation Units Using Co-Evoluti...
Optimal Placement and Sizing of Distributed Generation Units Using Co-Evoluti...Optimal Placement and Sizing of Distributed Generation Units Using Co-Evoluti...
Optimal Placement and Sizing of Distributed Generation Units Using Co-Evoluti...
Radita Apriana
 
Coyote multi-objective optimization algorithm for optimal location and sizing...
Coyote multi-objective optimization algorithm for optimal location and sizing...Coyote multi-objective optimization algorithm for optimal location and sizing...
Coyote multi-objective optimization algorithm for optimal location and sizing...
IJECEIAES
 
Power Loss Allocation in Deregulated Electricity Markets
Power Loss Allocation in Deregulated Electricity MarketsPower Loss Allocation in Deregulated Electricity Markets
Power Loss Allocation in Deregulated Electricity Markets
IJERD Editor
 
Ad

More from IRJET Journal (20)

Explainable AI(XAI) using LIME and Disease Detection in Mango Leaf by Transfe...
Explainable AI(XAI) using LIME and Disease Detection in Mango Leaf by Transfe...Explainable AI(XAI) using LIME and Disease Detection in Mango Leaf by Transfe...
Explainable AI(XAI) using LIME and Disease Detection in Mango Leaf by Transfe...
IRJET Journal
 
BRAIN TUMOUR DETECTION AND CLASSIFICATION
BRAIN TUMOUR DETECTION AND CLASSIFICATIONBRAIN TUMOUR DETECTION AND CLASSIFICATION
BRAIN TUMOUR DETECTION AND CLASSIFICATION
IRJET Journal
 
The Project Manager as an ambassador of the contract. The case of NEC4 ECC co...
The Project Manager as an ambassador of the contract. The case of NEC4 ECC co...The Project Manager as an ambassador of the contract. The case of NEC4 ECC co...
The Project Manager as an ambassador of the contract. The case of NEC4 ECC co...
IRJET Journal
 
"Enhanced Heat Transfer Performance in Shell and Tube Heat Exchangers: A CFD ...
"Enhanced Heat Transfer Performance in Shell and Tube Heat Exchangers: A CFD ..."Enhanced Heat Transfer Performance in Shell and Tube Heat Exchangers: A CFD ...
"Enhanced Heat Transfer Performance in Shell and Tube Heat Exchangers: A CFD ...
IRJET Journal
 
Advancements in CFD Analysis of Shell and Tube Heat Exchangers with Nanofluid...
Advancements in CFD Analysis of Shell and Tube Heat Exchangers with Nanofluid...Advancements in CFD Analysis of Shell and Tube Heat Exchangers with Nanofluid...
Advancements in CFD Analysis of Shell and Tube Heat Exchangers with Nanofluid...
IRJET Journal
 
Breast Cancer Detection using Computer Vision
Breast Cancer Detection using Computer VisionBreast Cancer Detection using Computer Vision
Breast Cancer Detection using Computer Vision
IRJET Journal
 
Auto-Charging E-Vehicle with its battery Management.
Auto-Charging E-Vehicle with its battery Management.Auto-Charging E-Vehicle with its battery Management.
Auto-Charging E-Vehicle with its battery Management.
IRJET Journal
 
Analysis of high energy charge particle in the Heliosphere
Analysis of high energy charge particle in the HeliosphereAnalysis of high energy charge particle in the Heliosphere
Analysis of high energy charge particle in the Heliosphere
IRJET Journal
 
A Novel System for Recommending Agricultural Crops Using Machine Learning App...
A Novel System for Recommending Agricultural Crops Using Machine Learning App...A Novel System for Recommending Agricultural Crops Using Machine Learning App...
A Novel System for Recommending Agricultural Crops Using Machine Learning App...
IRJET Journal
 
Auto-Charging E-Vehicle with its battery Management.
Auto-Charging E-Vehicle with its battery Management.Auto-Charging E-Vehicle with its battery Management.
Auto-Charging E-Vehicle with its battery Management.
IRJET Journal
 
Analysis of high energy charge particle in the Heliosphere
Analysis of high energy charge particle in the HeliosphereAnalysis of high energy charge particle in the Heliosphere
Analysis of high energy charge particle in the Heliosphere
IRJET Journal
 
Wireless Arduino Control via Mobile: Eliminating the Need for a Dedicated Wir...
Wireless Arduino Control via Mobile: Eliminating the Need for a Dedicated Wir...Wireless Arduino Control via Mobile: Eliminating the Need for a Dedicated Wir...
Wireless Arduino Control via Mobile: Eliminating the Need for a Dedicated Wir...
IRJET Journal
 
FIR filter-based Sample Rate Convertors and its use in NR PRACH
FIR filter-based Sample Rate Convertors and its use in NR PRACHFIR filter-based Sample Rate Convertors and its use in NR PRACH
FIR filter-based Sample Rate Convertors and its use in NR PRACH
IRJET Journal
 
Kiona – A Smart Society Automation Project
Kiona – A Smart Society Automation ProjectKiona – A Smart Society Automation Project
Kiona – A Smart Society Automation Project
IRJET Journal
 
Utilizing Biomedical Waste for Sustainable Brick Manufacturing: A Novel Appro...
Utilizing Biomedical Waste for Sustainable Brick Manufacturing: A Novel Appro...Utilizing Biomedical Waste for Sustainable Brick Manufacturing: A Novel Appro...
Utilizing Biomedical Waste for Sustainable Brick Manufacturing: A Novel Appro...
IRJET Journal
 
A Review on Influence of Fluid Viscous Damper on The Behaviour of Multi-store...
A Review on Influence of Fluid Viscous Damper on The Behaviour of Multi-store...A Review on Influence of Fluid Viscous Damper on The Behaviour of Multi-store...
A Review on Influence of Fluid Viscous Damper on The Behaviour of Multi-store...
IRJET Journal
 
Invest in Innovation: Empowering Ideas through Blockchain Based Crowdfunding
Invest in Innovation: Empowering Ideas through Blockchain Based CrowdfundingInvest in Innovation: Empowering Ideas through Blockchain Based Crowdfunding
Invest in Innovation: Empowering Ideas through Blockchain Based Crowdfunding
IRJET Journal
 
DESIGN AND DEVELOPMENT OF BATTERY THERMAL MANAGEMENT SYSTEM USING PHASE CHANG...
DESIGN AND DEVELOPMENT OF BATTERY THERMAL MANAGEMENT SYSTEM USING PHASE CHANG...DESIGN AND DEVELOPMENT OF BATTERY THERMAL MANAGEMENT SYSTEM USING PHASE CHANG...
DESIGN AND DEVELOPMENT OF BATTERY THERMAL MANAGEMENT SYSTEM USING PHASE CHANG...
IRJET Journal
 
SPACE WATCH YOUR REAL-TIME SPACE INFORMATION HUB
SPACE WATCH YOUR REAL-TIME SPACE INFORMATION HUBSPACE WATCH YOUR REAL-TIME SPACE INFORMATION HUB
SPACE WATCH YOUR REAL-TIME SPACE INFORMATION HUB
IRJET Journal
 
AR Application: Homewise VisionMs. Vaishali Rane, Om Awadhoot, Bhargav Gajare...
AR Application: Homewise VisionMs. Vaishali Rane, Om Awadhoot, Bhargav Gajare...AR Application: Homewise VisionMs. Vaishali Rane, Om Awadhoot, Bhargav Gajare...
AR Application: Homewise VisionMs. Vaishali Rane, Om Awadhoot, Bhargav Gajare...
IRJET Journal
 
Explainable AI(XAI) using LIME and Disease Detection in Mango Leaf by Transfe...
Explainable AI(XAI) using LIME and Disease Detection in Mango Leaf by Transfe...Explainable AI(XAI) using LIME and Disease Detection in Mango Leaf by Transfe...
Explainable AI(XAI) using LIME and Disease Detection in Mango Leaf by Transfe...
IRJET Journal
 
BRAIN TUMOUR DETECTION AND CLASSIFICATION
BRAIN TUMOUR DETECTION AND CLASSIFICATIONBRAIN TUMOUR DETECTION AND CLASSIFICATION
BRAIN TUMOUR DETECTION AND CLASSIFICATION
IRJET Journal
 
The Project Manager as an ambassador of the contract. The case of NEC4 ECC co...
The Project Manager as an ambassador of the contract. The case of NEC4 ECC co...The Project Manager as an ambassador of the contract. The case of NEC4 ECC co...
The Project Manager as an ambassador of the contract. The case of NEC4 ECC co...
IRJET Journal
 
"Enhanced Heat Transfer Performance in Shell and Tube Heat Exchangers: A CFD ...
"Enhanced Heat Transfer Performance in Shell and Tube Heat Exchangers: A CFD ..."Enhanced Heat Transfer Performance in Shell and Tube Heat Exchangers: A CFD ...
"Enhanced Heat Transfer Performance in Shell and Tube Heat Exchangers: A CFD ...
IRJET Journal
 
Advancements in CFD Analysis of Shell and Tube Heat Exchangers with Nanofluid...
Advancements in CFD Analysis of Shell and Tube Heat Exchangers with Nanofluid...Advancements in CFD Analysis of Shell and Tube Heat Exchangers with Nanofluid...
Advancements in CFD Analysis of Shell and Tube Heat Exchangers with Nanofluid...
IRJET Journal
 
Breast Cancer Detection using Computer Vision
Breast Cancer Detection using Computer VisionBreast Cancer Detection using Computer Vision
Breast Cancer Detection using Computer Vision
IRJET Journal
 
Auto-Charging E-Vehicle with its battery Management.
Auto-Charging E-Vehicle with its battery Management.Auto-Charging E-Vehicle with its battery Management.
Auto-Charging E-Vehicle with its battery Management.
IRJET Journal
 
Analysis of high energy charge particle in the Heliosphere
Analysis of high energy charge particle in the HeliosphereAnalysis of high energy charge particle in the Heliosphere
Analysis of high energy charge particle in the Heliosphere
IRJET Journal
 
A Novel System for Recommending Agricultural Crops Using Machine Learning App...
A Novel System for Recommending Agricultural Crops Using Machine Learning App...A Novel System for Recommending Agricultural Crops Using Machine Learning App...
A Novel System for Recommending Agricultural Crops Using Machine Learning App...
IRJET Journal
 
Auto-Charging E-Vehicle with its battery Management.
Auto-Charging E-Vehicle with its battery Management.Auto-Charging E-Vehicle with its battery Management.
Auto-Charging E-Vehicle with its battery Management.
IRJET Journal
 
Analysis of high energy charge particle in the Heliosphere
Analysis of high energy charge particle in the HeliosphereAnalysis of high energy charge particle in the Heliosphere
Analysis of high energy charge particle in the Heliosphere
IRJET Journal
 
Wireless Arduino Control via Mobile: Eliminating the Need for a Dedicated Wir...
Wireless Arduino Control via Mobile: Eliminating the Need for a Dedicated Wir...Wireless Arduino Control via Mobile: Eliminating the Need for a Dedicated Wir...
Wireless Arduino Control via Mobile: Eliminating the Need for a Dedicated Wir...
IRJET Journal
 
FIR filter-based Sample Rate Convertors and its use in NR PRACH
FIR filter-based Sample Rate Convertors and its use in NR PRACHFIR filter-based Sample Rate Convertors and its use in NR PRACH
FIR filter-based Sample Rate Convertors and its use in NR PRACH
IRJET Journal
 
Kiona – A Smart Society Automation Project
Kiona – A Smart Society Automation ProjectKiona – A Smart Society Automation Project
Kiona – A Smart Society Automation Project
IRJET Journal
 
Utilizing Biomedical Waste for Sustainable Brick Manufacturing: A Novel Appro...
Utilizing Biomedical Waste for Sustainable Brick Manufacturing: A Novel Appro...Utilizing Biomedical Waste for Sustainable Brick Manufacturing: A Novel Appro...
Utilizing Biomedical Waste for Sustainable Brick Manufacturing: A Novel Appro...
IRJET Journal
 
A Review on Influence of Fluid Viscous Damper on The Behaviour of Multi-store...
A Review on Influence of Fluid Viscous Damper on The Behaviour of Multi-store...A Review on Influence of Fluid Viscous Damper on The Behaviour of Multi-store...
A Review on Influence of Fluid Viscous Damper on The Behaviour of Multi-store...
IRJET Journal
 
Invest in Innovation: Empowering Ideas through Blockchain Based Crowdfunding
Invest in Innovation: Empowering Ideas through Blockchain Based CrowdfundingInvest in Innovation: Empowering Ideas through Blockchain Based Crowdfunding
Invest in Innovation: Empowering Ideas through Blockchain Based Crowdfunding
IRJET Journal
 
DESIGN AND DEVELOPMENT OF BATTERY THERMAL MANAGEMENT SYSTEM USING PHASE CHANG...
DESIGN AND DEVELOPMENT OF BATTERY THERMAL MANAGEMENT SYSTEM USING PHASE CHANG...DESIGN AND DEVELOPMENT OF BATTERY THERMAL MANAGEMENT SYSTEM USING PHASE CHANG...
DESIGN AND DEVELOPMENT OF BATTERY THERMAL MANAGEMENT SYSTEM USING PHASE CHANG...
IRJET Journal
 
SPACE WATCH YOUR REAL-TIME SPACE INFORMATION HUB
SPACE WATCH YOUR REAL-TIME SPACE INFORMATION HUBSPACE WATCH YOUR REAL-TIME SPACE INFORMATION HUB
SPACE WATCH YOUR REAL-TIME SPACE INFORMATION HUB
IRJET Journal
 
AR Application: Homewise VisionMs. Vaishali Rane, Om Awadhoot, Bhargav Gajare...
AR Application: Homewise VisionMs. Vaishali Rane, Om Awadhoot, Bhargav Gajare...AR Application: Homewise VisionMs. Vaishali Rane, Om Awadhoot, Bhargav Gajare...
AR Application: Homewise VisionMs. Vaishali Rane, Om Awadhoot, Bhargav Gajare...
IRJET Journal
 
Ad

Recently uploaded (20)

2025 Apply BTech CEC .docx
2025 Apply BTech CEC                 .docx2025 Apply BTech CEC                 .docx
2025 Apply BTech CEC .docx
tusharmanagementquot
 
SICPA: Fabien Keller - background introduction
SICPA: Fabien Keller - background introductionSICPA: Fabien Keller - background introduction
SICPA: Fabien Keller - background introduction
fabienklr
 
Resistance measurement and cfd test on darpa subboff model
Resistance measurement and cfd test on darpa subboff modelResistance measurement and cfd test on darpa subboff model
Resistance measurement and cfd test on darpa subboff model
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
 
Data Structures_Linear data structures Linked Lists.pptx
Data Structures_Linear data structures Linked Lists.pptxData Structures_Linear data structures Linked Lists.pptx
Data Structures_Linear data structures Linked Lists.pptx
RushaliDeshmukh2
 
Process Parameter Optimization for Minimizing Springback in Cold Drawing Proc...
Process Parameter Optimization for Minimizing Springback in Cold Drawing Proc...Process Parameter Optimization for Minimizing Springback in Cold Drawing Proc...
Process Parameter Optimization for Minimizing Springback in Cold Drawing Proc...
Journal of Soft Computing in Civil Engineering
 
Introduction to FLUID MECHANICS & KINEMATICS
Introduction to FLUID MECHANICS &  KINEMATICSIntroduction to FLUID MECHANICS &  KINEMATICS
Introduction to FLUID MECHANICS & KINEMATICS
narayanaswamygdas
 
MODULE 03 - CLOUD COMPUTING- [BIS 613D] 2022 scheme.pptx
MODULE 03 - CLOUD COMPUTING-  [BIS 613D] 2022 scheme.pptxMODULE 03 - CLOUD COMPUTING-  [BIS 613D] 2022 scheme.pptx
MODULE 03 - CLOUD COMPUTING- [BIS 613D] 2022 scheme.pptx
Alvas Institute of Engineering and technology, Moodabidri
 
Compiler Design_Intermediate code generation new ppt.pptx
Compiler Design_Intermediate code generation new ppt.pptxCompiler Design_Intermediate code generation new ppt.pptx
Compiler Design_Intermediate code generation new ppt.pptx
RushaliDeshmukh2
 
RICS Membership-(The Royal Institution of Chartered Surveyors).pdf
RICS Membership-(The Royal Institution of Chartered Surveyors).pdfRICS Membership-(The Royal Institution of Chartered Surveyors).pdf
RICS Membership-(The Royal Institution of Chartered Surveyors).pdf
MohamedAbdelkader115
 
Data Structures_Searching and Sorting.pptx
Data Structures_Searching and Sorting.pptxData Structures_Searching and Sorting.pptx
Data Structures_Searching and Sorting.pptx
RushaliDeshmukh2
 
Nanometer Metal-Organic-Framework Literature Comparison
Nanometer Metal-Organic-Framework  Literature ComparisonNanometer Metal-Organic-Framework  Literature Comparison
Nanometer Metal-Organic-Framework Literature Comparison
Chris Harding
 
Data Structures_Linear Data Structure Stack.pptx
Data Structures_Linear Data Structure Stack.pptxData Structures_Linear Data Structure Stack.pptx
Data Structures_Linear Data Structure Stack.pptx
RushaliDeshmukh2
 
How to use nRF24L01 module with Arduino
How to use nRF24L01 module with ArduinoHow to use nRF24L01 module with Arduino
How to use nRF24L01 module with Arduino
CircuitDigest
 
DSP and MV the Color image processing.ppt
DSP and MV the  Color image processing.pptDSP and MV the  Color image processing.ppt
DSP and MV the Color image processing.ppt
HafizAhamed8
 
最新版加拿大魁北克大学蒙特利尔分校毕业证(UQAM毕业证书)原版定制
最新版加拿大魁北克大学蒙特利尔分校毕业证(UQAM毕业证书)原版定制最新版加拿大魁北克大学蒙特利尔分校毕业证(UQAM毕业证书)原版定制
最新版加拿大魁北克大学蒙特利尔分校毕业证(UQAM毕业证书)原版定制
Taqyea
 
Value Stream Mapping Worskshops for Intelligent Continuous Security
Value Stream Mapping Worskshops for Intelligent Continuous SecurityValue Stream Mapping Worskshops for Intelligent Continuous Security
Value Stream Mapping Worskshops for Intelligent Continuous Security
Marc Hornbeek
 
Artificial Intelligence introduction.pptx
Artificial Intelligence introduction.pptxArtificial Intelligence introduction.pptx
Artificial Intelligence introduction.pptx
DrMarwaElsherif
 
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E..."Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
Infopitaara
 
Compiler Design_Syntax Directed Translation.pptx
Compiler Design_Syntax Directed Translation.pptxCompiler Design_Syntax Directed Translation.pptx
Compiler Design_Syntax Directed Translation.pptx
RushaliDeshmukh2
 
Reese McCrary_ The Role of Perseverance in Engineering Success.pdf
Reese McCrary_ The Role of Perseverance in Engineering Success.pdfReese McCrary_ The Role of Perseverance in Engineering Success.pdf
Reese McCrary_ The Role of Perseverance in Engineering Success.pdf
Reese McCrary
 
SICPA: Fabien Keller - background introduction
SICPA: Fabien Keller - background introductionSICPA: Fabien Keller - background introduction
SICPA: Fabien Keller - background introduction
fabienklr
 
Data Structures_Linear data structures Linked Lists.pptx
Data Structures_Linear data structures Linked Lists.pptxData Structures_Linear data structures Linked Lists.pptx
Data Structures_Linear data structures Linked Lists.pptx
RushaliDeshmukh2
 
Introduction to FLUID MECHANICS & KINEMATICS
Introduction to FLUID MECHANICS &  KINEMATICSIntroduction to FLUID MECHANICS &  KINEMATICS
Introduction to FLUID MECHANICS & KINEMATICS
narayanaswamygdas
 
Compiler Design_Intermediate code generation new ppt.pptx
Compiler Design_Intermediate code generation new ppt.pptxCompiler Design_Intermediate code generation new ppt.pptx
Compiler Design_Intermediate code generation new ppt.pptx
RushaliDeshmukh2
 
RICS Membership-(The Royal Institution of Chartered Surveyors).pdf
RICS Membership-(The Royal Institution of Chartered Surveyors).pdfRICS Membership-(The Royal Institution of Chartered Surveyors).pdf
RICS Membership-(The Royal Institution of Chartered Surveyors).pdf
MohamedAbdelkader115
 
Data Structures_Searching and Sorting.pptx
Data Structures_Searching and Sorting.pptxData Structures_Searching and Sorting.pptx
Data Structures_Searching and Sorting.pptx
RushaliDeshmukh2
 
Nanometer Metal-Organic-Framework Literature Comparison
Nanometer Metal-Organic-Framework  Literature ComparisonNanometer Metal-Organic-Framework  Literature Comparison
Nanometer Metal-Organic-Framework Literature Comparison
Chris Harding
 
Data Structures_Linear Data Structure Stack.pptx
Data Structures_Linear Data Structure Stack.pptxData Structures_Linear Data Structure Stack.pptx
Data Structures_Linear Data Structure Stack.pptx
RushaliDeshmukh2
 
How to use nRF24L01 module with Arduino
How to use nRF24L01 module with ArduinoHow to use nRF24L01 module with Arduino
How to use nRF24L01 module with Arduino
CircuitDigest
 
DSP and MV the Color image processing.ppt
DSP and MV the  Color image processing.pptDSP and MV the  Color image processing.ppt
DSP and MV the Color image processing.ppt
HafizAhamed8
 
最新版加拿大魁北克大学蒙特利尔分校毕业证(UQAM毕业证书)原版定制
最新版加拿大魁北克大学蒙特利尔分校毕业证(UQAM毕业证书)原版定制最新版加拿大魁北克大学蒙特利尔分校毕业证(UQAM毕业证书)原版定制
最新版加拿大魁北克大学蒙特利尔分校毕业证(UQAM毕业证书)原版定制
Taqyea
 
Value Stream Mapping Worskshops for Intelligent Continuous Security
Value Stream Mapping Worskshops for Intelligent Continuous SecurityValue Stream Mapping Worskshops for Intelligent Continuous Security
Value Stream Mapping Worskshops for Intelligent Continuous Security
Marc Hornbeek
 
Artificial Intelligence introduction.pptx
Artificial Intelligence introduction.pptxArtificial Intelligence introduction.pptx
Artificial Intelligence introduction.pptx
DrMarwaElsherif
 
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E..."Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
Infopitaara
 
Compiler Design_Syntax Directed Translation.pptx
Compiler Design_Syntax Directed Translation.pptxCompiler Design_Syntax Directed Translation.pptx
Compiler Design_Syntax Directed Translation.pptx
RushaliDeshmukh2
 
Reese McCrary_ The Role of Perseverance in Engineering Success.pdf
Reese McCrary_ The Role of Perseverance in Engineering Success.pdfReese McCrary_ The Role of Perseverance in Engineering Success.pdf
Reese McCrary_ The Role of Perseverance in Engineering Success.pdf
Reese McCrary
 

IRJET- Optimization of Distributed Generation using Genetics Algorithm and Improvement in Multiobjective Function

  • 1. INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056 VOLUME: 06 ISSUE: 09 | SEP 2019 WWW.IRJET.NET P-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 370 Optimization of Distributed Generation using Genetics Algorithm and Improvement in Multiobjective Function Preeti bala Sukhwal1 and Pushpendra Singh2 (1)M.Tech student, EE Department ,Govt. Women Engineering College, Ajmer, India (2)Assistant Professor, EE Department,Govt. Women Engineering College, Ajmer, India ---------------------------------------------------------------------***---------------------------------------------------------------------- Abstract—In Distribution system , Distributed Generators are commonly used to provide active and reactive power Compensation .Generally More losses occurs in distribution system due to high concentration of inductive loads, so proper installation of Distributed generators are necessary with optimal site and size. The power feeds from DG units located near to load centre provide an opportunity for system power losses reduction, cost reduction, voltage profile improvement, voltage stability improvement and environmental friendliness and increasing reliability. In this Paper presents Genetics Algorithm optimization techniques for finding the Optimal Location and size of DG System .The objectives of this technique is Minimization of Active Power Losses, Better Voltage Profile and Improvement in voltage stability index with security constraints in distribution system network and performed in MATLAB R2015a Software. The proposed GA optimization technique implemented on 33-bus and 69-bus Standard test radial distribution system. Keywords:- GA (Genetics Algorithm), RDS(Radial DistributionNetwork), DG(DistributedGeneration), VSI (Voltage Stability Index), Radial distribution System, MOF (Multi Objective function). 1. INTRODUCTION :- For Distributed Generation different countries uses various words same like that : ‘dispersed generation’ , ‘embedded generation’, ‘decentralized generation’ ,’distributed energy resources’(DER). DG is defined as a generator with small scale capacity of electricity connected close to its load and i.e. not a part of centralized power generation system [1]. A distribution system is an interface between power transmission system and consumer. . As compared to transmission system, the X/R ratio for distribution system is low, that causes high power losses and a drop in voltage magnitude along with radial distribution lines [3] .Due to increases in power load demand, power system faces many problems like: power losses, energy losses, voltage node disturbances, Voltage Stability issues, voltage stability indexes, DG penetration etc. [2]. To overcome these problems In Traditionally, DG and Capacitor are installed in power system network to compensate for power loss reduction, improvement in voltage profile and enhancement in voltage stability indexes. Distributed Generation is most widely used in Distribution network system because i.e. providing both active as well as reactive power but capacitor provides only reactive power to the power system network [4]. In last few years, the traditional electric energy sources, are replaces with DG has becomes an efficient and clean way. Now-a-days, DGs are the part of distributed energy resources (DERs) which also involved energy storage and receptive loads. Basically, Distributed generation (DG) integration in a distribution system has increased due to high penetration levels. For improvement in technical benefits of DG integration by using optimal allocation of DG in a power system network [5].Optimal DG location and sizing in a power distribution network with the aim to reducing system active power losses and improving the voltage profile and improvement in voltage stability index[4][6].The problem is formulated as an optimization problem and solution is obtained using genetic algorithm (GA)[7].The locations are decided on the basis of active power injection at various nodes. This approach helps in reducing the computational efforts of selecting appropriate location. GA follows the idea of survival of the fittest - Better and better solutions evolve from previous generations until a near optimal solution is obtained .in this paper optimization technique genetics algorithm for optimal location and size is discuss. 2. PROBLEM FORMULATION:- A. Objective function Single Objective function:- In this objective function Optimal DG installation in radial distribution system for minimization of active power losses; improvement in node voltage disturbances, maximization of voltage stability index with all operating constraints are discussed below:
  • 2. INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056 VOLUME: 06 ISSUE: 09 | SEP 2019 WWW.IRJET.NET P-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 371 (a)Active power loss minimization:-The major amount of losses in power system is in distribution system network during power delivery. To deliver power at minimum losses of utilities is primary objective for power system. The Optimal placement of DG is mainly studied with the minimization of active power losses, the active power losses can be defined as: F1=Min (PLoss) (1) Where PLoss is the active power loss of the radial Distribution System and given by: (2) Where αij=rijcos(δi-δj)/ViVj ,βij=rijsin(δi-δj)/ViVj, here Pi , Qi ,N, rij, Vi ,δi are the active and reactive power, total number of nodes in system ,resistance of branch between node i and j ,voltage magnitude and angle of ith node individually.. (b) Improvement in Node Voltage Disturbances: - The measure value of voltage quality appeared across system nodes i.e. called node voltage disturbances. For improving Node voltage profile DGs are connected near to load centre and i.e. also considered as a objective function is defined as:- (3) (c)Maximization of Voltage Stability Index:-At heavy load condition in distribution system the minimization of node voltage disturbances is not sufficient for security purposes so, we introduced a one of objective function is maximization of voltage stability index .basically VSI is the capacity of node at heavy loading condition to maintain its voltage profile within the allowable limits.VSI of radial distribution network is defined as:- (4) Multi objective function:-In this function no. of functions to be optimized synchronously within specified constraints. In this paper multi objective function combines minimization of active power losses, improvement in node voltage disturbances and maximization of voltage stability index which is optimized simultaneously. MOF= (α1F1+α2F2+α3F3) (5) Where penalty (weight) co-efficient α1=1, α2=0.65, α3=0.35 with function F1 = minimization of active power losses, F2 = minimization of node voltage disturbances, F3 = maximization of voltage stability index. (B)System operating constraints:-The single and multi objective functions are subjected to following constraints in discussed below:- Equality constraints:- Power balance constraints: - The total active power supplied by DGs and total reactive power supplied by DGs must satisfy the power constraints as respectively; (6) (7)
  • 3. INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056 VOLUME: 06 ISSUE: 09 | SEP 2019 WWW.IRJET.NET P-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 372 Where Yij and ᶿij are representing the elements of Y bus matrix and Impendence angle between ith and jth node individually. Inequality constraints:- Bus Voltage limit:-The Voltage constraints within upper and lower limits of alteration of voltage at the nodes of distribution system and constraint defined as:- Vi min≤Vi≤Vi max (8) Where Vi min Vi max is the minimum and maximum values of bus voltage individually .The voltage limit varies between Vmax (1.05p.u. ) and Vmin (0.95p.u.) at all system buses. Thermal limits:-The current at different branches with specified limits which is given by:- Iij≤Iij max (9) Where Iij max is the maximum loading of the distribution line connected between ith and jth bus; Iij is the current flowing through the branch connected between the ith and jth branch. Power limits of DG:-The active and reactive power sizes of DG at ith bus are specified within certain limits i.e. given by:- PDG,i min≤PDG,i≤PDG,i max (10) QDG,i min≤QDG,i≤QDG,i max (11) (8) Where PDG,i min ,PDG,i max are the minimum and maximum values of active power at ith DG respectively and QDG,i min,QDG,i max are the minimum and maximum values of reactive power at ith DG respectively. 3. Genetics Algorithm Optimization (GAO):- GA introduced by American Scientist John Holland in 1960 Afterwards his student David E. Goldberg extended GA in 1989. Genetics Algorithm based on one of the most famous Darwin’s Evolutionary theory which is generally used Meta-heuristics optimization techniques and concept of this Algorithm is ‘Survival of Fittest’.GA simulates the process of evolution and follows the natural selection process. Basic Parameters :- In this paper some basic parameters uses and defines before starting a discussion on genetics algorithm. Population – population is a group of solutions in the current generation and also be represented as sets of chromosomes. Population for initially i.e. first generation is normally created randomly. Gene − A gene is one component function of a chromosome. Chromosomes − A chromosome is the complete sets of genes (parameters) which explain a recommended solution to the problem i.e. solved by genetics algorithm. Allele − Allele is derived form of gene which is takes for a particular chromosome. Flow chart of Genetics Algorithm (GA) is shown in below figure 1:
  • 4. INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056 VOLUME: 06 ISSUE: 09 | SEP 2019 WWW.IRJET.NET P-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 373 Figure1. Flow chart of Genetics Algorithm Fitness Function − A fitness function is explained as fitness of each chromosomes that will be regenerate and survive for next generation which is suitable for objective function to be optimized. Genetic Operators – For genetic composition of the regeneration, these contains crossover, mutation, selection, etc. A simple genetic algorithm that included four operators:- i) Selection: In GA Selection operator is selecting individuals with high fitness .these individuals grouping and created new population according to the fitness value to keep the better individuals for the next generation. Normally methods of selection involved: Roulette Wheel selection, truncation selection, tournament selection etc. ii) Crossover: It is next step of selection and changes the coding of chromosomes from the parent (or first) generation to the next generation with a specific probability. iii) Mutation: Mutation is provides genetics diversity from generation to next generation with a low probability. In this genetic operator neglect some genes losing during the selection and crossover steps. iv) Replacement: Replacement is last stage of GA and used to decide which individuals get replaced in a population. Controlling parameters: - The controlling factors used in proposed GA method for both the study system are as follows: population size n=100, maximum iteration count Tmax=100, loss co-efficient (for Power flow equation) α=0.5, β=0.1, Crossover probability (Pc) = 0.9,
  • 5. INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056 VOLUME: 06 ISSUE: 09 | SEP 2019 WWW.IRJET.NET P-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 374 Steps in Basic Genetic Algorithm:- Step1. Define the fitness function f(x) corresponding to problem to be solved. Step2. Generate initial population of n chromosomes randomly initially for DG allocation. Step3. For finding objective function using power flow calculation (determine active power losses, voltage disturbances, VSI with specified limits) and evaluate the fitness f(x) of each chromosome x in the population. Step4. Applying genetics operator selection, crossover, and mutation create the new population of chromosomes using old generation. Step5. Replace the old population of chromosomes by new generation. Step6. For convergence checking the maximum no .of iteration is reached, if yes then stop and gives the best solution when no return to step 3 and find out optimal solution using next steps. 4. CASE STUDIES:- In these studies, GA method is implemented on two IEEE Standard distribution system of 33-bus and 69-bus radial Distribution system.the simulation results and performance of proposed GA is compared and discussed with various optimization techniques provides in this paper for different case studies [6]. A. Study System –1:- For this study system, the optimal location and sizing problem is formulated and solved for a Standard 33 bus radial Distribution System. It has a Base voltage=12.66 kV and active power demand = 3.715MW, reactive power demand 2.300 kVAr. The simulation results collected are compared and analyzed for some cases shown in this paper. I) Base Case [Case-I]:- In this case without any DG installation shown in Table1. The table considered optimal DG size, Location, values of objective functions and multi objective function (using weight co- efficient). II).Three DG Operated at Unity Power Factors (UPFs) [Case-II]:- In this case, three DGs are suggested in the distribution system on three different nodes .The simulation results received by proposed method are compared with various existing methods in this paper and described in Table 1. The table considered Optimal DG size, Location, Values of objective functions and multi objective function (using weight co- efficient) the bold values in table represent the optimal solution with compared to other methods .The GA methods compared to PSO, GA/PSO, TLBO, QOTLBO with improvement in objective functions. III)Four DG Operated at UPFs[Case-III]:- In this case, Four DGs are suggested in the distribution system on four different nodes .The simulation results received by proposed GA method are compared with various existing methods in this paper and are Explained in Table 1. The table considered Optimal DG size Location, Values of objective functions and multi objective function (using weight co- efficient) the bold values in table represent the optimal solution with compared to other methods .The GA methods compared to PSO, GA/PSO, IMOHS with improvement in objective functions. We concluded that the Case-II provides best solution as compared to case–I and case–III. Better voltage profile obtained for all cases w.r.t. base case and also improves the value of voltage stability index for case–II as compared to case –I and case–III. B. Study System -2:- For this study System ,the Optimal location and sizing problem is formulated and solved for a Standard 69- bus radial distribution system .it has a Base voltage=12.66 kV and active power demand of=3.715MW, reactive power demand =2.300 kVAr . The simulation results received are compared and analyzed for some cases shown in this paper. I) Base Case [Case-I]:- In this case without any DG installation shown in Table 2. The table considered optimal DG size, Location, values of objective functions and multi objective function (using weight co- efficient).
  • 6. INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056 VOLUME: 06 ISSUE: 09 | SEP 2019 WWW.IRJET.NET P-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 375 II) Three DG Operated at Unity Power Factors (UPFs) [Case-II]:- In this case, three DGs are suggested in the distribution system on three different nodes .The simulation results received by proposed method are compared with various existing methods in this paper and are explained in Table 2. The table considered Optimal DG size, Location, Values of objective functions and multi objective function (using weight co- efficient) the bold values in table represent the optimal solution with compared to other methods .The GA methods compared to PSO, GA/PSO, TLBO, with improvement in objective function. The voltage profile of the system for all cases with respect to base case shown in Fig: 2 and Fig: 3 for 33 and 69 bus system respectively. We concluded that the Case-II provides best solution as compared to case–I and better voltage profile obtained for all cases w.r.t. base case and also improves the value of voltage stability index for case–II. Fig.2: Node voltage profile for system-1 for different cases Fig.3: Node voltage profile for system-2 for different cases Genetics Algorithm used for various field i.e. discuss in below:- For machine learning (categorization and predication), optimization, Automobile design, Engineering design(to design the structure of machine, factories and buildings), Robotics,
  • 7. INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056 VOLUME: 06 ISSUE: 09 | SEP 2019 WWW.IRJET.NET P-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 376 Table 1: Comparison results for IEEE 33-bus system Table 2: Comparison results for IEEE 69-bus system Ecological model, Economic model (to solve financial and investment problems), computer game playing, for better decision making and management, Bio-mimetic invention, Computer Aided Molecular design, traffic ,trip and shipment routing (Solving Travelling Salesmen Problem), Evolvable Hardware , Optimized Telecommunication system etc. 5. CONCLUSIONS:- In this paper presents proposed GA method to solve location and sizing problems for DGs simultaneously using standard test distribution system of 33-bus and 69-bus Radial Distribution System. The proposed method was implemented to 33- bus and 69-bus system with three different objective functions .In order to prove superiority of other optimization techniques and compared with GA/PSO,PSO,TLBO,QOTLBO 33 bus system and GA/PSO,PSO,TLBO for 69 bus system. Proposed Method gives less active power losses in comparing with the results of other popular optimization techniques. After DGs installation, the both RDS have major improvement in voltage profile and increase in voltage stability index for the Proposed GA method. Multi-objective studies can be done by the proposed algorithm.The best location analyzed by GA for three DGs placement at 25, 30, 13 bus number that reduces active power losses from 0.2025MW to 0.0958MW at normal load condition with CASE USED METHOD OPTIMAL DG LOCATION OPTIMAL DG SIZE(MW) VALUE OF OBJECTIVE FUNCTION MULTI OBJECTIVE FUNCTION F1 (MW) F2 F3 I. BASE CASE __ __ 0.2025 0.1170 0.6989 0.5232 II. PSO 8,13,32 1.177,0.982,0.830 0.1053 0.0335 0.9256 0.4510 GA/PSO 11,16,32 0.925,0.863,1.200 0.1034 0.0124 0.9508 0.4442 TLBO 12,28,30 1.183,1.191,1.186 0.1247 0.0011 0.9503 0.4580 QOTLBO 13,26,30 1.057,1.054,1.741 0.1034 0.0011 0.9530 0.4376 GA 25,30,13 0.9090,1.6840,1.6580 0.0958 0.0007 0.9701 0.4359 III. PSO 6,15,25,31 0.830,0.833,0.541,0.648 0.0713 0.0109 0.8776 0.3855 GA/PSO 14,24,26,32 0.663,1.023,0.867,0.664 0.0682 0.0130 0.8903 0.3878 IMOHS 6,14,24,31 0.937,0.667,1.012,0.731 0.0678 0.0111 0.8891 0.3862 GA 7,15,24,31 0.8884,0.6810,0.9420,0.7760 0.0670 0.0080 0.9049 0.3889 CASE USED METHOD OPTIMAL DG LOCATION OPTIMAL DG SIZE (MW) VALUE OF OBJECTIVE FUNCTION MULTI OBJECTIVE FUNCTION F1(MW) F2 F3 I. BASE CASE __ __ 0.22470 0.0993 0.6870 0.5296 II. PSO 17,61,63 0.9925,1.1998,0.7956 0.08320 0.0049 0.9676 0.4250 GA/PSO 21,61,63 0.4105,1.1926,0.8849 0.08110 0.0031 0.9768 0.4249 TLBO 13,61,62 1.0134,0.9901,1.1601 0.08217 0.0008 0.9745 0.4237 GA 16,61,62 0.8002,1.1724,0.9970 0.08060 0.0006 0.9778 0.4233
  • 8. INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056 VOLUME: 06 ISSUE: 09 | SEP 2019 WWW.IRJET.NET P-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 377 improved voltage losses 0.1170p.u. to 0.0007p.u. And maximize the value of voltage stability index 0.6989 to 0.9701. For four DGs placement at 7,15,24,21 bus number that reduces losses from 0.2025MW to 0.0670MW with improved voltage losses 0.1170p.u. to 0.0080p.u. And maximize the value of voltage stability index 0.6989 to 0.9049 at normal load condition for 33 bus system. The best location analyzed by GA for three DGs placement at 16, 61, 62 bus number that reduces active power losses from 0.2247MW to 0.0806MW at normal load condition with improved voltage losses 0.0993p.u. to 0.0006p.u. And maximize the value of voltage stability index 0.6870 to 0.9778 for 69bus system. REFERENCES:- [1]. Bindeshwar Singh, V. Mukherjee,Prabhakar Tiwari “GA-based multi-objective optimization for distributed generations planning with DLMs in distribution power system ,Journal of Electrical Systems and Information Technology. Volume 4, Issue May 2017. [2].U. Sultana, Azhar B.Khairuddin.M.M.Zareen “A review of Optimum DG placement based on Minimization of power losses and Voltage stability enhancement of Distribution System”, Elsevier publication, Journal Renewable and Sustainable Energy Reviews, Volume 63, September 2016. [3]. M.H.Moradi and M. Abedini, “A combination of Genetics Algorithm and Particle Swarm Optimization for optimal DG Location and sizing in Distributed Systems”, International Journal Electric Power and Energy System, Volume 34, January 2012. [4]S. Sultana and P.K.Roy,”Mult-objective Quasi –Oppositional Teaching Learning based optimization for Optimal location of DG in radial Distribution System”, International Journal of Electric Power and Energy System, Volume 63, Dec.2014. [5].S. N. Singh Jacob Ostergaard, Naveen Jain “Distributed Generation in power system: An overview and Key issues”IEC, published in: 24rth Indian Engineering Congress, January 2009. [6]. N.K.Meena, Sonam Parashar, Anil Swarnkar, Nikhil Gupta, K.R.Niazi,”Improved Elephant Herding Optimization for Multi-Objective DER Accommodation in Distribution System”IEEE Transactions on Industrial Informatics, March 2018. [7]. A PDF for chapter 1: Genetic Algorithms –An introduction“shodhganga.inflibnet.ac.in>bitstream>11>11chapter1. [8]. P.S. Georgilakis and N.D.Hatziargyriou, “Optimal DG placement in Power Distribution Network models, methods and future research”, IEEE Transactions Power System, Volume 28, 28 Aug.2013 [9].Imran Ahmad Quadri .S.Bhowmick, D.Joshi, “A Comprehensive Technique for Optimal allocation Of DER in Radial Distribution Systems”, Elsevier publication, Journal Applied energy, February 2018 Volume 211. [10]. Priya Kashyap, Pushpendra Singh, “optimal placement and Size of DG and DER for Minimizing power loss and AEL in 33-Bus Distribution System by various Optimization Techniques” International Research Journal of Engineering and Technology (IRJET) Volume: 05, 10 Oct 2018. [11]. R.S.Rao, K.Ravindra, K.Satish and S. V. L. Narasimham, “Power Loss minimization in Distribution system using network reconfiguration in the presence of DG,” IEEE Transactions on Power System., Volume. 28, February 2013. [12]. S.M.Sajjadi, M.RHaghifam, Javad Salehi “Simultaneous Placement of Distributed Generation and Capacitors in Distribution Networks Considering Voltage Stability Index” Elsevier publication, International Journal of Electric Power & Energy System, Volume.46, March 2013. [13]. N.K. Meena, Anil Swarnkar, Nikhil Gupta, Khaleequr R. Niazi1 “Multi-objective Taguchi approach for Optimal DG integration in Distribution Systems”,IET Journal Generation Transmission and Distribution, June 2017. [14]. A PDF for Optimal Placement and Sizing of Capacitor -Shodhganga”shodhganga.inflibnet.ac.in>bitstream>16chapter 4.