This document describes a proposed ontology-based document clustering system. The system uses a two-step clustering algorithm that first applies K-means partitioning clustering followed by hierarchical agglomerative clustering. Ontology is introduced through a weighting scheme that integrates traditional TF-IDF word weights with weights of semantic relations between words from the ontology. The goal is to produce document clusters that are semantically meaningful by accounting for relationships between words, rather than just word co-occurrence. An overview of the system architecture and modules is provided, along with descriptions of preprocessing, concept weighting, clustering approaches, and initial implementation results.